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ABSTRACT 

The 2A triangular weir is a new type of weir that belongs to the category of weirs with a 

triangular longitudinal profile. The current device has the same upstream and downstream 

slopes as the Crump weir. The study intends to derive the theoretical relationship that 

governs the discharge coefficient Cd of the device and hence that of the flow rate Q, 

known as the stage-discharge relationship. For this, the energy equation, involving the 

approach flow velocity, is applied between two judiciously chosen sections of the free 

flow crossing the weir under critical state conditions. The resulting equation is 

transformed into dimensionless terms, and the discharge coefficient is derived by 

comparison with the well-known stage-discharge relationship of triangular weirs. 

Another method, based on the kinetic factor, is also applied and leads to the same result. 

The theoretical discharge coefficient relationship shows that only the relative weir 

height is the influential parameter, as predicted by the dimensional analysis. The shape of 

the approach channel has no influence either on the discharge coefficient Cd or on the 

flow rate Q. This feature gives the device a universal range since its use can be extended 

to any shape of the approach channel. 

Keywords: Novel type weir, 2A weir, Stage-discharge relationship, Discharge 

coefficient, Experimental validation.  

INTRODUCTION 

The category of weirs with a triangular longitudinal profile includes the universally 

known weirs of Crump and Bazin (Bazin, 1898; Henderson, 1966; Bos, 1976; 1989; 

Hager, 1986). They are formed of rectangular cross-sections and have an upstream face 
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and a downstream face, with given slopes. While Bazin adopted four combinations of 

upstream and downstream slopes, Crump limited the structure to a single combination, 

i.e., 1:2 upstream and 1:5 downstream. The few studies carried out on the Crump weir 

have confirmed that these slope values are adequate such that no separation of the liquid 

nappe above or downstream of the weir crest has been observed for a wide range of 

discharge (Filippov and Brakeni, 2007; Zuikov, 2017), meaning that a clinging nappe is 

formed having no air beneath and the streams flow along the downstream face of the weir. 

Made up of rectangular cross-sections, the Crump- and Bazin-type weirs are not a 

universal range since their use is restricted to the rectangular open channel. Furthermore, 

the Bazin weir did not experience the desired attractiveness because it was calibrated for 

a crest height P = 50 cm, which is too large a crest height for existing practical 

installations (Afblb, 1970). Since then, no study has been carried out to correct this 

drawback. 

It is well known that rectangular sections have many disadvantages when used as a 

measuring structure (Kindsvater and Carter, 1957; Kulin and Compton, 1975). The 

discharge coefficient Cd is not actually a constant for a given installation but is a function 

of the flow depth h above the rectangular weir crest. The main reason is that the ratio of 

h to the wetted perimeter p of the crest is not constant since h/p is a function of the aspect 

ratio b/h, where b is the crest width, which is also the width B of the approach channel in 

the case of a suppressed weir (Thomson, 1861; SIA; 1926). In contrast, in the case of a 

V-notch, the ratio h/p is actually a constant for a given installation since it solely depends 

on the vertex angle (De Coursey and Blanchard, 1970; Kulin and Compton, 1975; Shen, 

1981; Boiten and Pitlo, 1982). As a result, the discharge coefficient Cd of such a structure 

does not depend on the relative depth h/B, provided that no transition is made between 

the measurement structure and the approach channel. If a transition is operated, 

particularly if it is abrupt, then in this case, the discharge coefficient Cd depends on the 

dimensionless parameter mh/B, where m is the tangent of the half vertex angle (Thomson, 

1861; Shen, 1981; USBR, 1997; Achour and Amara, 2022a; Nicosia and Ferro, 2022). 

Additionally, for low flow rates, the rectangular section resulted in shallow depths h, thus 

causing appreciable depth reading errors, while the V-notch causes great depths h, which 

can be gauged with high accuracy. Hence, depth measurement can be performed more 

accurately over the triangular weir than over the rectangular weir, which implies a better 

accuracy in the flow rate computation using the stage-discharge relationship. Whether for 

low or high flows, the relative error caused by the depth h reading is the same when the 

triangular section is used as the measurement structure. This is because the triangular 

section offers perfect geometric similarity. 

Keeping in mind the advantages offered by the triangular section as a measuring structure, 

the authors recommend a new type of weir with a triangular longitudinal profile made up 

of triangular cross sections, which is expected to be as efficient as it is accurate. Its design 

has been carefully studied, as will be described in the next section, to give the 

measurement structure a universal range. Unlike most devices, the recommended weir is 

in fact not connected to the approach channel walls by a transition, so it can be used in 
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any form of approach channel without affecting the governing stage-discharge 

relationship. 

What is expected from the study is to derive the governing discharge coefficient Cd 

relationship of the weir using an irreproachable rigorous theoretical approach based on 

energy and kinetic considerations through two different methods leading to the same 

result. The few simplifying assumptions made, especially the disregard of head losses, 

will have no quantitative or qualitative impact on the final result. 

The study will continue with an intense experimental program involving six weirs tested 

in a specially designed facility. The ultimate objective is to confirm the validity of the 

derived theoretical relations or to correct them by the effects of an experimental correction 

factor if this proves necessary. 

It is worth noting that the flow measurement method described in this paper must be 

applied to open channels conveying steady flow. The discharge to be measured is solely 

dependent on the upstream flow depth counted above the weir crest. Submerged flows 

whose discharge depends on both upstream and downstream levels are not considered in 

this study. 

MATERIAL AND METHODS 

Description of the device and the resulting flow 

Fig. 1 gives a fairly precise overview of the device under consideration, inserted in a 

rectangular approach channel of width B and deep ho, which conveys the flow rate Q 

sought. It is deliberately denoted “ DEVICE' ” to highlight its profile and its distinctive 

outline. The design is inspired by the Crump weir, in particular for the choice of upstream 

and downstream slopes. Preliminary tests have shown that slopes 1:2 and 1:5 of the 

upstream and downstream sloping faces, respectively, are the most appropriate values 

that ensure a stable and regular flow, without any separation on the weir crest or the 

downstream face, for a wide range of the discharge Q. 

However, the involved cross sections are triangular throughout the current device, with a 

constant apex angle, unlike the Crump weir, which is based on rectangular cross 

sections. The choice of such a shape is motivated by the fact that triangular sections 

provide multiple advantages that are universally acknowledged since they ensure a more 

accurate flow measurement compared to the performance of other notch shapes, 

especially during low discharge measurements. Additionally, the accuracy is greater for 

the V-notch because it causes greater upstream depths than other notch shapes. The 

greater the upstream depth is, the greater the relative error of the depth measurement 

decreases, resulting in better accuracy in the calculation of the discharge. Moreover, even 

for shallow upstream depths, the measurement uncertainty is the same as that of greater 

depths since the triangular section offers a perfect geometrical similarity that is not found 

in the other section shapes. 
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Figure 1: Perspective diagram of the device denoted DEVICE’ inserted in a 

rectangular approach channel. 

The device rests on a frame formed of waterproof plates, one placed vertically and 

perpendicular to the direction of flow, while the other two are placed vertically in the 

streamwise direction, in line with the longitudinal axis of the approach channel (Figs. 1 

and 2). The longitudinal profile of these two plates is triangular. The one placed upstream 

supports the ascending face of the device with a slope of 1:2, while the one placed 

downstream supports the descending face of the device with a slope of 1:5. The vertical 

plate, which has a V-notch at its upper part, supports the weir crest of elevation P. 

Additionally, one may deduce from Fig. 2 that the maximal depth above the crest is  

 

As shown in Fig. 2, and Fig. 2.bis, the device is characterized by a triangular longitudinal 

profile, as the Bazin and Crump weirs are classified in this category. 

 
Figure 2: Perspective view of the device pedestal formed by the vertical waterproof 

support plate and the upstream and downstream support vertical shaped-

triangular plates 
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Figure 2bis: Photo views of the device under different perspective angles. 

What has been described previously is an opportunity to qualitatively evolve the 

definition of weirs with a triangular longitudinal profile. It appears now that longitudinal 

profile weirs cannot be exclusively associated with rectangular cross-sections, as with 

Crump and Bazin-type weirs. A suitable definition could be based on the geometry of the 

cross-section of the device, in addition to the triangular shape of the longitudinal profile. 

The authors recommend designating, within the category of weirs with a triangular 

longitudinal profile, the C-rectangular weir, the B-rectangular weir, and the 2A-triangular 

weir as being the Crump (C) weir, Bazin (B) weir, and Achour-Amara (2A) weir, 

respectively. In the future, it would likely be that this definition will be completed by the 

X-parabolic weir or the Y-trapezoidal weir and even more, where X and Y designate the 

initiator, respectively, 

It is worth noting that with such a design, the advocated device is of universal range since 

its use can be extended to any shape of the approach channel, including trapezoidal, 

semicircular, triangular, and parabolic. The main reason is that no lateral transition 

connecting the V-notched inlet of the device and the walls of the approach channel is 

made, which, therefore, does not affect either the discharge coefficient or the flow rate. 

Consequently, the relationships developed herein, governing both the discharge 

coefficient and the flow rate, remain valid regardless of the shape of the approach channel. 

The sine qua non condition for the user is compliance with the 1:2 and 1:5 slopes of the 

upstream and downstream faces of the device, respectively, so that the aforementioned 

relationships give reliable results. This requirement is recommended as a safety measure 

since no study carried out on the device attests that the upstream and downstream slopes 

do not influence the discharge coefficient. However, an earlier experimental study 

(Filippov and Brakeni, 2007) stated, with certainty, that no influence was observed on the 

flow rate through a Crump weir, tested with upstream and downstream slopes other than 

1:2 and 1:5, respectively. 

 

Q

Q
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The simplest transition to achieve is a flat vertical plate perpendicular to the direction of 

flow, thus involving an abrupt transition. It would be used to close the space between the 

walls of the approach channel and the inlet V-notch of the device. It is essential to note 

that if the user adopts such a configuration, the theory presented herein as well as the 

resulting relationships governing the discharge coefficient and the flow rate are no longer 

valid. Another theory is appropriate in this case, involving the shape of the approach 

channel. If the device is inserted into a rectangular approach channel as in Fig. 1, in the 

presence of an abrupt transition, then the discharge coefficient will be influenced by the 

dimensionless parameter mh/B (Achour and Amara, 2022b), where m = tg (/2) and h is 

the upstream flow depth over the weir crest (Fig. 3). 

Additionally, as seen in Figs. 1 and 2, between the vertical waterproof plate and the 

vertical shaped-triangular upstream plate, there is a space that will be occupied by water 

brought during flow; it is a dead zone water area that does not participate in the current 

flow. The water that enters this space will be prevented by the vertical watertight plate 

from passing to the downstream side, and the shaped-triangular vertical upstream plate 

will prevent the recirculation of water from left to right, and vice versa. 

Fig. 3 shows the longitudinal profiles of the device and the resulting flow. This is a typical 

representation of a flow passing over a triangular longitudinal profile weir. 

 

Figure 3: Schematic representation of the longitudinal profiles of both the device 

and the resulting flow 

The putting in place of the weir of height P in the approach channel has a dual role since 

it creates a vertical contraction of the flow and causes the elevation of the upstream water 

level. The resulting change in the height of the upstream water level induces a subcritical 

state of the flow, characterized by an incident Froude number less than unity. Moreover, 

according to specialized literature (AFBLB, 1970), flow measurement in open channels 

requires the incident Froude number to be less than 0.50 to prevent the possible 

appearance of waves that could disturb the upstream h depth reading in measurement 

section 1 shown in Fig. 3. 
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Approaching the crest of the weir in the vicinity of section 2, where the cross-section is 

narrowed due to the effect of vertical contraction, the flow is accelerated to reach a 

supercritical state on the downstream face of the weir. The change in the state of the flow 

regime, from subcritical upstream to supercritical downstream, is accompanied by the 

appearance of a control section at the weir crest in section 2, where the critical depth is 

denoted hc (Fig. 3). The presence of a control section is the sine qua non condition of the 

proper functioning of the weir as a measuring structure. As it is well known that there is 

a unique relationship between the flow rate Q and the critical depth hc, the weir under 

consideration will be designed to serve as a flow measurement device provided that the 

Q-h relationship is determined. This is the main purpose of the study, however, 

emphasizing the fact that all the relationships that will be derived during this study are 

only valid in the case of a freely overflowed weir. For practical purposes, when weirs are 

used as flow measurement devices, it is strongly recommended that they operate every 

time under free-flow conditions. 

The installation of the weir causes a reduction in the water area that passes from the initial 

water cross-section area 2)( PhmA +=  to the reduced cross-section, denoted AR, such 

that 𝐴𝑅 = 𝑚ℎ
2
 (Fig. 3). The ratio of these two quantities could define the vertical 

contraction rate (VCR), that is: 

( ) 2

2

11
Ph

h

A

A
VCR

R

+
−=−=                           (1) 

Eq. (1) can be rearranged as follows: 

( )
( )

( ) 2*
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2* 1

2

1

1
1

P

PP

P
VCR

+

+
=

+
−=                                 (2) 

where P* is the relative weir height defined as follows: 

h

P
P =*           (3) 

P* can be less than or equal to 1 or even greater than 1. For instance, when P* = 1/2, Eq. 

(2) gives VCR = 0.5555, meaning that the section is reduced vertically by a rate of 

55.55%, while P* = 1 corresponds to VCR = 0.75 according to Eq. (2), meaning that the 

section undergoes a reduction rate of 75% in the vertical direction. 

For comparative purposes, it is easy to show that in the case of rectangular sections that 

can be encountered in the case of Crump or Bazin weirs, VCR is equal to 𝑃*/(1 + 𝑃*). 
For P* = 1/2, in the case of the Crump weir, for instance, it can be shown that VCR = 1/3, 

which means that the section undergoes a vertical reduction of 33.33%, while it was 

55.55% for the case of the triangular section, as mentioned previously. For P* = 1, one 

may show that VCR = ½ for the rectangular section, inducing a vertical contraction of 

50%, while the previous calculation gave 75% in the case of the triangular section. 
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Based on the previous considerations, it can be concluded that the VCR in the case of a 

weir based on triangular cross-sections is larger than the VCR in the case of a weir formed 

by rectangular cross-sections for the same value of P*. Calculations confirm this fact 

since, for the same relative weir height P*, such as P* 0, the following ratio can be 

correctly written, which is less than unity regardless of the value of P*: 

*

*

weirTriangular

weirrRectangula

2

1

P

P

VCR

VCR

+

+
=                         (4) 

In the appropriate section of the paper, the important and even crucial role that the 

dimensionless parameter P* plays in the relationships governing the coefficient Cd and 

the flow rate Q will be highlighted. 

As mentioned above, the weir is assumed to be crossed by a critical flow of depth hc. 

Since the involved cross-section is triangular, the critical depth hc is expressed as follows 

(Chow, 1959; Henderson, 1966; Bos, 1976): 

5/1

2

22








=

mg

Q
h c

          (5) 

where g is the acceleration due to gravity. 

Additionally, neglecting insignificant head losses due to the short distances involved, Fig. 

3 allows us to write the total head H as follows: 

cHH =           (6) 

As the involved cross-section is triangular, Eq. (6) reduces to: 

chH
4

5
=           (7) 

The total head H includes the velocity head )2/(2 gV , where V denotes the mean flow 

velocity, assuming, however, that the kinetic energy correction factor is 1, as the involved 

state of the flow is turbulent. Thus, the total head H can be written as follows: 

g

V
hH

2

2

+=            (8) 

Eq. (8) can be simply rewritten as follows: 

h
hg

V
H 




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


+=

2
1

2

 
                        (9) 

Let us adopt the following reduced form for Eq. (9): 

( )hH += 1                                      (10) 
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where   is a kinetic factor expressed as follows: 

2
2

22 












==

hg

V

hg

V
         (11) 

One may deduce from Eq. (11) that the kinetic factor  is related to the ratio of the actual 

flow velocity V to the ideal flow velocity gh2  given by Torricelli (Chow, 1959; 

Henderson, 1966, Bos, 1976). 

Considering the general Eq. (10), it can be deduced that for the case of a rectangular cross 

section, the quantity (1 + ) in parentheses is equal to 3/2 when the state of the flow is 

critical. Thus, the maximum value that  can reach is ½, meaning that  varies in the 

following range [0; ½] in the case of a rectangular cross-section. For the case of a 

triangular cross-section, as is the case of the considered weir, the quantity (1 + ) in Eq. 

(10) is equal to 5/4 when the flow is critical, meaning that the maximum value of the 

kinetic factor  is ¼. Thus, for a triangular cross-section, one may write that  varies in 

the following range [0; ¼]. 

For the particular case where  → 0, the approach flow velocity V is then insignificant, 

meaning that the total head H can be assimilated to the upstream depth h in accordance 

with Eq. (10). 

It will be seen in an appropriate section of the paper that Eq. (9) along with Eq. (11) plays 

a momentous role in taking into account the approach flow velocity when deriving the 

theoretical relationship governing the discharge coefficient and hence that of the flow rate 

passing through the device. 

On the other hand, as shown in section 3 (Fig. 3), by way of illustration, the level of the 

downstream flow can rise through the hydraulic jump, accidentally caused or deliberately 

created by the installation of a sluice gate or a sill further downstream. This study does 

not report the results obtained on the effects of submergence on both the discharge 

coefficient and the flow rate. The submergence transition, or the limit of the 

semimodularity, is not developed in detail herein, but it could be the subject of a future 

article. 

Even if the downstream level rises, as shown in Fig. 3, the relationship governing the 

discharge coefficient, and hence the flow rate, that will be developed during this study 

remains valid as long as a supercritical flow slice is interspersed between the crest of the 

weir and the initial section of the hydraulic jump. This supercritical flow slice acts as a 

"sanitary cordon" that prevents any downstream disturbance from moving against the 

current and going up along the downstream face of the device to reach the upstream flow 

level. 
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Dimensional analysis and discharge coefficient dependency 

One of the major advantages of dimensional analysis is its ability to reveal the influential 

dimensionless parameters of a given phenomenon and discard those of lesser interest. It 

is this advantage that this section wishes to exploit to highlight the parameters that 

influence the discharge coefficient Cd of the device, and hence the discharge Q. The 

dimensional analysis requires, as a first step, to enumerate the physical parameters 

involved in the raised problem. In the present case, one may identify the following 

influential parameters: the discharge Q, the upstream depth h, the apex angle θ, the 

acceleration due to gravity g, the density of the flowing liquid ρ, the dynamic viscosity μ 

of the liquid, and the surface tension σ. The discarded parameter is the width B of the 

rectangular approach channel because it is expected that this parameter will not influence 

the discharge coefficient Cd of the considered device. 

The aforementioned parameters are interrelated by the following functional relationship: 

( ) 0,,,,,, = hgQf                         (12) 

The second step is to use the Vashy-Buckingham  theorem (Langhaar, 1951), along with 

Eq. (12), to derive the functional relationship that governs the discharge Q as a function 

of dimensionless parameters. The inferred final result is the following: 









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


=

h

Pghhg
hfgQ ,,)(

22/32/1

2/52/1
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




           (13) 

Weir theory has shown that ( ) mtgf == 2/)(  . 

Referring to the standard form of the stage-discharge relationship of the triangular weir 

[1; 2], one may deduce from Eq. (13) the following relevant Cd functional relationship: 














=

h

Pghhg
Cd ,,

22/32/1








                                      (14) 

Thus, from Eq. (14), one may identify the first and the second quantities between the 

brackets corresponding to the Reynolds number Re and the Weber number We, 

respectively (Lenz, 1943; Sarginson, 1972; 1973). Additionally, given the turbulent 

regime of the flow that prevailed in the device, the effect of the Reynolds number is not 

at all significant, as is the effect of the Weber number that appears only for low flow rates 

and reduced apex angles, i.e., for tightened triangular sections. 

For these reasons, the effect of these two parameters on the discharge coefficient Cd 

cannot be envisaged given the experimental conditions adopted during the tests. 

Thus, taking the previous considerations into account, Eq. (14) reduces to: 









=

h

P
Cd    (15) 
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Eq. (15) can be rewritten simply as follows: 

( )*PCd =           (16) 

The  functional relationship will be theoretically derived in the next sections through the 

judicious use of the energy equation, presented in dimensionless terms. 

Discharge and discharge coefficient relationships 

The kinetic factor approach 

Combining Eqs. (5), (7), and (10) yields the following: 

( )h
mg

Q
+=




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


1

5

42
5/1

2

2

                        (17) 

It is easy to deduce from Eq. (17) what follows: 

( ) 552

5

2 1
5

4

2

1
hgmQ +








=         (18) 

On the other hand, using continuity equation V = Q/A, Eq. (11) becomes: 

( ) 42

2

2 Phmhg

Q

+
=         (19) 

Introducing the relative weir height P*expressed by Eq. (3), Eq. (19) reduces to: 

( ) 4*25

2

12 Pmhg

Q

+
=         (20) 

Elimination Q2 between Eqs. (18) and (20) and operating some arrangements results 

in the following: 

( )

( ) 4*

55

1

1

5

4

4

1

P+

+








=


             (21) 

One may deduce from Eq. (21) that the kinetic factor  is fully controlled by the relative 

weir height P*, which is the only influential parameter. However, Eq. (21) is implicit in, 

which must be solved by an iterative process, provided that the value of P*is given. 

Let us denote Co as the following constant: 

5

4

5
4 








=oC         (22) 

Thus, Eq. (21) can be rewritten as follows: 
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( )

( ) 4*

5

1

1

PC o +

+
=


          (23) 

It has been shown previously that the kinetic factor  varies in the range [0; ¼] in the case 

of a triangular cross-section, but it would be useful to refine this range of variation for the 

practical values of P* in accordance with Eq. (23). Calculations, based on an iterative 

procedure operated on the implicit Eq. (23), showed that when P* varies in the range [0.10; 

2], the kinetic factor delta varies in the range [0.083587; 0.0010165]. It can thus be 

concluded that the kinetic factor  remains substantially below its greatest value ¼, which 

does not mean that  can be neglected because it is not  that intervenes in Eq. (18), which 

governs the flow rate Q, but it is 2/5)1( + that is the influential quantity. Calculations 

show that the quantity 2/5)1( +  varies in the range [1.2222; 1.0025] when P* varies in 

the range [0.10; 2]. This result indicates that significant errors could affect the calculation 

of the flow rate Q if the kinetic factor  were to be neglected. For illustrative purposes, 

given the following practical value of the relative weir height P* = 0.30, the calculation 

shows that 2/5)1( + = 1.08687. This amounts to saying that if, in this case, the kinetic 

factor  were neglected, then the calculation of the flow rate Q would be affected by a 

deviation of approximately 8.7%, which could have undesirable consequences in certain 

practical cases that require better accuracy. 

Thus, since  << 1, as the result of a second-order Taylor series expansion (Canuto and 

Tabacco, 2015), it is relevant to write the following: 

25 1051)1(  +++         (24) 

Inserting Eq. (24) into Eq. (23) and rearranging the results in the following quadratic 

equation in : 

( )  0
10

1
51

10

1 4*2 =+−+−  PCo
          (25) 

The real root of Eq. (25) that satisfies the condition  < 1 is such that: 

1.02 −−=            (26) 

where ψ is expressed as follows: 

( ) 51
20

1 4* −+= PCo          (27) 

Table 1 gives the deviations caused by the approximate Eq. (26), along with Eq. (27), in 

comparison with Eq. (23) in the practical wide range 0.10  P*  2. 

Note that the maximum deviation value of 0.65% given by Table 1 is obtained for the 

low-value P* = 0.10 of the relative weir height, which is rarely a commonly used relative 
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weir height. The maximum deviation drops to 0.32% for P*  0.14. These figures confirm 

the great accuracy of the approximate Eq. (26) along with Eq. (27). 

Table 1: Deviations in the values of  given by exact and approximate Eqs. (23) and 

(26), respectively 

Range of P* Deviation (%) between Eqs. (23) and (26) 

0.10  P*  2 
Minimum Maximum Average 

0.00 0.65 0.033 

 

It is well known that the standard form of the stage-discharge relationship governing 

triangular weirs is as follows (Henderson, 1966; Bos, 1976): 

2/52
15

8
hgmCQ d=         (28) 

Comparing Eqs. (18) and (28) results in the following exact discharge coefficient 

relationship for the current device: 

( ) 2/5
1

8

15
+=

o

d
C

C           (29) 

Inserting Eq. (26) into Eq. (29) results in the following explicit approximate discharge-

coefficient relationship of the device under consideration: 

( ) 2/5
2 1.01

8

15
−−+= 

o

d
C

C         (30) 

If the user is longing to compute the exact value of the discharge coefficient Cd of the 

device, for a given installation, then the simultaneous use of Eqs. (23) and (29) are needed, 

bearing in mind the drawbacks that the iterative calculation could entail. However, the 

authors recommend the simplest approach, which consists of the use of explicit Eq. (30) 

along with Eq. (27). The maximum deviation of 0.65% committed in the calculation of 

the kinetic factor as indicated previously, for P*  0.10, induces a maximum deviation 

of only 0.125% in the discharge coefficient Cd when using Eq. (30). The maximum 

deviation drops to less than 0.08% for P*  0.12. Additionally, the same maximum 

deviation results during the flow rate Q computation according to Eq. (28). 

For the particular case corresponding to large values of the relative height P* of the weir, 

which could be translated mathematically by P*→ , Eq. (27) also implies large values 

of ψ, such as ψ >> 0.1. Consequently, Eq. (30) reduces to: 

( ) ( ) 5366.0
8

15
1

8

15
1.01

8

15 2/5
2/5

2 =−+−−+=
ooo

d
CCC

C   (30a) 
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This particular discharge coefficient value corresponds exactly to that given by the 

theoretical formula derived by the authors for a triangular notch weir, provided P*→  

(Achour and Amara, 2021). This result could have been simply deduced from Eq. (29) by 

writing that the kinetic factor  is such that  → 0 since P*→ . 

Energy equation approach 

With the help of the continuity equation, Eq. (8) can be written as follows: 

( )42

2

2 Phmg

Q
hH

+
+=                       (31) 

Dividing both sides of Eq. (31) by hc and considering both Eqs. (3) and (5) results in the 

following: 

4*4*** )1(
4

1 −−
++= PhhH  

 
                     (32) 

Eq. (32) is the energy equation presented in dimensionless terms, where H* = H/hc and h* 

= h/hc. The relative depth h* is greater than 1 since h > hc, as shown in Fig. 3. Additionally, 

Eq. (7) reveals that H* = constant = 5/4. Introducing this result into Eq. (32) and 

rearranging yields the following quintic equation in h*: 

( ) 01
4

1

4

5 4*4*5* =++−
−

Phh          (33) 

For P*→ 0, corresponding to small elevations P of the weir crest or to large depths h, Eq. 

(33) is satisfied only for h* = 1, meaning that the flow reaches the critical state. For P*→ 

, corresponding to large elevations P of the weir crest or to shallow depths h, one may 

write H* = h* = 5/4 according to Eqs. (32) and (33). This means that the weir is freely 

overflowed under critical flow conditions, with a total head H that can be assimilated to 

the depth h over the weir since the kinetic factor is  → 0 in accordance with Eq. (23). 

On the other hand, writing hc = h/h* in Eq. (5) results in the following discharge Q 

relationship: 

2/52/5*2
2

1
hhmgQ

−
=                       (34)

 

Comparing Eqs. (28) and (34) results in the following exact discharge coefficient Cd 

relationship of the device, depending solely on the relative depth h*: 

2/5*

16

15 −
= hCd         (35) 

Although derived from two different methods, Eqs. (30) and (35) nevertheless give the 

same result. For the given value of P*, Eq. (35) along with Eq. (33) gives the exact 

discharge coefficient Cd of the device. However, Eq. (33) is implicit in h*, requiring an 
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iterative procedure to find its solutions. Trial and error is the most well-known method of 

solving implicit equations. However, although it is simple and understandable, trial and 

error is not a very elegant way to seek a solution to an implicit equation. To avoid the 

drawbacks resulting from this method of resolution, the authors recommend the use of 

the following explicit approximate relationship for h*, inspired by the theoretical 

considerations developed in the previous section: 

( ) 1
2* 1.01

4

5 −

−−+= apph                       (36) 

where the subscript “app” denotes “Approximate”. In Eq. (36), the parameter ψ is also 

governed by Eq. (27) developed in the previous section. Intense calculations were able to 

conclude that the maximum deviation caused by the approximate Eq. (36) along with Eq. 

(27) in the h* computation is only 0.05% for any value of P* such that P*  0.10, thus 

encompassing all practical cases. Consequently, according to Eq. (35), the maximum 

deviation caused in the discharge coefficient Cd calculation is 0.05% x (5/2) = 0.125%, 

bearing in mind that it is the same maximum deviation affecting Cd computation when 

using Eq. (30). 

Incident Froude number 

Let us denote by F the incident Froude number characterizing the flow in section 1 (Fig. 

3) in the triangular measuring section at the inlet of the device. The Froude number F is 

relevant in the current case since the flow occurring in the corresponding section is 

characterized by a predominance of gravitational forces. Inertial forces also exist, but they 

are not as preponderant. As a result, the flow is subcritical, inducing an incident Froude 

number F less than 1. The subcritical flow in the considered section 1 of Fig. 3 is 

controlled by the presence of the weir, which can be likened to a local disturbance. 

Therefore, it is expected that the incident Froude number F is closely related to the 

characteristics of the weir, particularly the relative height P*. 

T is assumed to be the top width at the water surface of the flow in section 1 (Fig. 3), 

where the depth is (h + P) corresponding to the water area 2)( PhmA += . It is easy to 

show that the top width T is such that )(2 PhmT += . The Froude number is typically 

expressed in the following form (Chow, 1959; Henderson, 1966; Bos, 1976): 

3

2
2

Ag

TQ
F =         (37) 

Thus, for the current case, Eq. (37) becomes the following: 

( )

( ) 32

2
2 2

Phmg

PhmQ
F

+

+
=         (38) 

After simplifications and rearrangements, Eq. (38) reduces to the following: 
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5*52

2
2

)1(

2

Phmg

Q
F

+
=   

                      (39)
 

Considering Eq. (5) in which hc is replaced by h/h*, Eq. (39) is reduced to the following: 

5*5*

2

)1(

1

Ph
F

+
=  

        (40) 

That is, 

( )  2/5** 1
−

+= PhF         (41) 

As expected, Eq. (41) shows that the incident Froude number F is exclusively controlled 

by the relative weir height P*, bearing in mind that h* depends solely on P* according to 

Eq. (33). As this equation is implicit, it is recommended to use the approximate 

relationship (36) that governs h*(P*). Therefore, Eq. (41) reduces to the following: 

2/5

*

2

1

1.012















+

−−+
=

PC
F

o


        (42)

 

It is useful to remember that parameter ψ is governed by Eq. (27) as solely dependent on 

P*. Additionally, Eq. (42) is applicable as long as P* is greater than or equal to 0.10. 

According to Eq. (41), the maximum deviation caused in the calculation of the incident 

Froude number F is 2.5 times the maximum deviation caused in the calculation of h*when 

using approximate Eq. (36), i.e., 2.5 x 0.05% = 0.125%. 

In agreement with the calculations derived from Eq. (42), for the smallest value P* = 0.10 

considered herein, the incident Froude number is such that F = 0.55. This is a value 

slightly higher than the upper limit value recommended by the specialized literature, i.e., 

F = 0.50, to prevent the formation of waves that could disturb the accurate upstream depth 

reading. 

Experimental validation 

This part of the study seeks to provide more definitive conclusions about the reliability 

of the theoretical relationships presented in the previous sections, particularly the 

discharge coefficient relationship expressed by Eq. (30) or Eq. (35). By analyzing 

experimental data collected on devices with various geometrical characteristics, users 

may corroborate the reliability and accuracy of the derived theoretical relationships. In 

the case where experimental data are not entirely consistent with the theoretical results, 

the latter require corrections to conform to actual observations. This is the approach 

adopted by the authors during this part of the study. 
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Given the major importance of collecting quality data in the field of flow measurement, 

the influential parameters were measured using irreprovable precision devices. This is 

mainly the case for the measured flow rate Q, which was deduced from the average 

between the discharge value read on an ultrasonic flow meter and that of the discharge 

read on a magnetic flow meter; both devices have been carefully calibrated. The absolute 

error caused by this procedure on the estimation of the flow rate Q was  0.1 l/s. The 

other influential parameter is the upstream depth h, which was measured using a double-

precision Vernier point gauge and graduated to 1/10th, implying an absolute error of 0.02 

mm in h depth reading (Achour and Amara, 2022b). 

To obtain a representative measurement sample, allowing reliable analysis, six devices 

were designed and subjected to an intense experimental program. The devices were tested 

in a specially equipped installation consisting of a canal supply basin upstream and a 

water recovery basin downstream (Fig. 4). The supply basin is filled using a pump that 

draws water from an underground tank. The pump is fitted with an adjustment valve that 

allows the test channel to be supplied with a given flow rate Q. The test channel into 

which the devices were inserted, as represented in Fig. 1, was of a rectangular cross-

section with a width B = 0.40 m, depth 0.485 m, and length 4.00 m sufficient to ensure 

tests of the longest designed device of 1.75 m length. Additionally, the upstream and 

downstream slopes of the six designed devices were chosen as recommended for the 

Crump weir, i.e., 1:2 and 1:5, respectively. The characteristics of the six devices designed 

and tested are grouped in Table 2. 

 
Figure 4: Plan view of the installation used during testing of the devices 

Table 2: Characteristics of the tested devices. Same notation as in Figs. 1, 2, and 3 

Device P (m)  (°) L1 (m) L2 (m) L1 + L2 (m) 

1 0.10 32 0.20 0.50 0.70 

2 0.12 35 0.24 0.60 0.84 

3 0.15 38 0.30 0.75 1.05 

4 0.18 41 0.36 0.90 1.26 

5 0.21 42.5 0.42 1.05 1.47 

6 0.25 44.3 0.50 1.25 1.75 
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The installation described in Fig. 4, as well as its equipment, allowed us to vary the 

discharge Q in the wide range 0.127 l/s  QExp  27.18 l/s by manipulating the adjustment 

valve incorporated in the pump, while the upstream depth hExp was varied in the range 

3.85 cm  h  33.26 cm. The subscript “Exp” denotes “Experimental”. A total of 1347 

values (QExp; hExp) were experimentally collected during the testing of the six designed 

devices. Details of the experimental conditions for each of the six tested devices are given 

in Table 3. 

Table 3: Range of the influential parameters used during the testing devices 

Device 
Number of 

measurements 

Range of the 

discharge QExp (l/s) 

Range of upstream 

depths hExp (cm) 

Range of 

P*
Exp = P/hExp 

1 95 [0.211; 23.48] [5.07; 32.36] [0.309; 1.972] 

2 171 [0.173; 27.18] [4.51; 33.21] [0.361; 2.660] 

3 263 [0.127; 22.07] [3.85; 29.78] [0.503; 3.896] 

4 306 [0.187; 21.10] [4.35; 28.45] [0.632; 4.138] 

5 270 [0.218; 15.63] [4.55; 25.01] [1.000; 5.494] 

6 242 [0.212; 10.55] [4.42; 21.02] [1.189; 5.656] 

 

For a given tested device, each of the pairs (QExp; hExp) obtained allows us to calculate the 

experimental discharge coefficient according to Eq. (28), such as: 

2/5,
28

15

Exp

Exp

Expd
hgm

Q
C =         (28a) 

For each of the six tested devices, the experimental discharge coefficient Cd,Exp is 

compared to the theoretical discharge coefficient Cd,Th given by Eq. (30), along with Eq. 

(27), for the given value of the experimental relative weir height P*
Exp. The subscript “Th” 

denotes “Theoretical”. This comparison is highlighted in Fig. 6 (a) to (f), showing the 

theoretical and experimental variation in the discharge coefficient Cd as a function of P* 

for each device. 

Figs. 5a to 5f show good agreement between the theoretical and experimental discharge 

coefficients, confirming the validity of Eq. (30), provided the P* range of validity, given 

in Table 3, is respected. Therefore, Eq. (30), along with Eq. (27), is an excellent model 

for predicting the discharge coefficient of the device under consideration, and hence, the 

discharge Q sought using Eq. (28), with great confidence. 

To confirm this result, the maximum, minimum and average deviations between the 

theoretical and experimental values of the discharge coefficient are grouped together in 

Table 4 for each device. It can be observed with satisfaction that the maximum deviations 

are very satisfactory, which proves that the values of the discharge coefficient predicted 

by Eq. (30) are very close to the observed values. 
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Figure 5: Variation in the theoretical and experimental discharge coefficients Cd 

against the relative weir height P* 
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Table 4: Deviations 
dd CC /  between theoretical Eq. (30) and observations for each 

of the tested devices 

Device dd CC /  (%) 

Minimum Maximum Average 

1 0.0017 0.150 0.045 

2 0.0017 0.147 0.032 

3 0.0015 0.112 0.037 

4 0.0012 0.101 0.033 

5 0.0012 0.121 0.034 

6 0.0012 0.114 0.033 

CONCLUSION 

The 2A triangular weir is a structure intended for flow measurement in open channels. It 

can be classified as a weir with a triangular longitudinal profile, such as the Crump and 

Bazin weirs. The difference is that the new structure is formed of triangular cross-

sections, the advantages of which are widely known, recognized, and universally 

appreciated, while those of the Crump- and Bazin-type weirs are rectangular, which are 

known to be of least practical interest. 

The 2A weir adopts the same upstream and downstream face slopes as the Crump weir, 

i.e., 1:2 and 1:5, respectively, because experience has shown that these slopes do not cause 

any separation of the flow over the weir crest and along the downstream face. 

The main purpose of the study was to derive the theoretical discharge coefficient Cd 

relationship based on rigorous theoretical considerations. That is why the authors called 

upon the energetic and kinetic principles through two methods that gave the same result. 

The obtained discharge coefficient relationship thus showed that the relative weir height 

P* was the only influential parameter, as predicted by the dimensional analysis. 

Thanks to the design that characterizes the structure, the theoretical discharge coefficient 

relationship remains unchanged regardless of the shape of the approach channel; the 2A 

triangular weir is thus a universal range structure. 

A total of 1347 measurement points of the Q-h couple were experimentally collected on 

six weirs with different geometric characteristics. The objective of this approach was 

either to validate the proposed theoretical relationships or to correct them by the effect of 

an experimental adjustment factor. The in-depth analysis of the observations confirmed 

the reliability and accuracy of both the discharge coefficient relationship and the stage-

discharge relationship since the maximum deviation caused is 0.15% over a wide range 

of the influential parameter P*. 
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