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ABSTRACT 

The normal flow depth is an important parameter in the design and analysis of free-

surface flow problems for both man-made and natural channels. The implicit character of 

the governing Manning’s equation in rectangular-shaped channels requires a trial and 

error process for the computation of the normal flow depth, which sometimes leads to a 

large sequence computation. In this paper, a novel exact analytical approach based on the 

 -perturbation expansion is proposed as a solution to the issue of computing normal 

depth in channels with rectangular cross sections. For practical purposes, the explicit 

analytical expression obtained provides a particularly precise solution. To show the 

application of the suggested approach, some examples are presented as illustrative 

examples. 

Keywords: Normal flow depth, Rectangular channel, Analytical solution, Delta-

perturbation method.  

INTRODUCTION 

In engineering problems related to free-surface flow in open channels, the accurate 

computation of the normal flow depth is of capital importance and even plays a crucial 

role. Its determination for different-shaped channel profiles is based on flow resistance 

formulas, and for that, the use of Manning’s equation is widespread in practice. However, 

even for basic cross-section profiles, such as rectangular channels, the computation of the 
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normal depth forms an obstacle due to the implicit character of Manning’s formula. For 

that, the use of graphical and numerical procedures is often needed.       

For an explicit computation of the normal flow depth in rectangular channels, several 

proposals have been made in the past. Along with explicit approximate solutions based 

on correlation and curve-fitting analysis (Barr and Das, 1986; Srivastava, 2006; 

Vatankhah, 2016), some attempts have focused on an analytical solution for the inversion 

of the nonlinear implicit Manning’s equation. Swamee and Rathie (2004) approached the 

problem using Lagrange’s inversion theorem. The explicit solution was then presented in 

the form of an infinite series separately for the cases of a wide and narrow rectangular 

channel. Later, Ferro and Sciacca (2017) used the same theorem to derive an infinite 

series expansion, but for the wide rectangular channel case only. It was shown that the 

series expansion obtained by Lagrange’s inversion theorem converges only for a ratio of 

the normal depth to the channel width 807.1 . From a theoretical viewpoint, the 

divergence of Lagrange’s series expansion restricts its use and limits its generalization. It 

therefore seems necessary to adopt a more general analytical approach. Recently, the so-

called  -perturbation method was successfully applied by Amara and Achour (2023) to 

the critical flow depth problem in trapezoidal channels. 

In the present paper, a new analytical approach based on the  -perturbation expansion 

series is applied to the normal flow depth computation in rectangular-shaped open 

channels. The convergence of the series solution is shown, and a simple combined model 

solution is proposed for the truncation of the series with a high degree of accuracy for 

practical use. Application examples are also given for the sake of illustration. 

PROBLEM DEFINITION 

For a rectangular channel of a width b  conveying a free surface flow under a bottom 

slope 
0S  and a normal depth 

ny  (Fig.1), the discharge Q  is given by the condition of 

equality between the gravity and friction forces. This condition is expressed by Manning’s 

formula as follows (Chow, 1959): 

0

3/21
SAR

n
Q =                                                      (1)  

where n  is Manning’s roughness coefficient, A  and PAR /=  are the cross-sectional 

area and hydraulic radius, respectively, and P denotes the wetted perimeter under the 

normal flow regime. From geometrical considerations, A  and R  for a rectangular-

shaped channel are given by: 

nbyA =                                                               (2)  
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Figure 1: Definition sketch 

Inserting Eqs. (2) and (3) into Eq. (1) gives 
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Introducing the dimensionless parameters   and   such that: 

b

yn=      and     

0

3/8 Sb

nQ
=                                         (5) 

Eq. (4) is rewritten under a compact form as follows: 

( ) 3/2

3/5

21 




+
=                                                         (6) 

Eq. (6), allowing the determination of the relative normal depth  , is implicit, and its 

solution requires an iterative process of trial and error. For an analytical treatment using 

the proposed  -perturbation technique, one can rearrange Eq. (6) in the form ( )xfx =  

as:  

( ) 5/25/3 21  +=                                                     (7)  

Under the present form (Eq.7), most numerical algorithms and analytical solutions 

attempt to tackle the problem of normal depth computation in a rectangular-shaped 

channel. 
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DELTA-PERTURBATION SOLUTION 

To solve Eq. (7), which is obviously of an implicit type, we make use of the  -expansion 

method. The principle consists, in simple words, of expanding in powers of a nonlinearity 

present in the governing equation and determining terms of the series expansion by 

recurrence. This procedure was first introduced by Bender et al. (1989) for nonlinear 

differential equations. To derive an analytical solution to the problem, let us introduce a 

small parameter   in the exponent of the nonlinear term in Eq. (7): 

( ) 0215/3 =+−


                                                  (8)  

The analytical solution is then sought as an expansion for ( )  in terms of a perturbation 

series of  as follows: 

( ) ++++==
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3
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n

n

n
                            (9)  

On the other hand, the second term of Eq. (8) can be expressed as 

( ) ( ) 


21lnexp21 +=+                                           (10)  

Substituting Eqs. (9) and (10) into Eq. (8) and equating the coefficients of equal powers 

of the perturbation parameter  , the expressions of the 
na  terms are easily determined, 

and the first three are:  

5/3

0 =a                                                            (11)  

( )5/35/3

1 21ln  +=a                                                (12)  

( ) ( ) ( ) 
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a           (13)  

In deriving the expressions of the 
na  terms, the following Maclaurin series expansions 

were used: 

+++++=
!4!3!2

1
432 xxx

xe x                                         (14) 

( ) +−+−=+
432

1ln
432 xxx

xx      1x                          (15) 

Reporting expressions of 
na  into Eq. (9), up to a suitable series order, and setting up the 

perturbation parameter 5/2= , the explicit solution of Eq. (7) is then obtained. By 

introducing, for example, the first two terms only, the explicit solution (Eq. 9) reads: 
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Once the dimensionless flow depth   is computed to a suitable order, the normal depth 

yn is then deduced from Eq. (5).  

A comparison of the influence of the number of terms considered in the series expansion 

(Eq. 9) up to 6=n  as a function of the dimensionless discharge   with the exact 

numerical solution of Eq. (7) is reported in Fig. (2). One can see from the figure that the 

flow carrying curve ( ) f=  converges regularly to the actual solution. For a wide 

channel, as 0→  (or 0→ ) the solution is given by only the first term of Eq. (16). 

This corresponds to the 0th order solution, where the friction forces are dominated by the 

bottom resistance and the sidewall influence can be neglected.    

 

Figure 2: Influence of the number of terms in the series expansion on the 

convergence of the  - perturbation solution 

In addition to the convergence illustrated graphically in Fig. (2), it can be shown that the 

solution series in Eq. (16) converges monotonically to the exact solution. Because of the 

quick vanishing of the 
n  factors more than the increase in the 

na  terms, eventual 

divergence of the series is prevented, and the solution is thus bounded. A more rigorous 

proof can easily be set up by using the ratio convergence test (Kreyszig, 1979) and 

considering the parameter n

n

n

n
n

aa  1

1lim +

+
→

= . For 5/2= , it can be verified that 

1 , which confirms the convergence of the series in Eq. (16) independently of  .  
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At this stage, it is interesting to note that when expanding Eq. (16) in the Maclaurin series, 

i.e., the logarithm function following Eq. (15), as a function of   and rearranging, one 

obtains: 

++−++= 5/18

6

5/12

3

5/9

2

5/65/3

5

896

5

16

5

4

5

4
                 (17)  

This expression (Eq. 17) is simply the solution of Eq. (7) given by Lagrange’s inversion 

theorem (Swamee and Rathie, 2004 and Ferro and Sciacca, 2016). Formally, one can 

show that the terms of the series in Lagrange’s expansion can be generated for Eq. (17) 

as follows (Achour and Bedjaoui, 2006):  

( )
( ) ( )
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n

nn

nn
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                                             (18)  

where ( )x  denotes the Gamma function (Zwillinger, 2018). It follows that Lagrange’s 

inversion expansion can be considered a special case of the  -perturbation series when 

the latter is expanded in the Maclaurin series.   

It is worth emphasizing that while the radius of convergence of the  -expansion series 

in Eq. (16) is infinite, the convergence of Lagrange’s series in Eq. (18) is ensured only 

when 967.0  which corresponds to 807.1  (Ferro and Sciacca, 2017). The 

restricted radius of convergence of Eq. (18) compared to Eq. (16) can easily be understood 

when examining the condition on the argument in Eq. (15). It follows that the presence 

of the logarithm function in Eq. (16) prevents the divergence of the series expansion and 

ensures a monotone convergence.  

To quantitatively show the deviation between the actual and  -perturbation solutions, 

Fig. (3) illustrates the relative error in   compared to the exact numerical solution of Eq. 

(7). In the wide practical range of  5,0  and for different numbers of terms included 

in the expansion series, it can be seen that the maximum deviation diminishes as the order 

of the series increases. For an economically designed rectangular channel, it is well 

known that   should be equal to 2/1  or roughly near this value. For this particular value 

of  , corresponding to 2.0 , the maximum deviation for the third-order solution (

3 ) is 0.73 % and drops to 0.028 % for a sixth-order approximation (
6 ). From Fig. (3), 

it follows that the accuracy of the perturbation solution increases monotonically with the 

number of terms included in the perturbation series. 
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Figure 3: Deviation of the  -perturbation solution as a function of the number of 

terms in the series expansion 

From a practical standpoint, it is a tedious task to compute terms higher than the second 

order in Eq. (9) to achieve a desirable accuracy, as might be expected given the increasing 

size of terms in Eqs. (11) to (13). To render the approach more practical and 

straightforward, a combined model is constructed from the first two linearized terms of 

the perturbation series in Eq. (16) and Hoerl’s model approximation as follows:    


 termmodelsHoerl'

seriestheofTerms

5/65/3

5

4  ca m++=                                          (19)  

in which a , m , and c  are unknown constants of Hoerl’s model. The basic idea of the 

present combined solution is then to convert the infinite series expansion of higher-order 

terms into a closed term formed by a mixed power-exponential function approximation. 

The determination of Hoerl’s model constants is carried out by minimizing a residual 

function   defined as: 
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+−








−= 



=

5/65/3

0 5

4

5

2
,,  

n

n

n

m acacma                          (20)  

By setting the stationarity condition on the absolute values of the   function with respect 

to the model parameters, one writes: 
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where 
f denotes the upper limit of the dimensionless discharge. The conditions in Eq. 

(21) translate a weighted residuals concept where a Heaviside’s unit step acts as a 

weighting function. Within the practical range 956.20 = f , corresponding to 

50  , the computation of the constants a , m  and c  satisfying Eq. (21) has led to 

the following explicit analytical expression for  :  
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The deviation of the combined solution model (Eq. 22) from the actual solution of Eq. (7) 

is reported in Fig. (4). As shown in the figure, the use of Eq. (22) leads to a maximum 

relative error of only 0.029 % compared to the actual solution of Eq. (7).   

 

Figure 4: Relative error of the combined model (perturbation-Hoerl) solution 

(Eq. 22) vs. the nondimensional normal depth 
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PRACTICAL APPLICATIONS 

To illustrate the computation of the dimensionless normal depth using the  -perturbation 

expansion (Eq. 9) and the combined model solution (Eq. 22), examples of channels are 

treated in Table 1, where the geometric and hydraulic properties of the examined channels 

are summarized. Details of the computed values of   for the different channels compared 

to the actual solution (by trial and error procedure) are also reported in Table 1. 

The results show the accuracy of the perturbation solution to the sixth-order and that of 

the combined model where the maximum deviation does not exceed 0.1 % and 0.029 %, 

respectively. The solution issued from the combined model shows a clear advantage 

compared to the sixth-order series expansion. In the practice of hydraulic engineering, 

this degree of accuracy is very high. 

Table 1: Channel parameters and details of the computation of the dimensionless 

normal flow depth. 

Channel 1 2 3 

b (m) 3 3.6 2 

n (m-1/3s) 0.015 0.025 0.013 

S0 (-) 0.005 0.00025 0.001 

Q (m3/s) 12.0 4.25 6.20 

β [Eq. (5)] 0.135976594 0.220742318 0.401410184 

η [Eq. (7)] 0.378417155 0.54182851 0.863938813 

η(6ord)[Eq. (9)] 0.378377018 0.541633781 0.86279646 

Error (%) 1.06 ×10-2 3.59 ×10-2 1.32 ×10-1 

η [Eq. (22)] 0.378449675 0.541764722 0.863688149 

Error (%) 8.59 ×10-3 1.18 ×10-2 2.90 ×10-2 

 

It is interesting to keep in mind that even an accuracy of ±0.5 % is well within the degree 

of physical significance that can be attached to the assessment of the value of Manning’s 

coefficient n. The difficulties involved in specifying exact values for Q and S0 are also 

worth mentioning.  

CONCLUSION 

A new exact analytical solution for the direct explicit computation of the normal flow 

depth in rectangular-shaped channels is presented in this paper. Based on the  -

perturbation method, an exact solution was obtained in the form of a series expansion, 

where the first three terms of the series were given for the sake of demonstration. It was 

then possible to obtain a general analytical solution, from which Lagrange’s inversion 



Amara L. & Achour B. / Larhyss Journal, 55 (2023), 231-241 

240 

solution is deduced as a special case. The accuracy obtained for the sixth-order expansion 

is of a high level, and the series order can be chosen depending on the required accuracy 

degree. 

The proposed solution (Eq. 9) generates a highly accurate prediction in the practical range 

of the dimensionless parameter  5,0 . An arbitrary level of accuracy can be achieved 

by including more terms in the convergent series expansion. To avoid the need for higher-

order terms in the series expansion for practical purposes, Hoerl’s model was introduced 

as a corrective term for the truncation error in the  -perturbation expansion series. The 

resulting combined model solution generates a maximum deviation of only 0.029 %, 

which forms an excellent accuracy in the wide range of  5,0 . It is interesting to note 

that, due to its versatility and convergence peculiarities, the present direct  -perturbation 

approach, or the combined model, could easily be applied to other cross-section profiles.  
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