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ABSTRACT 

Reservoirs play a major role in managing the available water resources. The scarcity of 

water has become a serious problem worldwide; therefore, reservoirs must be created, 

planned and managed efficiently. Water resource systems need to be planned in an 

optimal manner for a systematic study. The paper focuses on obtaining optimal monthly 

release policies for a reservoir using the particle swarm optimization algorithm with an 

elitism strategy. The model has been applied to the Ukai reservoir in Gujarat, India. The 

PSO algorithm works on the basis of swarm behavior, and due to its strong background 

to reach the optimum, it provides better operating policies than the standard continuity 

equation. The results obtained by PSO show that the demands were satisfied and 

compared with those obtained using the continuity equation based on reliability and 

vulnerability indices. Finally, implications of the results and suggestions for further 

research are discussed. 

Keywords: Reservoir Operation, Particle Swarm Optimization Algorithm, Elitist 

Mechanism 

INTRODUCTION 

Water is a vital resource to support all forms of life (Rouissat and Samil, 2022; Derdour 

et al., 2022; Remini and Amitouche, 2023). Unfortunately, water is not evenly distributed 

by location or by season of the year. Some areas of the country (India) are more arid, and 

water is a scarce and precious commodity. Other areas of the country receive more than 
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adequate amounts of rain, causing occasional floods and loss of life and property. Dams 

and reservoirs have been constructed to collect, store and manage the supply of water to 

sustain civilization since time immemorial. Reservoirs have a high level of 

multifunctionality and are used for water supply, energy production, flood protection, 

ecological services, and recreation. Due to the growing population and expanding 

economies, impounding reservoirs are necessary for the storage and transport of water to 

cover the continuous, anthropogenic demand for water from the noncontinuous, natural 

water supply and to attain and preserve the fundamental human right for access to clean 

water. 

Due to increased consumption and climate change effect, optimal reservoir operation has 

become an interesting subject for water resource managers (Mezenner et al., 2022; Verma 

et al, 2023). The important issue in reservoir operation is to manage the water resource 

shortage by preparing a target function and optimal planning for operation. The 

significance of modeling in reservoir operation is identified over time because simulation 

and optimization are allowed to improve the management. Reservoir operation is complex 

due to challenging issues that involve several decision variables, risk and uncertainty. 

Thus, there is a need to address multiple and conflicting objectives. Reservoir operators 

address these challenges using numerical analysis and optimization methods, allowing 

decision-makers to develop optimal operating policies to judiciously utilize water and 

maintain the balance between release and demand for efficient water management. Many 

researchers have discussed the reservoir system analysis problem at length. Techniques 

involved in studying this crucial problem involve linear programming (LP), nonlinear 

programming (NLP), dynamic programming (DP), evolutionary computation, artificial 

neural networks (ANNs), fuzzy logic, simulation techniques, etc. In recent decades, the 

basic tools adopted in the planning, design and operation of reservoir system analysis 

have been classified into two categories: optimization and simulation. Optimization 

includes a diverse set of techniques that preferably include linear programming and 

dynamic programming. Simulation gives a better representation of the reservoir system 

and is based on trial and error to identify near optimal solutions. However, the 

configuration of the system, nature of the objective function, constraints involved, and 

availability of data are the deciding factors in choosing the technique. 

An emphasis on optimization methods in reservoir system analyses is given by 

(Yeh, 1985). Schmidt and Plate (1983) used a stochastic simulation method for planning 

an irrigation system in the sense of maximizing crop production for the whole irrigation 

area. Mathematical optimization techniques such as LP and DP were used to study the 

operation and design of a single, multipurpose reservoir system by (Bhaskar and 

Whitlatch, 1987). Wang et al. (2005) employed a constraint technique, decomposition 

iteration, and simulation analysis to address multi-objective optimization, a multi-

reservoir system, and the stochasticity of inflows. Later, Reddy and Kumar (2007) used 

a swarm optimization algorithm to optimize multiple crop irrigation. The model 

performance was tested under different water deficit conditions, and sensitivity analysis 

of the crop yield was performed for water shortages at various growth stages. Moradi and 

Dariane (2009) used the standard particle swarm optimization algorithm and the modified 
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method named elitist-mutation particle swarm optimization (EMPSO) to determine the 

optimal operation of a single reservoir system. The results indicated optimization that the 

use of EMPSO in complex problems is remarkably superior to PSO in terms of run time 

and the optimal value of the objective function. (Bazargon et al., 2011) developed a 

nonlinear discrete-time dynamic model to describe the operation of a single-purpose 

reservoir during the irrigation season using particle swarm optimization (PSO). A 

multiswarm version of particle swarm optimization (MSPSO) in connection with the 

well-known HEC-ResPRM simulation model in a parameterization–simulation–

optimization (parameterization SO) approach was presented by (Ostadrahimi et al., 

2011). It was shown that the real-time operation of the three-reservoir system with the 

proposed approach may significantly outperform the common implicit stochastic 

optimization approach. (Jana et al., 2012) proposed an improved PSO, namely, PSO-

APMLB, in which an adaptive polynomial mutation strategy was employed in the local 

best of particles to introduce diversity in the swarm space. From the experimental results, 

it was found that the proposed algorithms performed better than PSO. Two adapted 

versions of PSO were presented for the efficient solution of the large-scale reservoir 

operation problem by Afshar (2012). Chenari et al. (2016) adopted PSO to solve the 

operation problem of a multipurpose Mahabad reservoir dam in northwestern Iran. The 

results showed that in most of the scenarios for normal and drought conditions, the 

released water obtained by the PSO model was equal to the downstream demand. Jadhav 

(2018) used PSO and LINGO to develop releases for hydropower generation and 

concluded that PSO can be used for complex reservoir operation. Oussam et al. (2019) 

used PSO to optimize multi-reservoir operating rules in inter basin water transfer project 

and concluded that PSO gave good results. Raju et al. (2020) used linear programming to 

develop an operation policy for the Hemavathy Reservoir, Hassan District Karnataka, 

India. The results showed that the downstream irrigation demands were satisfied and that 

a considerable amount of water was conserved from reduced spills. Salmani and Shourian 

(2022) used multi-objective PSO for reservoir optimization and performed sensitivity 

analysis on the parameters. The results revealed the acceptable precision of the algorithm. 

In the present study, an enhancement of standard PSO model has been proposed to 

develop optimal operating policies for ukai dam, India. Sonaliya and Suryanarayana 

(2014) used genetic algorithm (GA) for optimal operation of ukai reservoir and concluded 

that a considerable amount of water was saved by applying GA. Furthermore, Nigam et 

al. (2015) presented the climate change effect on Ukai reservoir based on trend analysis. 

Surat city belongs to the downstream side of the ukai dam which makes it important to 

analyze and manage the releases from the dam. The novelty of the present study lies in 

proposing the elitist mechanism in standard PSO for ukai dam to better manage the 

releases in an optimal manner. 
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METHODOLOGY 

The study presents an efficient and reliable swarm intelligence-based approach to derive 

optimal operating policies for the Ukai reservoir, i.e., PSO has been developed in the 

study. Particle swarm optimization is a heuristic global optimization method developed 

by James Kennedy and Russell Eberhart in 1995 after being inspired by the study of bird 

flocking behavior by biologist Frank Heppner. As far as the particle swam optimization 

algorithm is concerned, the solution swam is compared to the bird swarm, the birds’ 

moving from one place to another is equal to the development of the solution swarm, 

good information is equal to the most optimist solution, and the food resource is equal to 

the most optimist solution during the whole course. The most optimist solution can be 

determined in the particle swarm optimization algorithm by the cooperation of each 

individual. The particle without quality and volume serves as each individual, and the 

simple behavioral pattern is regulated for each particle to show the complexity of the 

whole particle swarm. PSO is initialized with a population of random solutions and 

searches for optima by updating generations. Each particle keeps track of its coordinates 

in the search space, which are related to the best solution (fitness) it has achieved thus far 

(the fitness value is also stored.) The optimization process in this algorithm starts with 

the collection of particles. Each particle is considered a candidate solution of the 

optimization problem and contains three vectors: the current position of the particle (Xi), 

the best obtained position of each particle in the previous iteration (Yi) and the velocity 

vector. A central aim of each cycle in the algorithm is the identification of the best 

position of each particle. Following this, the best position of the particle (Xi
iter+1) is 

considered the new position of the new particle for the purpose of continuance in such a 

way that it yields two main equations: 

𝑉𝑖
𝑖𝑡𝑒𝑟+1 = [𝑤𝑉𝑖

𝑖𝑡𝑒𝑟 + 𝑐1𝑟𝑛𝑑(𝑌𝑖
𝑖𝑡𝑒𝑟 − 𝑋𝑖

𝑖𝑡𝑒𝑟) + 𝑐2𝑟𝑛𝑑(𝑌∗
𝑖𝑡𝑒𝑟 − 𝑋𝑖

𝑖𝑡𝑒𝑟)]  (1) 

𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝑋𝑖

𝑖𝑡𝑒𝑟 + 𝑉𝑖
𝑖𝑡𝑒𝑟+1  (2) 

where Yi
iter+1 is the new velocity vector for each particle, c1 is the personal learning 

coefficient, c2 is the global learning coefficient, rnd is a uniformly distributed random 

value between 0 and 1, 𝑌∗
𝑖𝑡𝑒𝑟  is the current best solution and w is the inertial coefficient. 

By using Eqs. 1 and 2, the velocities and particle positions are updated repeatedly over 

the iterations to obtain the optimal solution. After updating each particle’s velocity and 

position vector, the elitist mutation step executes by arranging or sorting the fitness 

function values in ascending order. The worst particle is identified depending on the 

problem formulation and updated using Eq. (3). 

𝑃𝑔
`=Pg+M*R*η                                                                (3) 

where R is the corresponding decision variable range, M is the mutating factor, and η (0,1) 

is a random number following a normal distribution. The worst particle has been replaced 

with a new position, giving better personal and global best values. Using the new position 
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vector, the fitness function is evaluated again, thus obtaining improved personal and 

global best values. 

FLOWCHART FOR THE PSO ALGORITHM 

The algorithm flow or the stepwise procedure of the PSO method is given below: 

Step 1: Input Data for the Model 

The initial required inputs are: Monthly Inflows, Monthly Demands, Monthly 

Evaporation, Swarm Size (Number of particles), Number of Iterations, Parameters of the 

model; w, c1, c2 

Step 2: Random Initialization of Particle Velocity and Position 

For each particle, randomly generate two vectors, position vector X (0) and velocity 

vector V (0). In reservoir operation, each particle is analogous to release, Rt. In the present 

study, number of particles adopted is 20 based on the sensitivity analysis performed.  

Step 3: Fitness Function Evaluation 

The function value is determined for each particle based on the objective function and 

constraints according to the problem formulation discussed below. 

Step 4: Set Personal Best values 

At initial iter = 0, the current fitness is set to be the local best value for each particle and 

then proceed forward and record the corresponding particle position. 

Step 5: Set Global Best values 

During the first iteration, set pbest value as the global best value. For the rest of the 

iterations, each pbest values are compared with the other pbest values in the population. 

The best pbest value evaluated is recorded to be the gbest value. 

Step 6: Update Position and Velocity 

Evaluate new velocities of the particles using Eq.1 as described above and update the 

position of each particle using Eq.2.  The parameters used in the equations above have 

already been described. New updated velocity and position vectors will be generated for 

each particle of the population moving towards a better solution.  

Step 6: Elitist Mutation Step 

After updating position and velocity of the particle, adjust the parameters and perform 

elitist mutation mechanism according to Eq. 3. 
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Step 7: Check the Stopping criteria 

To check the optimality, either the number of iterations assigned is reached or a 

predefined value of the fitness function is obtained. The particle generating final global 

best value will be the optimal solution or else repeat steps 3 to 7. 

The flow diagram below explains the stepwise procedure of the model used in the study. 

 

Figure 1: Flowchart for the PSO Algorithm 

CASE STUDY DESCRIPTION 

The Ukai Dam is located across the River Tapi near Ukai village in Surat District, Gujarat 

State, with a catchment area of approximately 62,255 km2 and a water spread of 

approximately 52,000 hectares. It is located between longitudes 73°32'25"-78°36'30"E 

The flow diagram below explains the stepwise procedure of the model used in the study. 
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and latitudes 20°5'0"-22°52'30"N. The Ukai dam has a maximum storage capacity of 

8,480.18 MCM and a gross storage capacity of 7,414.29 MCM at full reservoir level. The 

active storage capacity of the Ukai reservoir is 6730 MCM. Water stored in the reservoir 

is used for irrigation purposes and drinking water needs in the Surat, Ankleshwar, Tapi, 

Navsari and Valsad districts of South Gujarat. The catchment of the dam covers large 

areas of 12 districts of Maharashtra, Madhya Pradesh and Gujarat. The districts that lie in 

the catchment include Betul, Hoshangabad, Khandwa, and Khargaon of Madhya Pradesh; 

Akola, Amravati Buldhana, Dhule, Jalgaon and Nasik of Maharashtra and Bharuch and 

Surat of Gujarat state. The command area of 66,168 Ha is spread over the districts of 

Surat, Tapi, Navsari and Valsad. The dam is an earth-cum-masonry dam. Its embankment 

wall is 4,927 m long. Its earth dam is 105.156 meters high, whereas the masonry dam is 

68.68 meters high. The dam's left bank canal feeds water to an area of 1,522 km2. and its 

right canal provides water to 2,275 km2 of land. The Ukai reservoir has two power plants, 

one on the main dam with an installed capacity of 300 MW since 1974, and another, the 

ULBMC mini station which has been oper-ating since 1988 with an installed capacity of 

5 MW. In 1995, the Singanpor Weir cum causeway was built on the Tapi River near 

Rander Surat. A limited downstream release from the Ukai dam is performed to meet the 

domestic demands, industrial demands and water quality requirements of the region. The 

surplus water from the weir goes into the Arabian Sea.  

The data acquired for the present study were the monthly inflow, demand, storage, 

evaporation and release data for the monsoon months for years 2007-2011 and was 

collected in 2014. The location map of ukai dam is presented below in figure 2. 

 
Figure 2: Location Map 

 

Figure 3 below represents the statistical information of inflows corresponding to the data 

acquired. 
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Figure 3: Location Map 

Problem Formulation 

The Ukai reservoir system considered monthly inflows for optimal reservoir operation. 

To manage the targets, the model is formulated with the objective of minimizing the 

annual sum of the deviation of release and demand. The objective function is expressed 

as follows: 

Minimize |Rt-Dt| 

The constraints are as follows: 

St+1 = St + It – Rt - Et 

0 ≤ Rt ≤ Dt 

St
min≤  St  ≤St

max 

where Rt is the volume released during month t, Dt is the monthly demand during time t, 

St+1 is the volume stored at the end of a time, St is the reservoir storage in a period t, St
min 

is the minimum reservoir storage volume during time t, St is the volume stored during 

time t, St
maxis the maximum reservoir storage volume during time t and Et is the 

evaporation loss during time t. The model was run using MATLAB to obtain the results 

in the form of monthly releases, which were then compared with the standard continuity 

equation to validate the performance of PSO. The performance of the model was also 

evaluated based on reliability and vulnerability, where reliability signifies the probability 

with which the reservoir system will perform the required function, while vulnerability 

implies the probability of failure of an event. 
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Data Processing 

The data analysis and processing were done using the following procedure: 

• The input data was acquired for the model i.e., the Monthly inflows, demands 

and evaporation data for the given periods. 

• The state continuity equation was used to fulfill the monthly demands for all the 

years 

• using MS Excel keeping St = 0. 

• The months with reservoir storage exceeding the live storages were considered 

under Spill. 

• The models were developed for the monsoon months for all the years and 

obtained results were then compared. 

Performance Indices  

To evaluate the performance of a water resource system, some performance indicators 

can be used for analysis of the obtained results. 

Reliability 

Reliability Index is explained as the ratio of volume of water released over the entire 

period to the total demand volume expressed as: 

RI = (
∑ 𝑅𝑡

𝑇
𝑡=1

∑ 𝐷𝑡
𝑇
𝑡=1

)  ∗ 100                                                     (4) 

where, Rt is the release of water for the period t = 1,2, 3, …, T 

Dt is the water demand for the same period 

Vulnerability 

Vulnerability Index is given by the sum of the volume of all the water deficit events and 

is mathematically expressed as: 

VI = 𝑀𝑎𝑥𝑡=1
𝑇 (

𝐷𝑡− 𝑅𝑡

𝐷𝑡
) ∗  100                                     (5) 

where, Dt – Rt will represent the water deficit event i.e., water demand and release for 

time period t 
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RESULTS AND DISCUSSION 

To apply the particle swarm algorithm, the input data were the monthly inflows and 

demands and actual releases from 2007-2011 for the monsoon season. The objective of 

the present study was to obtain monthly releases to meet the demands and then compare 

them with the actual releases as per the continuity equation.  

Sensitivity analysis and Model parameters 

The parameters of the model used in the PSO algorithm were selected based on sensitivity 

analysis (Reddy and Kumar, 2007) and are demonstrated below in Table 1. Sensitivity 

analysis is associated with examining the effects of different values of parameters on the 

objective function values. After scrutinizing these effects, the optimized values of the 

parameters have been obtained for the models. For PSO model, after performing several 

trial runs inertia weight is fixed to 0.4 and c1 & c2 are found to be 1.2 and 1.6 respectively. 

Table 1: Model Parameters for the PSO algorithm 

Parameter Population size No. of iteration c1 c2 W 

Value 20 200 1.2 1.6 0.4 

 

The sensitivity analysis of the number of iterations and population size is shown below 

in Figures 4 and 5, respectively. Figure 4 shows the sensitivity for number of iterations, 

from which it is observed that the minimum fitness value is observed at maximum of 200 

iterations. Figure 5 represents the sensitivity to population size, from which optimum 

fitness is at swarm size of 20. As can be seen in figures 4 and 5, that after a certain value 

fitness value does not change and converges to a straight line after that value for number 

of iterations and swarm size. Thus, those values represent the optimum value of the 

parameter for the model. 

 

Figure 4: Sensitivity analysis for number of iterations 
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Figure 5: Sensitivity analysis for population size 

Optimal Policy 

The optimal releases obtained using the PSO model are compared with the actual releases, 

as explained below in Figures 6 and 7 based on the regression plot. From the regression 

plot, it has been observed that the releases obtained using the PSO model satisfy the 

demands. Additionally, it can be seen in figure 3 that points are less scattered and correlate 

in a better way than observed in figure 4. In figure 3, the model releases scatter quite close 

to regression line indicating a better relation between release and demand obtained using 

the PSO model that the actual releases. The optimal policy for the monsoon months for 

the considered period i.e., 2007-11 is presented below in figure 8. The releases obtained 

using the model are more efficient regarding better management of the releases and direct 

towards optimum decision making for future works in the reservoir.  

 

Figure 6: Regression of model releases and demand 
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Figure 7: Regression of actual releases and demand 

 

Figure 8: Releases for monsoon months 
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CONCLUSION 

The releases obtained using the PSO algorithm completely satisfy the monthly demands 

for all the years considered in the study. The coefficient of determination of model 

releases has been improved by 14% compared with the actual releases. The reliability for 

model and actual releases is 2.7 and 1.4, respectively, while vulnerability is 0.02 and 0.03 

for model and actual releases, respectively. This implies that the reliability is higher and 

vulnerability is lower for model releases than for actual releases, although to a small 

extent, some improvement is seen. Therefore, it can be concluded that the PSO technique 

can be effectively applied for such reservoir operation optimization problems. Besides 

PSO, some other enhancements of basic model can be used to further improve the 

obtained results and direct towards a better optimization of the reservoir. Also, other 

meta-heuristic models can be applied and compared to develop more potential models for 

optimal operation. 
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