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ABSTRACT 

Sewage sludge has gained importance and become a general significant environmental 

concern due to the presence of dangerous heavy metals and organic pollutants. In this 

study, various simple machine learning (ML) models, namely, multilayer perceptron 

neural network (MLPNN), radial basis function neural network (RBFNN), generalized 

regression neural network (GRNN), extreme learning machine (ELM), and support vector 

regression (SVR), were compared with hybrid empirical mode decomposition (EMD-

ML) and variational mode decomposition (VMD-ML). The RBFNN model had the best 

results for the simple ML models because of the best performance parameters compared 

with other simple models. The EMD-ML models’ results revealed that the EMD-MLPNN 

model had high performance parameters and lower errors compared with the remaining 

models, and the VMD-ML models’ findings indicated that the VMD-GRNN model had 

good statistical indicator parameters compared to other models. The qualitative 

comparison findings indicated that the EMD-MLPNN method produced the best 

predictive performance for the training phase with R = 0.9729 and MAE = 2.5521 and 
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during the testing phase with R = 0.9909 and MAE = 2.1144 in comparison to the VMD-

GRNN and the RBFNN. The combination of EMD-ML improved ML accuracy, 

especially for EMD-MLPNN, in predicting daily dried sludge production in WWTPs. 

Keywords: Predictive Modeling, Daily Dried Sludge Production, Wastewater Treatment 

Plant, Machine Learning, Empirical Mode Decomposition, Variational Mode 

Decomposition. 

INTRODUCTION 

Sludge production is intertwined with the wastewater treatment process (Gaouar and 

Gaouar, 2016; Aroua-Berkat and Aroua, 2022). Any augmentation in wastewater 

treatment can lead to massive quantities of sewage sludge (Hbaiz et al., 2014; El 

Ghammat et al., 2019). Because of the putrefaction of the organic composites of sewage 

sludge and the struggle to dispose of it, the progressive accumulation of large amounts of 

sewage sludge from different sources, whether home and industrial wastewaters, has a 

negative impact on the environment (Pai et al., 2011). It is mostly used to fertilize 

agriculture as a better option compared to incineration and landfilling, which has been 

acknowledged globally as a potential technique to manage this source since it may reduce 

pollution and add to the circular economy. If utilized as an organic fertilizer, the sludge 

organic matter content can refine soil physical, chemical, and biological qualities and 

induce beneficial plant yield responses. The fundamental restriction is the safety of 

sewage sludge reuse. Because of possibly concentrated toxic substances such as heavy 

metals, microorganisms, and emerging contaminants, sludge reuse may pose a concern. 

This study aims to help managers and operators of waste water treatment plants (WWTPs) 

predict the daily quantities of sewage sludge and show how to utilize the spaces 

designated for drying. Therefore, through the best model obtained from the results of this 

study, the daily amount of sludge can be predicted, and the problem of sludge 

accumulation and spread over days and weeks can be managed to reduce environmental 

risks and improve treatment efficiency. 

During the last decade, the application of artificial intelligence (AI) techniques has 

received growing interest from researchers, especially in the field of engineering. Among 

the techniques used, artificial neural networks (ANNs) and support vector machines 

(SVMs) have shown very good results in the prediction task (Wang et al., 2015; Heddam 

and Kisi, 2017; Khatri et al., 2019; Leong et al., 2019; Najafzadeh and Zeinolabedini, 

2019; Djeddou et al., 2020; Hong et al., 2020; Cai et al., 2021; Djeddou et al., 2021a; 

Djeddou et al., 2021b; Djeddou et al., 2021c; Rayi et al., 2022; Yang et al., 2022; Zerouali 

et al., 2023). 

There has been a dominant innovation in time-frequency hybrid models, frequently 

employed in hydrology and hydraulic engineering, to analyze time sequences. Abda and 

Chettih (2018) used ANN, adaptive neuro-fuzzy inference system (ANFIS) coupled with 

wavelet transform (WT) and empirical mode decomposition (EMD) models to forecast 

daily flows of the Sebaou River, Algeria. The findings showed that the hybrid models 
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WT-ANFIS and EMD-ANFIS performed substantially better than the other models. 

Fouchal and Souag-Gamane (2019) evaluated ANN and WT-ANN hybrid model 

accuracy to forecast monthly flow in northern Algeria’s humid and semiarid regions. The 

findings indicated that the second model performed better than the first model. Li et al. 

(2019) employed ANN, WT-ANN, EMD-ANN, and ensemble empirical mode 

decomposition (EEMD) combined with ANN for forecasting long-term daily stream 

flow. EEMD-ANN was shown to be the best model. Zakhrouf et al. (2020) used a feed 

forward back propagation neural network (FFBPNN), ANFIS, and WT-FFBPNN to 

forecast the stream flow in the Seybous River, Algeria, and WT-FFBPNN was the best 

model among the remaining models. Using ANN, ANFIS, WT-ANN, and WT-ANFIS 

models, Abda et al. (2021) sought to forecast the daily flows of the Sebaou River. It was 

proven that the hybrid model WT-ANFIS was the best compared to the remaining models. 

Song et al. (2021), trying to predict water quality parameters in two rivers in China, used 

a multilayer perceptron neural network (MLPNN), support vector regression (SVR), least 

square support vector machine (LSSVM), sparrow search algorithm (SSA) combined 

with LSSVM, variational mode decomposition (VMD) combined with LSSVM, and 

VMD-SSA-LSSVM. The findings showed that the VMD-SSA-LSSVM model proved its 

efficacy and superiority compared to the remaining models. Ahmed et al. (2022) used six 

machine learning (ML) and five decomposition models to forecast the dissolved oxygen 

(DO) of the Surma River, Bangladesh, and they indicated that maximum overlap discrete 

wavelet transformation combined with multivariate adaptive regression spline 

(MODWT-MARS) was the best model. Yelmiz (2022) utilized ANN, discrete wavelet 

transform (DWT) and additive wavelet transform (AWT) coupled with ANN to predict 

stream flow, and the results indicated the usefulness of AWT–ANN, as it was proven to 

be the best when compared to the other models. 

For simple and hybrid models, AI methods were used as modeling tools to address 

environmental engineering problems, especially to assess WWTP performance. Belanche 

et al. (1999) concluded that the performance of a fuzzy heterogeneous neural network 

(FHNN) to predict biochemical oxygen demand (BOD), chemical oxygen demand 

(COD), and total suspended solid (TSS) in Catalonia WWTP surpassed other samples of 

ANNs. Gontarski et al. (2000), aiming to predict the removal of total organic carbon 

(TOC) in Rhodiaco Ltda. WWTP, employed the FFBPNN model. ANNs were used by 

Onkal-Engin et al. (2005) to show a fair link between sewage odor and WWTP BOD. 

Mjalli et al. (2007) used an ANN model that performed well in modeling the amount of 

BOD, COD, and TSS of the effluent and returned sludge in the Doha WWTP. Nasr et al. 

(2012) also confirmed that the FFBPNN model can be used as a tool to estimate the 

efficiency of the Alexandria WWTP. Boniecki et al. (2012) used ANN to predict 

ammonia emissions from sewage sludge composting. Verma et al. (2013) employed 

various AI models to predict TSS and determined that the FFBPNN model was the finest 

option in the Demoines WWTP. The concentrations of the water quality metrics COD 

and BOD for WWTPs were evaluated in Zare Abyaneh’s study (2014), and the findings 

showed that the ANN model outperformed the multivariate linear regression (MLR) 

model. Djeddou and Achour (2015) examined the use of the ANN technique for the 
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prediction of the sludge volume index (SVI) municipal in Batna WWTP. Guo et al. 

(2015), at the Ulsan WWTP, discovered that the SVM model outperformed the ANN 

technique when predicting total nitrogen concentration. Huang and Chen (2015) utilized 

FFBPNN and a generalized regression neural network (GRNN) to predict the thin layer 

design in municipal sewage sludge and concluded that FFBPNN was the best model. 

Recently, another study proved that a recurrent neural network (RNN) with explainable 

AI can predict SVI and interpret the prediction result in the Wisconsin WWTP (Wongburi 

and Park, 2022). 

Hanbay et al. (2008) observed that hybrid WT-ANN was effective when gathering TSS 

sets of data in assessing Malatya WWTP performance in Turkey. Bagheri et al. (2015) 

stated that the ameliorated AI techniques’ performance showed that feed forward neural 

network combined with genetic algorithm (FFNN-GA) method gave correct estimation 

for SVI parameter than that found through radial basis function neural network (RBFNN) 

combined with GA model in Ekbatan WWTP, Tehran. Baki and Aras (2018) predicted 

the BOD at a shorter time with a lower cost using three methods: multilayered (ML), 

teaching learning-based optimization (TLBO), and artificial bee colony (ABC) coupled 

with ANN in the Hurma WWTP, Turkey. Their results showed that ML-ANN is the best 

method compared to the other two methods. In the study of Cong and Yu (2018), it was 

proven that hybrid WT-ANN brought about better concise prediction of water quality 

indications for WWTP than ANN and SVM approaches. Najafzadeh and Zeinolabedini 

(2018) employed simple models: gene expression programming (GEP), model tree (MT), 

and evolutionary polynomial regression (EPR) combined with WT to predict sewage 

sludge quantity. WT-MT proved to be the best model in the Kerman WWTP. 

Zeinolabedini and Najafzadeh (2019) compared the performance of the FFBPNN, 

RBFNN, WT-FFBPNN, and WT-RBFNN models in sewage sludge quantity prediction, 

and the third model was indicated to be the most superior. Recently, another study utilized 

FFBPNN and principal component analysis (PCA) combined with FFBPNN to predict 

digested sludge in the Aïn Beïda WWTP (Djeddou et al., 2021a). The results proved that 

the hybrid PCA-FFBPNN was superior to the other model. 

The current study was carried out using four parameters as input variables and daily dried 

sludge production (DDSP) as the output in the Aïn Beïda WWTP, Algeria. DDSP was 

predicted using machine learning (ML) models involving a multilayer perceptron neural 

network (MLPNN), radial basis function neural network (RBFNN), generalized 

regression neural network (GRNN), extreme learning machine (ELM), and support vector 

regression (SVR). A comparative study of simple and hybrid ML mode performance was 

conducted to find the best model in the prediction task. 

This paper is organized as follows. The materials, methods, and data utilized for the 

current study are detailed in Section 2. Section 3 elaborates on the results and discusses 

them in detail. Finally, in the conclusion, a summary of the main findings that need to be 

regarded to benefit future research in the field of WWT engineering is provided in Section 

4. 
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MATERIALS AND METHODS 

Case Study 

Aïn Beïda is a city situated in northeastern Algeria, Oum El Bouaghi. With respect to the 

geographical proprieties, the province has an altitude of minimal 940 m and a maximal 

1.120 m above sea level, a latitude that equals 35°47'47'' N, and a longitude of 7°23'24'' 

E. It has a population of approximately 118 433 people, which makes it the largest city in 

the Wilaya, and has an area of 58.88 km2. Its WWTP started working in 2014 and was 

mapped out for a population of approximately 140 000. The location of this plant is far 3 

km northeast of Aïn Beïda, with geographical location details of 35°47'22.24" N, 

7°20'27.18" E at an altitude of 930 m. The plant’s schematic portrayal is illustrated in Fig. 

1. The area of such a plant is 180 ha, and its design capacity is 16840 m3/day. More 

technical information is displayed in Table 1. The Aïn Beïda WWTP process is 

schematically presented in Fig. 2. 

Table 1: Technical information of the Aïn Beïda WWTP 

Parameters 
2015 

kg.day-1 
 Horizon 2033 

m3.day-1 

COD daily load 14 263 Maximum daily flow 1 736 

BOD5 daily load 7 560 Mean flow in dry time 25 260 

TSS daily load 9 800 Peak flow in rainy weather 4 340 

Nominal load (equivalent person) 210 000 Total phosphorus content 15 

 

 

Figure 1: Aïn Beïda WWTP location (Google, 2023) 
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Figure 2: Process scheme of the Aïn Beïda WWTP 

Data Description 

In this investigation, datasets of the Aïn Beïda WWTP from 2014 to 2022 were used to 

constitute the models suggested. Table 2 displays the dataset statistical parameters used 

to establish the models. Fig. 3 shows the DDSP data. Specifically, datasets (given by a 

programmable robot named IHM SCADA and provided by the manager of the Aïn Beïda 

WWTP) were gathered by the researchers in four and a half years starting in January 

2018. Such data (2638) were taken from the daily values of the WWTP. They have five 

parameters: influent rate flow, effluent rate flow, excessed sludge, and thickened sludge 

that served as the inputs; dried sludge was analyzed as an output. Fig. 4 illustrates the 

correlation matrices between the input and output variables. The datasets were normalized 

and randomly subdivided into two parts for training and testing phases. Eighty percent of 

the datasets were considered for the training phase. The remaining 20% were devoted to 

testing (Baki et al., 2019; Djeddou et al. 2021a; Mansour-Bahmani et al., 2021). 

Table 2: Statistical properties of inputs and output 

Parameters Min. Max. Mean S.D. C. v. 

(m3/d)   Training   

Influent rate flow 199.32 22893.13 9087.84 3109.94 0.34 

Effluent rate flow 16.07 21560.34 7246.21 3063.09 0.42 

Excessed Sludge 0 2089.77 638.5 275.59 0.43 

Thickened Sludge 5.48 924.84 278.02 137.61 0.49 

Dried Sludge 4.47 202.82 66.98 26.7 0.4 

Parameters Min. Max. Mean S.D. C. v. 

(m3/d)   Testing   

Influent rate flow 412.22 19759.17 10495.29 3443.33 0.33 

Effluent rate flow 60.49 16721.56 9055.07 2982.07 0.33 

Excessed Sludge 15.77 1709.35 858.14 298.72 0.35 

Thickened Sludge 19.97 905.54 374.39 140.91 0.38 

Dried Sludge 10.31 204.58 84.3 30.41 0.36 
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Figure 3: Daily dried sludge production data from 2014 to 2022 

 

Figure 4: Pearson correlation matrices of the dataset 

Modeling Approaches 

Multilayer Perceptron Neural Network 

The multilayer perceptron model is the most common machine learning model based on 

the back propagation (BP) learning technique for feed-forward neural networks (FFNNs). 

Inputs are multiplied by arbitrary weights (wi) and summed by arbitrary bias (b) in a form 

of hypothesis (𝑌 = ∑ 𝑋𝑖
𝑛
𝑖=1 + 𝑏). The hypothesis is then nonlinearized by hyperbolic 

tangent (tansig) as the activation function. A linear function (purelin) was used as the 

transfer function in the output layer. A schematic representation of the MLPNN 
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architecture is shown in Fig. 5. MLP is a universal approximator (Haykin, 2009). The 

best number of perceptrons, number of hidden layers, and activation function were 

obtained using trial and error. 

 
Figure 5: Schematic representation of the MLPNN model for predictive modeling of DS 

Radial Basis Function Neural Network 

Radial basis function neural networks (RBFNNs) are frequently employed in numerous 

engineering areas for predictive modeling. The RBFNN is depicted as a three-layer 

design, as shown in Fig. 6. Inputs are received by the first layer. The intermediate layer, 

which comprises a nonlinear RBF activation function, is the second layer. The prediction 

is made by the third layer (Moody and Darken, 1989; Haykin, 2009). The following is the 

equation for the RBFNN output: 

𝑦 = ∑ 𝜔𝑗𝑘𝜃𝑘(𝑋)𝑚
𝑘=1         (1) 

where m is the number of basis functions; X is the input data vector; 𝜔𝑗𝑘  is the weight of 

the connection between the basis function and output layer; and 𝜃𝑘 is the nonlinear 

function of unit j, which is typically a Gaussian of the form. 

𝜃𝑘(𝑋) = 𝑒𝑥𝑝 (−
‖𝑋−𝜇𝑘‖2

2𝜎𝑘
2 )        (2) 
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where X and 𝜇 are the input and center of the RBF unit, respectively, and 𝜎𝑘 is the spread 

of the Gaussian basis function. 

The weights linking the hidden neurons to the outputs, centers, and width are regarded as 

critical keys in the construction and training of the RBFNN. 

 

Figure 6: Schematic representation of the RBFNN model for predictive modeling of DS 

Generalized Regression Neural Network 

A generalized regression neural network (GRNN) is a kind of RBNN that is based on 

kernel regression and is a high-coherence network that can achieve near-zero prediction 

error for a large training set with simple function constraints. Its advantages are related to 

constancy. Fig. 7 depicts the GRNN architecture. Similar to the back-propagation 

network, it does not require an iterative learning process. 

The problem of local minima does not occur in GRNN simulations (Specht, 1991). A 

specifically designed hidden neuron layer contains the input vector. The weights between 

the output layer and the newly formed hidden layer are given the desired value. The 

primary difference between the two neural networks (GR and RBF) is in how the values 

(wij) are computed. 
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Figure 7: Schematic representation of the GRNN model for predictive modeling of DS 

Extreme Learning Machine 

Back propagation (BP), for example, uses specific criteria to alter the weights based on 

the batch in the training ensemble while training a single-layer feeder network (SLFN). 

The schematic of the extreme learning machine (ELM) is shown in Fig. 8. The weights in 

the ELM are determined at random. The underlying theory and method of the ELM are 

provided (Huang et al. 2006). SLFNs with random input weights may learn diverse 

training instances accurately with minimum error (Huang, 2003). The SLFN may be 

handled as a linear system by selecting the input weights and hidden layer biases. A 

generic inverse procedure for the hidden layer output matrices is used to calculate the 

output weights analytically. This method permits the ELM to outperform the feed-

forward algorithm (Huang, 2003). 

 
Figure 8: Schematic representation of ELM model for predictive modeling of DS 
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Support Vector Regression 

Support vector regression (SVR) is a widely used modeling method in nonlinear modeling 

systems. The function fitting through SVR aims to decrease the error. The training points 

are the support vectors that are the nearest to the support vector machine main concept. 

There are decision functions that are accountable. The range from the nearest positive 

sample to a hyperplane and the range between the nearest negative and the hyperplane 

are shown (Vapnik, 1999). The schematic representation of SVR is shown in Fig. 9. This 

function can be formed as: 

𝑔(𝑥) =  𝑤𝑇𝑥 + 𝑏  (3) 

where w and b refer to the weight vector and intercept of the model to indicate in the 

optimal regression. 

By minimizing the regularized risk function R(C), the coefficients w and b are estimated: 

Minimize: 𝑅(𝐶) = 𝐶 ∑ (𝜉𝑖 − 𝜉𝑖
∗)𝑁

𝑖=1 +
1

2
‖𝑤‖2 (4) 

Subject to: {

𝑔𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏𝑖 ≤ 𝜀 + 𝜉𝑖 , 𝑖 = 1, … , 𝑁

𝑤𝑇𝑥𝑖 + 𝑏𝑖 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗, 𝑖 = 1, … , 𝑁

𝜉𝑡 , 𝜉𝑡
∗ ≥ 0, 𝑖 = 1, … , 𝑁

 (5) 

1

2
‖𝑤‖2: weights vector norm; 𝑔𝑖: the desired value; and C: regularized constant 

determining the trade-off between the empirical error and the regularized term. 

 

 

Figure 9: Schematic representation of the SVR model 
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Empirical Mode Decomposition 

Huang et al. (1998) proposed the empirical mode decomposition (EMD) method to study 

nonlinear and nonstationary time series properties, which is also known as the Hilbert-

Huang transformation (HHT). The model decomposes the original signal and the time 

signal analyzed into several intrinsic mode functions (IMFs) and a residual. Two 

requirements must be met by every IMF. The first requirement is that the total number of 

extremes in a time series has to match the total number of zero crossings or deviate by no 

more than one. The second is that the average of the higher and lower values must always 

be zero. A flowchart of the EMD process is displayed in Fig. 10. A time series 𝑥(𝑡) 

decomposed using the EMD technique can be written as the equation below based on the 

aforementioned criteria: 

 𝑥(𝑡) = 𝑟𝑛(𝑡) + ∑ 𝑐𝑖(𝑡)𝑛
𝑖=1  (6) 

where 𝑥(𝑡) is the original signal, n is the number of IMFs, 𝑐𝑖(𝑡) is the i-th IMF 

component, and 𝑟𝑛(𝑡) is the residual component. 

In the process of EMD, the initial step involves identifying the highest and lowest points 

of the time series. Subsequently, cubic spline interpolation is employed to create upper 

and lower envelopes by incorporating all the local maximum and minimum values, 

respectively. It has been demonstrated that the selection of extreme points is influenced 

by unusual data points in the original dataset, thereby impacting the determination of the 

envelopes. As a result, the resulting envelopes can contain a combination of both genuine 

signal information and abnormal points, leading to the occurrence of a phenomenon 

known as mode mixing. 
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Figure 10: Flowchart of the EMD method 
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Variational mode decomposition 

The variational mode decomposition (VMD) method is a recent adaptive and 

quasiorthogonal signal decomposition approach. A signal x(t) can be divided into K 

discrete subsignals or modes by the VMD method, and each component is regarded as 

compact around its own center frequency wk. According to Dragomiretskiy and Zosso 

(2013), VMD is used to solve a restricted optimization issue. The flowchart of this model 

is shown in Fig. 11. 

𝑚𝑖𝑛
{𝑢𝑘}, {𝜔𝑘} = {∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 } 𝑠. 𝑡. ∑ 𝑢𝑘𝑘 = 𝑓 (7) 

where {𝑢𝑘} is the k IMF obtained by decomposition and {𝜔𝑘} is the central frequency of 

the modal components. K is the total number of modal functions, 𝛿(𝑡) is the Dirac 

distribution, * denotes convolution, 𝑒−𝑗𝜔𝑘𝑡 is the center frequency of the modal function 

on the complex plane, with k as the center frequency of the modal function, ∑  𝑘 is the 

number of decomposed components, and 𝑓 is the observed signal. 

The quadratic penalty term 𝛼 and Lagrangian multipliers 𝜆 are introduced to transform 

the previous optimization problem into an unconstrained one Dragomiretskiy and Zosso 

(2013): 

𝐿({𝑢𝑘}, {𝜔𝑘}, 𝜆) = 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 + ‖𝑓(𝑡) −

∑ 𝑢𝑘(𝑡)𝑘 ‖2
2 + 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 〉 (8) 
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Figure 11: Flowchart of the VMD method 

Performance Indicators 

To assess the prediction ability of various ML, EMD-ML, and VMD-ML models, the 

correlation coefficient (R), the Nash-Sutcliffe efficiency coefficient (NSE), the root mean 

square error (RMSE), and the mean absolute error (MAE) for the training and testing 

phases are reported as follows: 
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𝑅 =
∑ (𝐷𝑆𝑜,𝑖−𝐷𝑆̅̅ ̅̅ 𝑜)𝑛

𝑖=1 ×(𝐷𝑆𝑝,𝑖−𝐷𝑆̅̅ ̅̅ 𝑝)

√∑ (𝐷𝑆𝑜,𝑖−𝐷𝑆̅̅ ̅̅ 𝑜)
2𝑛

𝑖=1 𝑥 ∑ (𝐷𝑆𝑝,𝑖−𝐷𝑆̅̅ ̅̅ 𝑝)
2𝑛

𝑖=1

 (9) 

𝑁𝑆𝐸 = 1 −
∑ (𝐷𝑆𝑝,𝑖−𝐷𝑆𝑜,𝑖)

2𝑛
𝑖=1

∑ (𝐷𝑆𝑜,𝑖−𝐷𝑆̅̅ ̅̅ 𝑜)
2𝑛

𝑖=1

 (10) 

𝑅𝑀𝑆𝐸 = √∑ (𝐷𝑆𝑝,𝑖−𝐷𝑆𝑜,𝑖)
2𝑛

𝑖=1

𝑛
 (11) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝐷𝑆𝑝,𝑖 − 𝐷𝑆𝑜,𝑖|

𝑛
𝑖=1  (12) 

where n is the number of observations; 𝐷𝑆𝑜,𝑖 is the observed value; 𝐷𝑆𝑝,𝑖 is the predicted 

value; and 𝐷𝑆̅̅ ̅̅
𝑜 and 𝐷𝑆̅̅ ̅̅

𝑝 are the averages of the observed and predicted values, 

respectively. 

RESULTS AND DISCUSSION 

The main goal of this research is to explore the capabilities of simple ML and hybrid ML 

for the predictive modeling of DDSP in the Aïn Beïda WWTP. All the results of this study 

were carried out using a PC equipped with an ASUS TUF FX505DT, AMD Rayzen TM 5 

R5-3550H CPU at 3.7 GHz and 16 GB of RAM. All predictions were compared to choose 

the best model. The appropriate data for this study were chosen. In the EMD and VMD 

techniques, IMFs and residuals were found, followed by the stage normalization of 

datasets for all techniques (five ML, EMD, and VMD). Inputs and targets for different 

techniques were entered. The prediction for each technique was compared to choose the 

best one. The main steps of the study are schematically illustrated in Fig. 12. 
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Figure 12: Schematic diagram of the proposed methodology model 

Table 3: Performance results of simple and hybrid ML models 

  Training   

Models R NSE 
RMSE  

(m3/day) 

MAE 

(m3/day) 

MLPNN 0.8616 0.7405 13.5976 8.7801 

RBFNN 0.8803 0.7748 12.6668 8.5068 

GRNN 0.7965 0.5542 17.8233 12.6704 

ELM 0.8398 0.7052 14.4942 10.1054 

SVR 0.8417 0.7057 14.4817 10.5600 

EMD-MLPNN 0.9729 0.9448 6.2735 2.5521 

EMD-RBFNN 0.8331 0.6930 14.7896 10.9594 

EMD-GRNN 0.9607 0.9203 7.5361 4.2452 

EMD-ELM 0.8135 0.6617 15.5260 10.6347 

EMD-SVR 0.8969 0.7955 12.0718 9.9499 

VMD-MLPNN 0.8478 0.7177 14.1835 9.9872 

VMD-RBFNN 0.7962 0.6334 16.1615 12.1602 

VMD-GRNN 0.8995 0.7948 12.0922 7.9996 

VMD-ELM 0.8160 0.6659 15.4298 11.0728 

VMD-SVR 0.9119 0.8297 11.0172 6.7368 
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  Testing   

Models R NSE 
RMSE 

(m3/day) 

MAE 

(m3/day) 

MLPNN 0.9110 0.8258 12.6816 9.3145 

RBFNN 0.9109 0.8277 12.6108 9.5772 

GRNN 0.7391 0.3954 23.6234 17.4487 

ELM 0.6671 0.4422 22.6905 17.0265 

SVR 0.7267 0.5108 21.2498 15.9028 

EMD-MLPNN 0.9909 0.9815 4.1319 2.1144 

EMD-RBFNN 0.8761 0.7507 15.1704 11.4676 

EMD-GRNN 0.9811 0.9608 6.0156 3.1790 

EMD-ELM 0.3589 -0.1163 32.1002 26.9474 

EMD-SVR 0.6371 -1.7157 50.0679 42.8947 

VMD-MLPNN 0.8528 0.7272 15.8699 11.3517 

VMD-RBFNN 0.8444 0.7046 16.5134 12.1541 

VMD-GRNN 0.9393 0.8394 12.1761 8.5774 

VMD-ELM 0.5974 0.3423 24.6401 18.8153 

VMD-SVR 0.3501 -0.0629 31.3223 23.5982 

Simple ML 

The quantitative results of the simple ML models are presented in Table 3. For the training 

phase, the RBFNN model showed higher performance parameters (R = 0.88 and NSE = 

0.77) and lower errors (RMSE = 12.67, MAE = 8.51), MLPNN (R = 0.86, NSE = 0.74, 

RMSE = 13.6, and MAE = 8.78) than SVR (R = 0.84, NSE = 0.71, RMSE = 14.48, and 

MAE = 10.56). In the testing phase, RBFNN model efficiency presented the highest 

performance parameters (R = 0.91 and NSE = 0.82) and lower errors (RMSE = 12.61, 

MAE = 9.58) compared to the MLPNN (R = 0.91, NSE = 0.82, RMSE = 12.68, and MAE 

= 9.31) and SVR models (R = 0.73, NSE = 0.51, RMSE = 21.25, and MAE = 15.9). The 

performance of ML models for the testing stage is exhibited in the time series graphs and 

the scatter plots in Fig. 13, which shows the efficiency of the RBFNN model. Such a 

model nearly predicted DS and had a higher performance parameter (R = 0.91) and a 

lower error (MAE = 9.31). 

The Taylor diagram was used as a simple tool to display the details of the predictive 

models (Taylor, 2001). It is the most general suggested diagram for comparing accuracy 

because of the benefits of combining and measuring many statistical performance 

indicators and was used as a simple tool to visualize the details of the predictive models 

in this study. When the predicted values are close to the observed values, this indicates 

that they are predictive in terms of standard deviation (SD), their correlation (R) is high 

and close to 1, and their root mean square deviation (RMSD) is low and close to 0. The 

correlation decreases if a value goes to higher zones in the diagram. RMSD indicates the 

quality of the simulation procedure. Based on Fig. 14a, the RBFNN model’s SD predicted 

= 25.36 is more than the SD of the other ML models and is less than the SD observed = 

28.34, which shows that underestimation occurs. The higher correlation R = 0.89 shows 
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a high level of agreement between the observed and predicted values, and the RMSD is 

the least and close to 12 in comparison with the other ML models. 

 
Figure 13: Time series graphs and scatter plots using ML models for the testing 

phase 
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Figure 14: Taylor diagram presentation for different: (a) ML, (b) EMD-ML, (c) 

VMD-ML, (d) best predictive models 

Hybrid EMD-ML 

The results of the hybrid EMD-ML models are presented in Table 3. The latter indicates 

that the EMD-MLPNN model had lower errors (RMSE = 6.27, MAE = 2.55) and EMD-

GRNN (RMSE = 7.54, MAE = 4.25) than EMD-SVR (RMSE = 12.07, MAE = 9.95) in 

the training phase. The study of hybrid EMD-ML model efficiency indicated that the 

EMD-MLPNN model showed the highest performance parameters (R = 0.99, NSE = 

0.98) and EMD-GRNN (R = 0.98, NSE = 0.96) compared to EMD-RBFNN (R = 0.88, 

NSE = 0.75) in the testing phase. 

The performance of the EMD-ML models is exhibited in Fig. 15, which proves EMD-

MLPNN’s efficiency. This model closely predicts DS, with the lowest error (MAE = 

2.11) and a higher performance parameter (R = 0.99), but the remaining models are 

inadequate compared to it. 

Fig. 14b shows that the EMD-MLPNN model had a high correlation of 0.97 that was 

close to 1, SD = 28.65 and was more than the SD observed values, which signifies that 

the EMD-MLPNN model overestimates the DDSP, and the RMSD is the least and close 

to 6 in comparison with the other EMD-ML models. 
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Figure 15: Time series graphs and scatter plots using EMD-ML models for the 

testing phase 
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Figure 16: Time series graphs and scatter plots using VMD-ML models for the 

testing phase 
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Hybrid VMD-ML 

The performance of the hybrid VMD-ML models is presented in Table 3. With regard to 

the training stage, the VMD-SVR model shows an efficiency higher performance 

parameters level (R = 0.91, NSE = 0.83) and lower errors (RMSE = 11.02, MAE = 6.74), 

regarding VMD-GRNN (R = 0.9, NSE = 0.79, RMSE = 12.09, and MAE = 8), than VMD-

MLPNN (R = 0.85, NSE = 0.72, RMSE = 14.18, and MAE = 9.99). For the testing stage, 

the study of hybrid VMD-ML model efficiency designated that the performance of the 

VMD-GRNN model presents the highest performance parameters (R = 0.94, NSE = 0.84) 

and lower errors (RMSE = 12.18, MAE = 8.58), VMD-MLPNN (R = 0.85, NSE = 0.73, 

RMSE = 15.87, and MAE = 11.35) than VMD-RBFNN (R = 0.84, NSE = 0.7, RMSE = 

16.51, and MAE = 12.15). 

Fig. 16 shows the performance of VMD-ML models, which shows VMD-GRNN model 

efficiency with a relatively higher performance (R = 0.93) and a lower error (MAE = 

8.57). 

The Taylor diagram in Fig. 14c shows that the VMD-GRNN model’s SD predicted = 

22.13 is more than those of the VMD-ML models and less than the SD observed. This 

indicates that underestimation occurs. A higher correlation of 0. 91 points to a higher 

level of agreement between observed and predicted values, and the RMSD is the least and 

close to 12 in comparison with the other VMD-ML models. 

Best of proposed models 

The qualitative results are presented in Table 4. After comparing the statistical parameters 

for predicting the daily dried sludge production, it was observed that the EMD-MLPNN 

outperformed the two other models, VMD-GRNN and RBFNN, which led to the highest 

degree of accuracy in performance parameters and to the lowest errors. 

Table 4: Performance results of the best models 

   Training  

Models R NSE 
RMSE 

(m3/day) 

MAE 

(m3/day) 

RBFNN 0.8803 0.7748 12.6668 8.5068 

EMD-MLPNN 0.9729 0.9448 6.2735 2.5521 

VMD-GRNN 0.8995 0.7948 12.0922 7.9996 

 
   Testing  

Models R NSE 
RMSE 

(m3/day) 
MAE (m3/day) 

RBFNN 0.9109 0.8277 12.6108 9.5772 

EMD-MLPNN 0.9909 0.9815 4.1319 2.1144 

VMD-GRNN 0.9393 0.8394 12.1761 8.5774 
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Relying on the graphical interpretation (Figure 14d), the EMD-MLPNN had the highest 

value of correlation R = 0.97 and SD = 28.65 of the predicted values were less than the R 

and SD of VMD-GRNN and RBFNN. This shows the hybrid model EMD-MLPNN 

capacity in the nonlinear procedure, as MLPNN proved great performance when 

modeling and predicting within the scope of environmental engineering. 

In comparison to previous investigations, Najafzadeh and Zeinolabedini (2018) found 

that the W-MT model had performance parameters that reached R = 0.99, NSE = 0.98 

and errors reaching MAE = 6.29 and RMSE = 8.15. Zeinolabedini and Najafzadeh (2019) 

indicated that the statistical values of the W-FFBPNN model were MAE = 5.79, RMSE 

= 7.76, and R= 0.98. Djeddou et al. (2021) specified the PCA-FFBPNN model with the 

following performance parameters: R = 0.99, RMSE = 5.56, MAE = 3.99, and NSE = 

0.98. Relying on such a comparison, it can be confirmed that the current study has reached 

roughly similar parameters regarding R and NSE, but lesser error values (RMSE and 

MAE) were found. It can thus be confirmed that the suggested EMD-MLPNN prediction 

model in this work has the highest level of accuracy and can be used to predict sludge 

quantity in WWTPs. 

The research findings indicate that out of all the models considered, the EMD-MLPNN 

model is the most appropriate. EMD, a preprocessing technique for signals, partitions the 

signal into a series of IMFs. These IMFs are often used to describe the different oscillatory 

modes within a signal and are typically characterized by three properties: zero mean, 

finite energy, and symmetrical extrema. 

Using EMD with ANNs in prediction has several advantages. More accurate predictions 

can be made by focusing on the underlying oscillatory modes of the signal, rather than 

being influenced by the overall trend or noise present in the signal, especially when the 

oscillatory modes are more relevant to the prediction task than the trend or noise. 

Furthermore, decomposing the signal into IMFs using this method provides a more 

intuitive and comprehensible representation of the signal for the ANN. 

In contrast, the VMD approach does not employ a filtering process in its decomposition 

operation, which gives it an advantage in dealing with mode mixing issues. This approach 

ensures a more accurate decomposition result because it uses a combination of Wiener 

filtering, Hilbert transform, and the alternate direction method of the multiplier to 

properly breakdown any signal into sets of variational mode functions (VMFs) without 

discarding any crucial information from the original signal. 

CONCLUSION 

In this study, various ML models combined with different decomposition techniques, 

specifically EMD and VMD, were employed to predict DDSP in the Aïn Beïda WWTP, 

Algeria. A comparative analysis was conducted between simple ML models and hybrid 

ML models to identify the most accurate predictive model. 
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The results obtained from the simple ML models demonstrated that the RBFNN method 

exhibited the best statistical performance during the training phase (R = 0.8803, RMSE = 

12.6668 m3/day). In the testing phase, R and MSE equalled 0.9109 and 12.6108 m3/day, 

respectively, outperforming the other ML models. 

Among the hybrid EMD-ML models, the EMD-MLPNN method yielded the most 

accurate prediction results. During the training phase, R reached 0.9729, and RMSE 

reached 6.2735 m3/day. In the testing phase, R = 0.9909 and RMSE= 4.1319 m3/day, 

surpassing the other EMD-ML models. 

Comparing the VMD-ML models, the hybrid VMD-GRNN method exhibited the best 

performance during the training phase with R = 0.8995 and RMSE = 12.0922 m3/day. In 

the testing phase, it achieved an R = 0.9393 and an RMSE = 12.1761 m3/day. 

The findings indicated that the EMD-MLPNN model outperformed the VMD-GRNN and 

RBFNN models. In the training phase, it achieved a good performance with R that 

equalled 0.9729, NSE = 0.9448, and RMSE = 6.2735 m3/day. In the testing phase, it 

reached 0.9909 for R, 0.9815 for NSE, and RMSE reached 4.1319 m3/day. These results 

highlight the high generalization capacity of the proposed model, EMD-MLPNN, which 

can be attributed to the hybridization of inputs using EMD. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

ACKNOWLEDGEMENTS 

We would like to thank the manager of the Aïn Beïda wastewater treatment plant for 

providing us with the field data used in this study. 

REFERENCES 

ABDA Z., CHETTIH M. (2018). Forecasting daily flow rate based intelligent hybrid 

models combining wavelet and Hilbert-Huang transforms in the Mediterranean basin 

in northern Algeria, Acta Geophysica, Vol. 66, Issue 5, pp. 1131–1150. 

ABDA Z., CHETTIH M., ZEROUALI B. (2021). Assessment of neuro-fuzzy approach 

based different wavelet families for daily flow rates forecasting, Modeling Earth 

Systems and Environment, Vol. 7, pp. 1523–1538. 

AHMED A.A.M., JUI S.J.J., CHOWDHURY M.A.I., AHMED O., SUTRADHA A. 

(2022). The development of dissolved oxygen forecast model using hybrid machine 

learning algorithm with hydrometeorological variables, Environmental Science and 

Pollution Research, Vol. 30, Issue 3, pp. 7851-7873. 



Zaidi K. & al. / Larhyss Journal, 56 (2023), 77-106 

102 

AROUA-BERKAT S., AROUA N. (2022). Opportunities and challenges for wastewater 

reuse in Algeria, Larhyss Journal, No 51, pp. 7-17. 

BAGHERI M., MIRBAGHERI S.A., BAGHERI Z., KAMARKHANI A.M. (2015). 

Modeling and optimization of activated sludge bulking for a real wastewater treatment 

plant using hybrid artificial neural networks-genetic algorithm approach, Process 

Safety and Environmental Protection, Vol. 95, pp. 12-25. 

BAKI O.T., ARAS E. (2018). Estimation of BOD in wastewater treatment plant by using 

different ANN algorithms, Membrane Water Treatment, Vol. 9, Issue 6, pp. 455-462. 

BAKI O.T., ARAS E., AKDEMIR U.O., YILMAZ B. (2019). Biochemical oxygen 

demand prediction in wastewater treatment plant by using different regression 

analysis models, Desalination and Water Treatment, Vol. 157, pp. 79–89. 

BELANCHE L.A., VALDES J.J., COMAS J., RODA I.R., POCH M. (1999). Towards a 

model of input–output behaviour of wastewater treatment plants using soft computing 

techniques, Environmental Modelling and Software, Vol. 14, Issue 5, pp. 409-419. 

BONIECKI P., DACH J., PILARSKI K., PIEKARSKA-BONIECKA H. (2012). 

Artificial neural networks for modeling ammonia emissions released from sewage 

sludge composting, Atmospheric Environment, Vol. 57, pp. 49-54. 

CAI Q.C., HSU T.H., LIN J.Y. (2021). Using the General Regression Neural Network 

Method to Calibrate the Parameters of a Sub-Catchment, Water, Vol. 13, Issue 8, 

pp.1-12. 

CONG Q., YU W. (2018). Integrated soft sensor with wavelet neural network and 

adaptive weighted fusion for water quality estimation in wastewater treatment 

process, Measurement, Vol. 124, Issue 27-33, pp. 436-446. 

DJEDDOU M., ACHOUR B. (2015). The use of a neural network technique for the 

prediction of sludge volume index in municipal wastewater treatment plant, Larhyss 

Journal, No 24, pp. 351-370. 

DJEDDOU M., HAMEED I.A., NEJATIAN A., LOUKAM I. (2020). Predictive 

Modelling of COVID-19 New Cases in Algeria using An Extreme Learning Machines 

(ELM), MedRxiv preprint, 18 pages. 

DJEDDOU M., HELLAL A., LOUKAM I., HAMEED I.A. (2021a). Application of 

Hybrid Principal Component Analysis-Artificial Neural Network to Predict Daily 

Digested Sludge production in Full-scale Wastewater Treatment Plant, In 5th 

International Water Association (IWA) Specialized International Conference Eco-

technologies for Wastewater Treatment (ecoSTP), Milan, Italy, 6 pages. 

DJEDDOU M., HELLAL A., LOUKAM I., HOUICHI L. (2021b). Predictive modeling 

of ozone dosing in Full-scale drinking water treatment plant using Improved Hybrid 

Model Based on Discrete Wavelet Decomposition and Radial Basis Function Neural 

Network (WRBFNN), In 3rd International Water Association (IWA) Specialized 

International Conference on Disinfection and DBPs, Milan, Italy, pp. 57-60. 



Predictive modelling of daily dried sludge production in full-scale wastewater treatment 

plant using different machine learning combined with empirical mode decomposition  

103 

DJEDDOU M., ZHAO X., HAMEED I.A., RAHMANI A. (2021c). Hybrid Improved 

Empirical Mode Decomposition and Artificial Neural Network Model for the 

Prediction of Critical Heat Flux (CHF), In 28th International Conference on Nuclear 

Engineering (ICONE 28), American Society of Mechanical Engineers, USA, Vol. 2, 

9 Pages. 

DRAGOMIRETSKIY K., ZOSSO D. (2013). Variational mode decomposition. IEEE 

Transactions on Signal Processing, Vol. 62, Issue 3, pp. 531-544. 

EL GHAMMAT A., TEMSAMANI RIFFI K., HASSANI ZERROUK M. (2019). A 

study of the performance of a sequential bioreactor plant for the treatment of dairy 

effluents, Larhyss Journal, No 37, pp. 7-21. (In French) 

FOUCHAL A, SOUAG-GAMANE D. (2019). Long-term monthly stream-flow 

forecasting in humid and semiarid regions, Acta Geophysica, Vol. 67, pp. 1223–1240. 

GAOUAR Y.M., GAOUAR B.N. (2016). Best available technology assessment of three 

existing processes in waste water treatment field, Larhyss Journal, No 27, pp. 105-

123. (In French) 

GONTARSKI C.A., RODRIGUES P.R., MORI M., PRENEM L.F. (2000). Simulation 

of an industrial wastewater treatment plant using artificial neural networks, 

Computers and Chemical Engineering, Vol. 24, Issues 2-7, pp. 1719-1723. 

GOOGLE (2023). Aïn Beïda wastewater treatment plant cardiff, Available at: 

https://earth.google.com/web/@35.7882968,7.33849481,928.45273645a,575.97066

821d,35y,0 h,00r, Accessed 24 February 2023. 

GUO H., JEONG K., LIM J., JO, J., KIM, Y. M., PARK, J. P., KIM, J. H., CHO, K. H. 

(2015). Prediction of effluent concentration in a wastewater treatment plant using 

machine learning models, Journal of Environmental Sciences, Vol. 32, pp. 90-101. 

HANBAY D., TURKOGLU I., DEMIR Y. (2008). Prediction of wastewater treatment 

plant performance based on wavelet packet decomposition and neural networks, 

Expert Systems with Applications, Vol. 34, Issue 2, pp. 1038-1043. 

HAYKIN S. (2009). Neural networks and learning machines, Third edition, Pearson 

Education, India. 

HBAIZ E.M., SATIF C., FATH-ALLAH R., LEBKIRI M., LEBKIRI A., RIFI E.H. 

(2014). Effect of sludge of wastewater from the treatment plant on the growth in 

pepper (Capsicum Annuum.l) cultivated on two different grounds, Larhyss Journal, 

No 20, pp. 43-55. 

HEDDAM S., KISI O. (2017). Extreme learning machines: a new approach for modeling 

dissolved oxygen (DO) concentration with and without water quality variables as 

predictors, Environmental Science and Pollution Research, Vol. 24, Issue 20, pp. 

16702–16724. 

 



Zaidi K. & al. / Larhyss Journal, 56 (2023), 77-106 

104 

HONG H., ZHANG Z., GUO A., SHEN L., SUN H., LIANG Y., WU F., LIN H. (2020). 

Radial basis function artificial neural network (RBF ANN) as well as the hybrid 

method of RBF ANN and grey relational analysis able to well predict trihalomethanes 

levels in tap water, Journal of Hydrology, Vol. 591, pp.1-11. 

HUANG G.B. (2003). Learning capability and storage capacity of two hidden layer feed-

forward networks, IEEE Transactions on Neural Networks, Vol. 14, Issue 2, pp. 274-

281. 

HUANG G.B., ZHU Q.Y., SIEW C.K. (2006). Extreme learning machine: theory and 

applications, Neurocomputing, Vol. 70, Issue 1-3, pp. 489-501. 

HUANG N.E., SHEN Z., LONG S.R., WU M.C., SHIH H.H., ZHENG Q., YEN N.C., 

TUNG C.C., LIU H.H. (1998). The empirical mode decomposition and the Hilbert 

spectrum for nonlinear and non-stationary time series analysis, Proceedings of the 

Royal Society A: Mathematical, Physical and Engineering Sciences, Vol.  454, Issue 

1971, pp. 903-998. 

HUANG Y.W., CHEN M.Q. (2015). Artificial neural network modeling of thin layer 

drying behavior of municipal sewage sludge, Measurement, Vol. 73, pp. 640-648. 

KHATRI N., KHATRI K.K., SHARMA A. (2019). Prediction of effluent quality in 

ICEAS-sequential batch reactor using feed-forward artificial neural network, Water 

Science and Technology, Vol. 80, Issue 2, pp. 213–222. 

LEONG W.C., BAHADORI A., ZHANG J., AHMAD Z. (2019). Prediction of water 

quality index (WQI) using support vector machine (SVM) and least square-support 

vector machine (LS-SVM), International Journal of River Basin Management, Vol. 

19, Issue 2, pp. 149-156. 

LI F.F., WANG Z.Y., QIU J. (2019). Long‐term stream-flow forecasting using artificial 

neural network based on preprocessing technique, Journal of Forecasting, Vol. 38, 

Issue 3, pp.192-206. 

MANSOUR-BAHMANI A., HAGHIABI A.H., SHAMSI Z., PARSAIE A. (2021). 

Predictive modeling the discharge of urban wastewater using artificial intelligent 

models (case study: Kerman city), Modeling Earth Systems and Environment, Vol. 7, 

Issue 3, pp. 1917- 1925. 

MJALLI F.S., AL-ASHEH S., ALFADALA H.E. (2007). Use of artificial neural network 

black-box modeling for the prediction of wastewater treatment plants performance, 

Journal of Environmental Management, Vol. 83, Issue 3, pp. 329-338. 

MOODY J., DARKEN C.J. (1989). Fast learning in networks of locally tuned processing 

units, Neural Computation, Vol. 1, Issue 2, pp. 281-294. 

NAJAFZADEH M., ZEINOLABEDINI M. (2018). Derivation of optimal equations for 

prediction of sewage sludge quantity using wavelet conjunction models: an 

environmental assessment, Environmental Science and Pollution Research, Vol. 25, 

Issue 23, pp. 22931-22943. 



Predictive modelling of daily dried sludge production in full-scale wastewater treatment 

plant using different machine learning combined with empirical mode decomposition  

105 

NAJAFZADEH M., ZEINOLABEDINI M. (2019). Prognostication of waste water 

treatment plant performance using efficient soft computing models: An environmental 

evaluation, Measurement, Vol. 138, pp. 690–701. 

NASR M.S., MOUSTAFA M.A.E., SEIF H.A.E., KOBROSY G.E. (2012). Application 

of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater 

treatment plant performance-EGYPT, Alexandria Engineering Journal, Vol. 51, Issue 

1, pp. 37-43. 

ONKAL-ENGIN G., DEMIR I., ENGIN S.N. (2005). Determination of the relationship 

between sewage odour and BOD by neural networks, Environmental Modelling and 

Software, Vol. 20, Issue 7, pp. 843-850. 

PAI T.Y., YANG P.Y., WANG S.C., LO M.H., CHIANG C.F., KUO J.L., CHU H.H., 

SU H.C., YU L.F., HU H.C., CHANG Y.H. (2011). Predicting effluent from the 

wastewater treatment plant of industrial park based on fuzzy network and influent 

quality, Applied Mathematical Modelling, Vol. 35, Issue 8, pp. 3674-3684. 

RAYI V.K., MISHRA S.P., NAIK J., DASH P.K. (2022). Adaptive VMD based 

optimized deep learning mixed kernel ELM auto-encoder for single and multistep 

wind power forecasting, Energy, Vol. 244, pp.1-29. 

SONG C., YAO L., HUA C., NI Q. (2021). A water quality prediction model based on 

variational mode decomposition and the least squares support vector machine 

optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze 

River, China, Environmental Monitoring and Assessment, Vol. 193, Issue 6, pp. 1-17. 

SPECHT D.F. (1991). A general regression neural network, IEEE Transactions on Neural 

Networks, Vol. 2, Issue 6, pp. 568-576. 

TAYLOR K.E. (2001). Summarizing multiple aspects of model performance in a single 

diagram, Journal of Geophysical Research, Vol. 106, Issue D7, pp. 7183-7192.  

VAPNIK V. (1999). The nature of statistical learning theory, Springer science and 

business media, Second Edition, USA. 

VERMA A., WEI X., KUSIAK A. (2013). Predicting the total suspended solids in 

wastewater: a data-mining approach, Engineering Applications of Artificial 

Intelligence, Vol. 26, Issue 4, pp. 1366-1372. 

WANG Z., SHAO D., YANG H., YANG S. (2015). Prediction of water quality in South 

to North Water Transfer Project of China based on GA-optimized general regression 

neural network, Water Science and Technology: Water Supply, Vol. 15, Issue 1, 

pp.150-157. 

WONGBURI P., PARK J.K. (2022). Prediction of Sludge Volume Index in a Wastewater 

Treatment Plant Using Recurrent Neural Network, Sustainability, Vol. 14, Issue 10, 

pp. 62-76. 

 



Zaidi K. & al. / Larhyss Journal, 56 (2023), 77-106 

106 

YANG Y., WANG P., GAO X. (2022). A novel radial basis function neural network with 

high generalization performance for nonlinear process modelling, Processes, Vol. 10, 

Issue 1, pp.1-16. 

YILMAZ M., TOSUNOĞLU F., KAPLAN N.H., ÜNEŞ F., HANAY Y.S. (2022). 

Predicting monthly streamflow using artificial neural networks and wavelet neural 

networks models, Modeling Earth Systems and Environment, Vol. 8, Issue 4, pp. 

5547-5563. 

ZAKHROUF M., BOUCHELKIA H., STAMBOUL M., KIM S, SINGH V.P. (2020). 

Implementation on the evolutionary machine learning approaches for streamflow 

forecasting: Case study in the Seybous River, Algeria, Journal of Korea Water 

Resources Association, Vol. 53, Issue 6, pp. 395-408. 

ZARE ABYANEH H. (2014). Evaluation of multivariate linear regression and artificial 

neural networks in prediction of water quality parameters, Journal of Environmental 

Health Science & Engineering, Vol. 12, Issue 1, pp. 1-8. 

ZEINOLABEDINI M., NAJAFZADEH M. (2019). Comparative study of different 

wavelet-based neural network models to predict sewage sludge quantity in wastewater 

treatment plant, Environmental Monitoring and Assessment, Vol. 191, Issue 3, pp. 1-

25.  

ZEROUALI B., SANTOS C.A.G., DE FARIAS C.A.S., MUNIZ R.S., DIFI S., ABDA 

Z., CHETTIH M., HEDDAM S., ANWAR S.A., ELBELTAGI A., (2023). Artificial 

intelligent systems optimized by metaheuristic algorithms and teleconnection indices 

for rainfall modeling: The case of a humid region in the mediterranean basin, Heliyon, 

Vol. 9, Issue 4, pp. 1-17. 


