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ABSTRACT 

The normal depth is an important hydraulic element in the design, operation and 

maintenance of canals. The calculation of this normal depth is based on Manning's 

formula, which has long been considered applicable only in the rough turbulent domain, 

and Manning's coefficient is considered in several works as a constant of the problem. 

The objective of this study is to express the normal depth in different semipolygonal 

canals as the optimal cross-section (semicircular, rectangular, triangular and trapezoidal), 

taking into account the variation in Manning's coefficient as a function of all the 

parameters governing the uniform flow, including the viscosity of the liquid. The study 

led, through the application of the rough model method (RMM), to a dimensionless 

expression of Manning's coefficient, written as a function of the characteristics of the 

rough model, allowing the construction, for each chosen cross-section, of a diagram 

similar to Moody's. The diagrams give Manning's coefficient in the whole turbulent 

domain (smooth, transition and rough), which is considered a generalization of Manning's 

formula in the whole turbulent domain instead of only the rough domain. The exact 

solution of normal depth by using the equation of Manning’s coefficient has therefore 

been proposed. 

http://creativecommons.org/licenses/by/4.0
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INTRODUCTION 

In uniform open channel flow, the normal depth is an important hydraulic element in the 

design of the channels, analysis of gradually varied flow profiles (backwater), operation 

and maintenance (Swamee, 1994). The normal depth is determined by using many 

numerical methods with no explicit solution (Zhang and Wu, 2014), and one of the most 

resistance equations applied to calculate the normal depth is Manning’s equation (Chow, 

1959). Manning’s formula is generally used to calculate the average flow velocity V(m/s) 

in open channels as a function of hydraulic radius Rh(m), the bed slope of the channel 

S0(m/m) and a resistance coefficient of Manning n (s/m1/3), which represents the friction 

applied to the flow by the inner wall of a channel or a pipe (Chow, 1959) and is also used 

to calculate the discharge Q  (m3/s) with VAQ = , where A (m2) is the wetted area of flow 

(García-díaz, 2005). 

In practice, and in many studies, Manning's formula is more generally applied to calculate 

the normal depth of uniform flow in open channels and pipes. Chow (1959) used the 

Manning formula for the computation and analysis of uniform flow and provided that 

when the discharge Q, longitudinal slope S0 and resistance coefficient called roughness n 

are known, the Manning formula gives the section factor 
3/2

hAR  and hence the normal 

depth ny . 

Barr and Das (1986) provided a numerical procedure for the direct solution of normal 

depth for rectangular channels and provided both numerical and graphical procedures for 

trapezoidal channels and circular conduct using Manning's formula. Babaeyan-Koopael 

(2001) determined a graphical solution for calculating the normal depth of different 

channel cross-sections (triangular round-bottom sections, parabolic sections and 

rectangular round-bottom sections) by determining a dimensionless parameter using the 

Manning equation. Abdulrahman (2007) used Manning's formula to determine the 

minimum and optimum characteristics of a composite section formed by a trapezoidal 

section at the bottom and a rectangular section at the top (half octagon) and showed that 

it is the most efficient section. Froehlich (2008) determined the dimensions of standard 

two-section trapezoidal shapes with rounded bottom vertices by applying two different 

methods, the analytical method and the graphical method, using the cross-sectional factor 

for uniform flow from the Manning equation. 

Using Manning's equation, Raikar et al. (2010) proposed a regression analysis method to 

calculate the normal and critical depths for an ovoid duct model recommended by the 

Indian Standard Code of Practice IS-4880 (1976). Li and Gao (2014) used an iterative 

formula to calculate the nondimensional normal depth ϵ [0.04, 400] with a maximum 

relative error of 0.34% for a parabolic open channel section. Liu et al. (2010), by applying 
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Manning's formula, presented an iterative formula to calculate the normal depth for all 

types of tunnels with a standard horseshoe cross-section with a maximum relative error 

of 0.5%, and Han and Easa (2016) and Elhakeem (2017) proposed explicit solutions for 

calculating the normal depth of channels with cubic and trapezoidal cross-sections, 

respectively. Dai et al. (2020) determined the normal depths of three parabolic-shaped 

channels using three methods. The first is the Simpson integral numerical method giving 

wetted perimeters for the calculation of the three normal depths. The second method is 

used to calculate three alternative depths with a maximum error of 0.13%, while the third 

is used to determine three conjugate depths with a maximum error of 0.34%. In the studies 

cited above, the value of the Manning roughness coefficient n  is considered constant and 

given in the literature by a table depending on the kind of channels. This can only 

constitute an approximation of the problem because the constancy of this coefficient is 

no longer physically justified; it must vary according to all the parameters governing the 

uniform flow, particularly the normal depth, which is generally the unknown of the 

problem (Achour and Amara, 2020). 

Some researchers have investigated the value of Manning's roughness coefficient n  by 

considering it nonconstant and have developed solutions using different methods: Yen 

(1992) determined an iterative solution and a graphical solution for calculating the 

dimensionally homogeneous ng of Manning's roughness coefficient n as a function of 

hydraulic radius (or normal depth). Akgiray (2005) discussed explicit approximate 

solutions of Manning's equation for two assumptions: the first assumes that n is constant, 

and the second assumes that n varies with depth flow, as indicated by Camp (1944, 1946). 

Azamathulla et al. (2013) worked with genetic expression programming algorithms 

(GEPs) to estimate the Manning roughness coefficient n  in an open channel as a function 

of the Reynolds number, Froude number, flow depth and channel slope for partially filled 

circular pipes. The authors showed that the GEP approach is in good agreement (±10%) 

with the experimental results compared to the classical models based on regression 

analysis (traditional formula). Achour and Amara (2020) presented a new relation of the 

Manning roughness coefficient n  for partially filled circular pipes derived from the 

combination of the rational Darcy-Weisbach and Colebrook-White equations. The 

variable nature of Manning's coefficient as a function of the different parameters 

governing it, notably the relative roughness and kinematic viscosity, shows that it is also 

affected by the flow regime. 

In all cited works, Manning's formula is used; this relation is only valid for the rough 

turbulent regime with average relative roughness (Hager, 1989). In this domain, the 

Reynolds number has no influence because the kinematic viscosity is not considered in 

the expression of Manning's formula. Some researchers have investigated the application 

of Manning's formula in the whole domain of turbulent flow and have developed an 

explicit equation for Manning's roughness coefficient n , including Achour and Bedjaoui 

(2006), who developed a relationship for the volume flow Q in turbulent flow to obtain a 

general expression for Manning's coefficient n  as a function of the relative roughness 

𝜀 𝑅ℎ⁄ , the hydraulic radius 𝑅ℎ and the Reynolds number 𝑅𝑒
̅̅ ̅ of the rough model. Loukam 
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et al. (2019) determined Manning's resistance coefficient n  in uniform flow for egg-

shaped conduits as a function of the filling ratio  , the relative roughness 𝜀 𝐷ℎ
̅̅̅̅⁄  and the 

full-state Reynolds number characterizing the referential rough model. 

In this study, and for optimal channel cross sections, an exact solution for determining 

the normal flow depth ny  using Manning's formula is sought, which is done by 

generalizing Manning's coefficient n  to the whole turbulent flow domain (smooth, 

transition and rough). Where the semicircular shape of the open channels is the section 

with the best hydraulic conductivity, the larger these sections are, the more difficult their 

construction. To overcome the construction difficulties of large semicircular channels and 

to approach the best conductivity. Vatankhah (2014) presented a semiregular polygon 

section for one half of a regular polygon with an adequate number of sides, which includes 

the semisquare, the semihexagon, the semioctagon and the semidecagon, where each 

semiregular polygon has two types of cross-section: the type I semiregular polygon with 

a flat bottom and the type II semiregular polygon with an angular bottom. Both types of 

cross sections (type I and type II) have the same wetted perimeter and flow area. Among 

the semiregular polygons, the semicircular, the type I semisquare, which is a rectangular 

cross-section, the type II semisquare, which is a triangular cross-section, and the type I 

semihexagon, which is a trapezoidal cross-section, are the cross-sections that have been 

employed for this study in the rough turbulent domain. Semicircular sections are generally 

used for irrigation channels with small flows, rectangular sections are designed for 

moderate flow in most cases, triangular sections are generally used to carry small flows 

and to carry large flows, and trapezoidal sections are preferred for side slope stability 

(Swamee and Chahar, 2015). 

The method used to attain our objective is the rough model method, called the RMM 

method. Much work has been done in this regard, such as Achour (2007), Lakehal and 

Achour (2014; 2017), and Zegait and Achour (2016), which is applicable to all domains 

of the turbulent regime. To express the Manning roughness equation and calculate the 

exact solution of the normal depth of different proposed channel cross-sections, the 

following steps are necessary: 

First, the Manning roughness equation is established. Second, the dimensionless 

Manning's coefficient ( N ) equation is established. Third, a diagram ( N diagram) is 

constructed, giving Manning's coefficient as a function of the Reynolds number and 

relative roughness. Fourth, the normal depth equation is established for the rough 

reference model. Finally, the normal depth equation is established. 

GEOMETRIC AND HYDRAULIC PROPERTIES OF CHANNEL SECTIONS 

Fig. 1 shows the cross-sections of an open channel, which include semicircular, 

rectangular, triangular and trapezoidal cross-sections. These cross-sections are 

characterized by the normal flow depth ny  and the top width of the surface water T. 
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Similarly, the rectangular and trapezoidal sections are characterized by the width of the 

channel bottom b , and the trapezoidal and triangular sections are characterized by the 

side slope z , which is given to each section as 𝑧  𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙     =    1/√3 and 

1=Triangularz . 

 

 

a) Optimal semicircular channel b) Optimal rectangular channel 

 
 

c) Optimal triangular channel d) Optimal trapezoidal channel 

Figure 1: Channel profile of the selected sections 

The geometric elements are the wetted area A (m2) and wetted perimeter P (m) of the 

channel section, as shown in Figure 1, which are given by: 

2
nA ycA =                                 (1) 

nP ycP =   (2) 
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The hydraulic elements are the hydraulic radius PARh /=  and the hydraulic diameter 

hh RD 4=  of the channel section, as shown in Figure 1, which are given by: 

nh ycR
hR

=  (3) 

nDh ycD
h

=     (4) 

where 
hRPA ccc ,,  and 

hDc  are coefficients related to the shape studied in Fig. 1, as 

given in Table 1. 

Table 1: Geometric coefficients and hydraulic elements of chosen cross sections

hRPA ccc ,, and
hDc  

Cross section Ac  Pc  
hRc  

hDc  

Semicircular /2  1/2 2 

Rectangular 2 4 1/2 2 

Triangular 1 2√2 1/(2√2) 2  

Trapezoidal 3  32  1/2 2 

GENERAL RELATION OF THE NORMAL FLOW DEPTH 

The uniform flow in an open channel is expressed by the Manning formula as follows: 

ASR
n

Q h
21

0
32

=      (5) 

where Q (m3/s) is the flow discharge, 0S  is the longitudinal bed slope (m/m), n  is 

Manning’s roughness coefficient (s/m1/3) and   is the unit conversion constant equal to 

1 for the SI unit and 1.49 for the CU unit.

 
Substituting A and hR  from Eqs. (1) and (3), respectively, into Eq. (5) and simplifying, 

Manning’s equation is written as follows: 

AnR cSyc
n

Q
h

21
0

3/83/2
= (6)  

Solving Eq. (6), the normal depth ny  can be expressed by the following relation: 
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8/3

0













=

S

Qn
yn    (7) 

where ( ) 8/33/2 −=
hRA cc  are shown in Table 2. 

Eq. (7) allows the calculation of normal depth for semicircular, rectangular, triangular 

and trapezoidal channels using known values of flow discharge Q and channel bed slope 

0S . 

However, as the value of the Manning roughness coefficient n  depends on all the 

parameters governing the uniform flow, it cannot be used as a problem datum. More 

precisely, the normal depth ny  is the unknown of the problem. 

To solve this problem, it is necessary to apply the RMM method to express Manning’s 

coefficient n  independently of the normal depth ny . This aspect will be addressed in the 

next paragraph. 

 

Table 2: The constant of the chosen cross sections 

cross section   

Semicircular 2  

Rectangular 8/12−  

Triangular 8/32  

Trapezoidal 8/38/52   

MANNING'S ROUGHNESS COEFFICIENT EQUATION USING THE RMM 

METHOD 

Referential rough model 

All the geometric and hydraulic characteristics of the rough model are distinguished by 

the symbol "  ̅ ", where the reference rough channel is characterized by strong relative 

roughness, arbitrarily chosen equal to 
2107.3 −=hD , for a rough turbulent regime 

(Achour, 2007). 

For a rough turbulent regime, the friction factor is given by the following Nikuradse 

equation, where hh DD  =  and ff = : 
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2

7.3
log2

−




























−= hD

f
  (8)  

Substituting into Eq. (8) for the chosen value 
2107.3 −=hD , the friction factor f

 
takes the following constant value: 

( )
16

1
4

7.3

107.3
log2

2

2
2

==


























 
−=

−

−
−

f  (9) 

Any linear dimension L  of the channel is related to the homolog linear dimension L  of 

the rough model by the following fundamental relationship, applicable to the turbulent 

domain (Achour, 2007):

 
LL =   (10) 

where   is a dimensionless correction factor of the linear dimension varying in the 

following range [0; 1];   is governed by the following explicit relationship (Achour and 

Bedjaoui, 2006): 

5/2
5.8

75.4
log35.1

−




























+−

e

h

R

D
  (11) 

where 𝐷ℎ is the hydraulic diameter in the rough model,   is the absolute roughness and 

𝑅𝑒 is the Reynolds number characterizing the flow in the rough model, which can be 

expressed as follows:

 



3
0

232
h

e

RSg
R =  (12) 

where  is the kinematic viscosity (m2/s).

 
Taking into account Eq. (10) 𝑅ℎ and 𝑅ℎ are related as follows: 

hh RR =             (13) 

Eq. (10) can be rewritten as: 

222 LL =       (10a) 
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where 𝐿 2 and 𝐿̅ 2 are proportional to the water areas A and A , respectively. Thus, one 

may obtain the following: 

AA 2=    (14) 

Manning's roughness equation 

Substituting the parameters 𝑅ℎ and 𝐴 from Eqs. (13) and (14) into Eq. (5) and simplifying, 

Manning’s equation becomes as follows:

 

ASR
n

Q h
21

0
323/8


=  (15)  

For the rough model, Manning’s equation expressed by Eq. (5) can be written as follows: 

ASR
n

Q h
21

0
32

=  (16)  

According to the RMM fundamental principle (Achour and Bedjaoui, 2006), the flow 

rates Q and the bed slope S0 of the channel are the same in the rough model, i.e., 𝑄̅ = 𝑄 

and 𝑆0̅ = 𝑆0. 

The combination of Eqs. (15) and (16) show that the Manning roughness coefficient n  
of the studied channel and n  of the rough model can be linked by the following relation 

(Zegait and Achour, 2016): 

nn 3/8=  (17) 

Manning’s roughness coefficient n in the rough model is given by Chezy’s resistance 

coefficient as (Zegait and Achour, 2016): 

C

R
n h

6/1

=   (18) 

Chezy’s resistance coefficient 𝐶̄ was derived from the study of Achour and Bedjaoui 

(2006) as follows: 

f

g
C

8
=    (19) 

Where 𝑓̅ = 1 16⁄  according to Eq. (9). Thus, Eq. (19) reduces to 𝐶̅ = 8√2𝑔. The 

hydraulic radius 𝑅ℎ
̅̅̅̅  of the rough model can be written by analogy with Eq. (3) as follows: 

nRh ycR
h

=    (20) 

Considering Eq. (20) and gC 28= , Eq. (18) becomes: 
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g

yc
n

nRh

28

6/16/1

=   (21) 

By introducing n  and   from Eqs. (21) and (11) into Eq. (17), Manning’s roughness 

coefficient n  equation becomes: 

15/16
6/1 5.8

75.4
log

1




























+−=

−

e

h
n

R

D
yg

n


                 (22)  

where: 

6/13/8 2835.1 −−=
hRc        (22a) 

Table 3, along with Table 1, gives the values of   for the considered channel cross-

sections. 

Table 3: Values of for the four selected cross sections 

Cross section   

Semicircular 5.705 

Rectangular 5.705 

Triangular 6.044 

Trapezoidal 5.705 

Discussion of Manning's roughness equation 

Eq. (22) can be written in dimensionless terms as follows: 

15/166/1
5.8

75.4
log




























+−=

e

hn

R

D

gn

y 
   (23) 

Let us be the dimensionless parameter N as follows: 

gn

y
N n

61

=  (24) 

Therefore, Eq. (23) can be written as follows: 

15/16
5.8

75.4
log




























+−=

e

h

R

D
N


   (25) 

As a result, the dimensionless coefficient N is expressed as a function of the relative 

roughness 𝜀 𝐷ℎ
̅̅̅̅⁄  and Reynolds number 𝑅𝑒

̅̅ ̅. It is worth noting that equation (25) applies to 
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the four selected channel shapes. Equation (25) is graphically presented using a 

semilogarithmic axis of the coordinate system. The resulting diagram (Fig. 2) shows the 

variation in N  as a function of Reynolds number
 
𝑅𝑒
̅̅ ̅ for various values of relative 

roughness 𝜀 𝐷ℎ
̅̅̅̅⁄  and different selected open channels. 

Eq. (25) is evidently applicable in all domains of the turbulent flow corresponding to

2300eR  and 05.00  hD . 

Therefore, for the smooth domain corresponding to 0→ , Eq. (25) is written as follows: 

15/16
5.8

log



























−=

eR
N   (26) 

Additionally, for the rough turbulent domain, corresponding to 0→  or 𝑅𝑒
̅̅ ̅ → ∞, Eq. 

(25) is written as follows: 

15/16

75.4
log




























−= hD

N


         (27) 

The discontinuous curve in Fig. 2 represents the limit between the transition and the rough 

turbulent domains. 

 

 
a) 
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b) 

Figure 2: Variation in N as a function of the Reynolds number 𝑹𝒆
̅̅̅̅  for fixed values 

of relative roughness 𝜺 𝑫𝒉
̅̅ ̅̅⁄  according to Eq. (25) for the four chosen open 

channels. a) Semicircular, rectangular and trapezoidal channels,  

b) triangular channel. (―) Practical limit curve between transition and 

rough turbulent domains
 

The normal depth of the rough reference model 

The rough reference model of different considered open channels chosen are 

characterized by their top width 𝑇̅  of the surface water and the normal flow depth 𝑦𝑛̅̅ ̅. 

Taking into account Eq. (1), the wetted area of the rough reference model A (m2) is as 

follows: 

2
nA ycA =   (28) 

Additionally, taking into account Eq. (2), the wetted perimeter 𝑃̅(m) is expressed as 

follows: 

nP ycP =    (29) 

Taking into account Eq. (4), one may write the following: 

nDh ycD
h

=                     (30) 
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For flow in open channels, the Darcy-Weisbach relationship is written as follows: 

hDA

Q

g

f
S

2

2

0
2

=  (31) 

Applying Eq. (31) to the reference rough model, with 𝑄̅ = 𝑄 and 𝑆0̅ = 𝑆0, one may obtain 

the following: 

hDA

Q

g

f
S

2

2

0
2

=  (32) 

With 𝑓̅ = 1 16⁄  and taking into account Eqs. (28) and (30), Eq. (32) becomes as follows: 

5

2

0
1

ny

Q

g
S =


 (33) 

where χ is a constant expressed as follows: 

hDA cc 232=         (34) 

Table 4 gives the values of the constant χ for the considered cross-sections. 

Table 4: Values of the constant   for the considered cross-sections 

Cross section χ
 

Semicircular 16
 

Rectangular 256 

Triangular 232  

Trapezoidal 192 

 

The normal flow depth 𝑦𝑛̅̅ ̅ of the reference rough model is obtained from Eq. (33) as 

follows: 

5/2

0

5/1














= −

Sg

Q
yn    (35) 

Eq. (35), along with Eqs. (12), (22), and (30), allows computing Manning’s roughness 

coefficient n. Thus, the normal depth sought ny is worked out using Eq. (7) for the known 

value of the parameter Ω selected from Table 2. 
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CONCLUSION 

This study aims to propose the exact solution of the normal depth in four semipolygonal 

cross sections, namely, semicircular, rectangular, triangular and trapezoidal cross 

sections. Indeed, the general equation of the normal depth as a function of discharge, bed 

slope, and Manning coefficient applicable to the four chosen shapes can be explicitly 

expressed. Manning’s roughness coefficient was expressed based on the RMM method 

according to the characteristics of the reference rough model, namely, normal depth ny , 

relative roughness 𝜀 𝐷ℎ
̅̅̅̅⁄  and Reynolds number  𝑅𝑒

̅̅ ̅. Manning's coefficient was also 

written in dimensionless form as a function of the last two parameters. 

Two diagrams similar to Moody's were developed as a graphic depiction of the result. 

The semicircular, rectangular, and trapezoidal shapes are all covered by the first diagram, 

while the triangle shape is covered by the second. These diagrams show that the Manning 

coefficient is not constant and may be observed in the rough, smooth, and transitional 

turbulent domains. This result permitted Manning's formula to be generalized throughout 

the whole turbulent domain. 
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