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ABSTRACT 

Water quality indicators, including biological, chemical and physical properties, are 

usually determined by collecting data from the field and analyzing them in the laboratory. 

Although these in situ measurements are costly and time-consuming, they offer high 

accuracy. This study focuses on the estimation of particulate organic carbon (POC) as a 

water quality parameter using a combination of machine learning algorithms and 

hyperspectral in situ data. A data-driven approach that does not need any domain 

knowledge was used. We were interested in POC generated by bacteria, phytoplankton, 

zooplankton, detritus and sediments in the Mediterranean Sea from 15 May to 10 June 

2017. Therefore, the objective of this study was to use five regression frameworks from 

machine learning algorithms to estimate POC with hyperspectral in situ data and evaluate 

their performance. Based on the coefficient of determination R2, the best-performing 

modes were nearest neighbors (KNN), gradient boosting (GB) and random forest (RF), 
with an R2 in the range of 72.33 to 74.7%. These machine learning models can be used to 

investigate more water quality parameters, as they reveal the great potential of this 

approach. 
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INTRODUCTION 

Particulate organic carbon (POC) is composed of living biomass, e.g., bacteria, 

zooplankton, phytoplankton, and nonliving organic matter, i.e., sediments, facal pellets 

and detritus; it is of substantial interest because it represents one carbon reservoir. 

Concentration changes in POC in surface waters result from its transformation (e.g., 

excretion of organic carbon, remineralization), biological production and export inside 

the ocean (Stramska, 2005). In fact, POC sinks from surface waters and works as a 

biological pump that provides a mechanism for storing carbon in the deep ocean 

(Stramski1, 2008). To understand the effect of climate change on the impacts of biological 

carbon pumps, it is important to know the spatial and temporal distribution of POC in the 

global ocean (Bopp et al. 2001; Xie, 2019). 

There are few studies on the utility of total particulate absorption (ap) as a POC proxy 

(Stramski et al., 2008; Allison et al., 2010a), as most in situ studies have focused on the 

relationship between the backscattering coefficient of particles (bbp) or the beam 

attenuation coefficient of particles (cp) and POC (Stramski et al., 2008; Allison et al., 

2010a). It is known that particulate absorption coefficient variability depends on the 

variability in particulate inorganic and organic components (biogenic detritus, 

phytoplankton, bacteria, biomass, atmospheric dust) contained in POC (Bricaud et al., 

1998; Stramski et al., 2004b). 

Conventional monitoring techniques measure point-based water quality parameters either 

in situ or later in a laboratory. These measurements are precise at a specific location and 

provide a detailed depth profile compared to remote sensing. Machine learning data-

driven approaches are generally able to address complex problems, and without any field 

knowledge, they only require access to a sufficient amount of input data (Ifarraguerri, 

2000), such as high-dimensional hyperspectral data from both in situ measurements and 

remote sensing. 

This study was inspired by the work of Keller (2018) on hyperspectral data and machine 

measurements for estimating chromophoric dissolved organic matter (CDOM), 

chlorophyll a, diatoms, green algae and turbidity. We used a hyperspectral in situ dataset 

from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) (Werdell et al. 

2003), measured under real-world conditions in the Mediterranean Sea for the period 

between May and June 2017. For this purpose, five machine learning regression 

algorithms were applied to capture the best model for monitoring POC. The hyperspectral 

bands have been used as a function of POC target data for supervised machine learning 

models. This framework has been applied and evaluated in the context of both linear and 

nonlinear regression problems. The aim of this study was to use hyperspectral in situ data 

with machine learning algorithms and test the power of these models for the estimation 

of particulate organic carbon (POC) in the Mediterranean Sea. The variable inflation 

factor (VIF) and PCA reducing dimensionality will be used for feature selection before 

performing the model prediction. 
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DATA AND METHODS 

Dataset and instrumentation 

Since 1997, through various projects and programs, NASA has funded the collection of 

ocean in situ measurements for satellite data product validation, algorithm development, 

satellite data comparison and intercalibration, data merger studies and time series 

analyses. The SeaWiFS Bio-optical Archive and Storage System (SeaBASS) (Werdell et 

al., 2003; Werdell and Bailey, 2005) maintains a local repository of in situ ocean bio-

optical and optical data to support regular scientific analyses. Specifically, the database 

includes in situ ocean biological (e.g., chlorophyll-a/b, CDOM, POC concentration), 

optical (e.g., ocean water-leaving radiance spectra), and other related oceanographic and 

atmospheric data (see details in http://seabass.gsfc.nasa.gov/). 

In fact, a variety of researchers from the international ocean community have contributed 

to SeaBASS data using instrumentation with rigorous measurements, data processing 

protocols and community-defined deployment (Mueller and Fargion, 2002). SeaBASS in 

situ data are continuously used in support of SeaWiFS and MODIS ocean color remote 

sensing products for validation and algorithm evaluation (Bailey and Werdell, 2006). 

Specifically, the SeaBASS data are appropriate for the new algorithm evaluations. The 

data in our study were collected from the Mediterranean Sea using a Wetlabs AC-S 

hyperspectral instrument (underwater spectral absorption and attenuation meter) for 

measuring the inherent optical properties (IOPs) of water. It offers an almost order of 

magnitude increase in the spectral resolution of the in situ beam attenuation and 

absorption coefficients. The instrument has a compact size and excellent stability and 

features a proven flow-through system. With outputs of 80+ wavelengths from 400-730 

nm, the 4 nm resolution enables deconvolution analysis and spectral 'fingerprinting'. 

Feature selection and preprocessing 

The regression is performed with the hyperspectral data as input vectors and the POC data 

as the target value. The complete dataset collected from the SeaBASS website 

(https://seabass.gsfc.nasa.gov/search#val) consists of 15499 data points. 

One data point is defined by 66 hyperspectral bands, and one (POC) is defined as the 

target value. For the best interpretation and a good analysis, we applied feature band 

selection, resulting in a wavelength range between 400.1 m-1 and 700.5 m-1. 

http://seabass.gsfc.nasa.gov/
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Figure 1: Schematic representation of the regression framework 

Three preprocessing methods were applied to enhance the regression process with high-

dimensional data. 

The first method was the variance inflation factor (VIF), which is a measure of the 

amount of multicollinearity in a set of multiple regression variables. VIF is equal to the 

ratio of the overall model variance to the variance of a model. This ratio is calculated for 

each independent variable. A high VIF indicates that the associated independent variable 

is highly collinear with the other variables in the model. 

As a second preprocessing method, we applied standardization. This method scales each 

input variable separately by subtracting the mean (called centering) and dividing by the 

standard deviation to shift the distribution to have a mean of zero and a standard deviation 

of one. The standard scaling formula is as follows: Z = (x-u)/s, where u is the mean of the 

training samples and S is the standard deviation of the training samples. 

Principal component analysis (PCA) represents the third method. PCA is a commonly 

used multivariate statistical method (Wang, 2019) that generates a set of principal 

components that are linear transformations of the original variables. These new principal 

components are orthogonal to each other and sorted according to the explained variance 

(WENG, 2020). 

In the regression frameworks, the complete dataset is split randomly into a training subset 

and a test subset. The training subset includes 80% full data points, and the test subset 

consists of 20% data points. A schematic representation of this study framework is 

presented in figure 1. 

Regression models 

To estimate POC, we selected appropriate regression models and included them in the 

framework. These are random forest (RF), gradient boosting (GB), k-nearest neighbors 

(KNN), Ada Boost regression (AB), and PLS Regression (PLS). The regression models 
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are trained on the training subset by linking the hyperspectral data to the POC target 

values during the training phase. All the machine learning models are implemented in the 

Python package (3.9.7) Scikit-learn. Regressions are performed by supervised and 

unsupervised learners. 

RESULTS AND DISCUSSION 

In this section, we present the performance of the regression framework to estimate the 

POC water quality parameters. 

An example of the correlation between bands of our original data is shown in the heatmap 

(Fig. 2). This figure shows that the bands are heavily intercorrelated, which may generate 

a multicollinearity problem in the regression process. 

 

Figure 2: Heatmap of hyperspectral in situ data with POC. Each cell is colorized 

based on the coefficient of determination. 

To explore trends in our data, we used a scatter matrix (pairs plot), which compactly plots 

the numeric variables in a dataset against each other; the results are presented in Fig. 3. 

Only the POC target and features with the greatest variability are shown. 

To determine the adequacy of the fitted model, we used the coefficient of determination 

R2, which is a popular tool. In statistical analysis, it represents the measure that assesses 

how well a model explains and predicts future outcomes. 



Fellous S. & al. / Larhyss Journal, 56 (2023), 179-192 

184 

 

Figure 3: Scatter matrix of hyperspectral in situ data and POC showing the 

correlation of variables. 
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After the application of VIF, we ended up with 20 bands chosen regarding their lowest 

VIF values, and the results are presented in Table 1. 

The variance inflation factor quantifies the increase in the predicted regression coefficient 

when predictors are linked (Wang et al, 2022). A VIF value greater than 10 can be used 

as a strong indicator of multicollinearity (Akinwande et al, 2015; Wooldridge, 2015). 

The subset of predictors from the feature selection based on the VIF value consisted of 

twenty predictor variables. This subset of predictor variables can be seen in Table 1 and 

was further processed by using standardization and PCA before building the machine 

learning models. 

Table 1: Variance inflation factor of twenty bands sorted in ascending order 

N° Features VIF_values N° Features VIF_values 

1 ap700.5 14.74341 11 ap644.5 264.647 

2 ap400.1 19.4459 12 ap635.2 296.8808 

3 ap404.1 37.79633 13 ap649.1 300.3684 

4 ap696.6 50.88418 14 ap688.7 304.9775 

5 ap408.5 75.8985 15 ap626.4 317.6361 

6 ap412.5 123.8203 16 ap630.7 318.0892 

7 ap692.4 146.7568 17 ap426.7 352.5488 

8 ap416.9 187.2344 18 ap621.5 359.2506 

9 ap421.5 225.4132 19 ap653.9 366.1557 

10 ap639.8 262.0507 20 ap616.9 386.3535 

 

From Table 1, we note that all variables have a VIF value greater than 10. To avoid the 

problem of multicollinearity, which can be generated by such heavily correlated 

explanatory variables, we applied ACP to reduce the dimensionality of our data. The 

number of appropriate component numbers can be seen in Fig. 4. 

 
Figure 4: Explained variance and principal components 
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In this study, we used a scree plot to select the first three principal components instead of 

the full 20 features of the hyperspectral input data for the regression. These three 

components were chosen since they covered approximately 94% of the variance (Fig. 4). 

The cumulative and explained variance ratios are shown in Table 2. 

Table 2: Cumulative and explained variance ratio 

Components Cumulative Variance Ratio Explained Variance Ratio 

PCA1 0.66 0.66 

PCA2 0.85 0.19 

PCA3 0.91 0.06 

Since hyperparameters have a great effect on the performance of prediction models, the 

process of finding the optimal hyperparameters is inevitable in terms of the accuracy or 

time of the model. In many cases, the trial-and-error method is used by engineers to 

manually tune hyperparameters. Even experienced researchers will try to find the optimal 

combination of hyperparameters, and finding the best hyperparameters takes a long time 

and is difficult. To solve this problem, we used a grid search (GS) method from the scikit-

learn library. This method defines the search space as a regular grid and evaluates every 

position in the grid. With a small step size and a large search range, GS has a high 

probability of discovering the global optimum. However, this method can be very 

computationally intensive and time consuming, especially when the number of 

hyperparameters to be tuned is relatively large. The optimum hyperparameters obtained 

with GS for the five models are shown in Table 3. 

Table 3: Hyperparameter tuning of the regression models 

Algorithm Hyperparameters Hyperparameters values 
Optimum 

values 

GB max_depth 

min_samples_leaf 

min_samples_split 

n_estimators 

[2,3,7,11,15] 

[2,3,4,5,6,7] 

[2,3,4,22,23,24] 

[300,500,700] 

3 

2 

22 

300 

AB learning_rate 

loss 

n_estimators 

[0.01,0.05,0.1,0.3,1] 

['linear', 'square', 'exponential'] 

[50, 100] 

0.05 

Exponential 

100 

KNN n_neighbors 

weights 

[2,3,4,5,6] 

['uniform','distance'] 

6 

uniform 

RF max_depth 

max_features 

min_samples_leaf 

min_samples_split 

n_estimators 

[5, 10, 15, 20, 25,30] 

['auto', 'sqrt'] 

[1, 2, 5, 10] 

[2, 5, 10, 15, 100] 

[100, 200,300,400,500] 

10 

auto 

1 

10 

200 

PLS max_iter 

n_components 

tol 

[100, 200,300,400,500] 

[2, 3, 4,6,8,10,12,14] 

[1e-02,1e-04,1e-06,1e-08,1e-10] 

100 

3 

0.01 
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Using five regression models after processing and dimensionality reduction, the results 

of regression with the coefficient of determination R2 for GB, AB, KNN, RF, and PLS 

were 72.33% 61.5%, 73.84, 74.70%, and 50.12%, respectively. 

 

 

Figure 5: Prediction plots of the five regressors generated using Python software 

3.9.7. 
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Among all regressors, PLS and AB had the worst results, which were in the range of 50 

to 62%. For the remaining tree models, the regression values were very close, with the 

random forest regressor having a slightly higher value (74.7%), as mentioned above. 

Machine learning algorithms can process and analyze high-dimensional information 

features and statistically analyze the importance of multidimensional features, which is a 

decisive step in understanding the hyperspectral characteristics of IOP parameters related 

to the POC. The benefit of machine learning is to perform regressions without possessing 

further knowledge of the investigated water quality and water body parameters. 

Furthermore, there is no need to engineer new features based on domain knowledge 

because this approach is purely data-driven. 

The main objective of this paper is to investigate the potential of estimating POC as a 

water quality parameter with five regression models and in situ measured input data. It is 

important to note that there have been a few studies on the application of machine learning 

and hyperspectral data in estimating water quality parameters. 

By applying standard scaling and PCA-based dimensionality reduction, we obtained 

regression results relying on the first three principal components with five regression 

models. The goodness of fit of the regression model estimation is indicated by the good 

R2 values; this performance may be in part due to the random split between training and 

test subsets (Keller, 2018). In this study, we obtained R2 values of 72.33%, 61.5%, 

73.84%, 74.70%, and 50.12% for GB, AB, KNN, RF, and PLS, respectively. 

For comparison, Keller (2018), working on CDOM, obtained R2 values of 91.2%, 91.9%, 

85.3%, 91.4%, and 83.2% for GB, AB, KNN, RF, and PLS, respectively, with only PCA 

processing and 80.0%, 79.9%, 83.0%, 82.4%, 84.9% for GB, AB, KNN, RF, and PLS, 

respectively, using only min_max scaling. 

On the other hand, the turbidity results obtained in the same study were 85.5%, 85.2%, 

72.8%, 84.1%, and 70.9% with only PCA as the processing method and 69.3%, 66.4%, 

70.7%, 67.7%, 73.3% for GB, AB, KNN, RF, and PLS, respectively, using only min_max 

as the scaling method. These results are better than those obtained from our study, except 

for the estimation of turbidity with scaling, in which our results are much better. 

As reported in the study of Trung (2019), high POC values will increase absorption in the 

blue‒green part of the spectrum at 490 nm. In this study, we had to address the problem 

of multicollinearity by reducing an important number of variables, especially those in the 

green spectrum, which are very informative in POC estimation; then, without these bands, 

the regression models may be less performant. In fact, the multicollinearity between the 

covariates is the most important obstacle that we must overcome (Ntotsis and 

Karagrigoriou, 2021). Due to the interdependence of the variables and standard errors, 

estimations are unstable if the regression coefficient is important, which decreases their 

precision and makes them unreliable (Alin, 2010). As two or more variables have linear 

relationships, it makes variable marginal impact hard to measure. The model will have 

poor generalization and overfit the data. Then, it performs poorly on new data (Chan et 

al, 2022). 
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Additionally, the variability in the particulate absorption coefficient is driven by the 

variability in particulate organic and inorganic components (biogenic detritus, 

atmospheric dust, biomass, bacterial phytoplankton, etc.) contained in POC (Bricaud et 

al., 1998; Stramski et al., 2004b; Rasse et al., 2017). As the concentration of POC is a 

function of absorption, the performance of our result may be influenced by the ratio of 

organic to inorganic components. 

In summary, the regression results indicate the adequate applicability of machine learning 

as a regression framework when estimating the POC water quality parameter based on 

spectral data. These performances are confirmed by the good results obtained from three 

regression models among the five used in this study. As seen before, the GB, KNN, RF 

models had a regression coefficient greater than 70%, the worst was PLS with an R2 of 

approximately 50%, and an average result was obtained by AB with an R2 equal to 61.5%. 

In fact, an R2 higher than 0.6 is considered a worthwhile prediction model (Chaplot et al. 

2021). 

CONCLUSIONS 

In this study, we evaluated the potential of regression models to estimate POC water 

quality indicators with hyperspectral data. Five regression frameworks were applied to 

the measured in situ data, with scaling and PCA reducing dimensionality. After 

hyperparameter tuning of the five models, the tree (GB, KNN, RF) had a good regression 

coefficient, which was in the range of 72.33 to 74.7%. This result indicates that 

the machine learning algorithms, especially the ensemble model (RF), which had the best 

result in our study (74.7%), can be used to predict water quality parameters with good 

performance. In the future, we will explore more sophisticated models, such as neural 

networks, to gain accuracy for the prediction of water quality indicators. 
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