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ABSTRACT 

Reservoir operation occupies an important place in the utilization of water resources. 

Large-scale reservoirs play an essential role in water resource management for 

agricultural irrigation, water supply, and flood control. However, we need robust reservoir 

operation systems under both normal flow and extreme flow conditions. The use of 

models and decision tools for real-world reservoir operations is limited due to the gap 

between the models/tools and real-world practices, the tedious amount of work in case-

by-case developments, and the computational difficulty of running complex numerical 

models. In reservoir operation, an appropriate methodology for deriving reservoir 

operating rules should be selected, and operating rules should then be formulated. Various 

algorithms and techniques are used to optimize the operation of existing multipurpose 

reservoirs and to derive reservoir operating rules for optimal reservoir operations. 

Parameter uncertainty inherent in reservoir operation affects operation model robustness 

and has been considered in conventional operations focusing on improving hydropower 

generation. With more attention being paid to ecological environmental protection 

recently, reversible ecosystem protection requires environmental flow (e-flow) 

management to sustain a near-natural flow regime. Whether there is e-flow management 

in reservoir operation has an impact on the uncertainty of reservoir operation. Optimizing 

storage reservoir operations aims to ensure that all planned reservoir objectives are met 
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without compromising those ecological water requirements. It takes into account a variety 

of objectives and variables, including cost and revenue considerations of water allocation 

for various socioeconomic uses. Various computer simulation models can be used for 

optimization. The models use algorithms to calculate the optimal balance between water 

release and reservoir storage volumes. This era is the era of science and technology. There 

are many algorithms for the optimal reservoir, including the genetic algorithm (GA), the 

honey-bee mating optimization (HBMO) algorithm, the artificial fish swarm algorithm 

(AFSA), the particle swarm optimization algorithm (PSOA) (hybrid approach), the Jaya 

algorithm, and a multiobjective evolutionary algorithm (MOEA). The results obtained 

using the proposed evolutionary algorithm are able to offer many alternative policies for 

the reservoir operator, giving flexibility to choose the best out of them. 

Keywords: Multiobjective optimization, Different algorithms, Reservoir operation, 

Hydropower 

INTRODUCTION 

In real life, most water resource optimization problems involve conflicting objectives, for 

which there is no efficient method for finding multiple trade-off optimal solutions (Aroua, 

2018; Aroua, 2022). Most reservoir systems serve multiple purposes, and they are 

multiobjective in nature. To optimize such complex reservoir systems, dynamic 

programming (DP), linear programming (LP), and nonlinear programming (NLP) have 

been widely applied in the past (Yeh, 1985). However, when DP is applied to a 

multireservoir system, it involves a major problem of the curse of dimensionality, with 

an increase in the number of state variables. Techniques such as LP and NLP have 

essential approximation problems in dealing with discontinuous, nondifferentiable, 

nonconvex multiobjective functions (Kumar et al., 2018). Recently, there has been 

increasing interest in biologically motivated adaptive systems for solving optimization 

problems. Genetic algorithms (GAs) are one of the most promising techniques in the 

natural adaptive system field of the evolutionary algorithm (EA) paradigm and are 

receiving wide attention because of their flexibility and effectiveness in optimizing 

complex systems (Mezenner et al., 2022). Genetic algorithms use a population of 

solutions in each iteration instead of a single solution, so they are called population-based 

approaches (Goldberg, 1989). This is one of the most striking differences between 

classical optimization methods and GAs. GAs use objective function information directly 

and do not require its derivatives or any other auxiliary information. Sometimes this may 

lead to slower convergence, as it does not explicitly use derivative information (Kumar 

et al., 2022). GAs use randomized initialization and stochastic algorithms in their 

operation, so they can locate the search at any place in the search space and can overcome 

the problems of local optima. GAs are suitable for solving reservoir operation problems 

(Kumar et al., 2020). 
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GAs are not restricted by the number of dimensions, as computer memory requirements 

increase only linearly but not exponentially with an increase in dimensions (Roushangar 

et al., 2021). Classical optimization methods such as DP, LP, and NLP are not appropriate 

for multiobjective optimization because these methods use a point-by-point search 

approach, and the outcome is a single optimal solution (Sharma et al., 2023). Most of the 

classical optimization methods consider multiple objective functions using a weighted 

approach or constrained approach without considering all the objectives simultaneously 

(Azamathulla et al., 2007). 

The optimization of any multipurpose reservoir system involves solving 

multidimensional multiobjective problems. The multimember approach, followed in 

evolutionary algorithms (EAs), makes them an ideal processor that can be used for 

solving multiobjective optimization problems (Deb, 2001). Most water resources and 

hydrology problems are characterized by multiple objectives and/or goals, which often 

conflict and compete with one another. The optimization of multipurpose reservoir 

systems involves solving multiobjective problems. For example, for a reservoir system 

with hydropower and flood control as key purposes, the two major objectives can be the 

maximization of hydropower generation from the reservoir and the minimization of flood 

risk or flood damage. These two objectives are in conflict and compete with each other. 

The higher the level of the reservoir is, the more hydropower generation is possible 

because of the high water head, yet less water storage will be available for flood control 

purposes and vice versa. One can identify, within the active storage capacity of that 

reservoir, a Pareto optimum region where the enhancement of the first objective can be 

achieved only at the expense or degradation of the second, namely, flood control. 

Additionally, the units of these two objectives are incommensurable. 

The first objective, which maximizes hydroelectric power, is generally measured in units 

of energy and not necessarily in monetary units, whereas the second objective can be 

measured in terms of acres of land, livestock, or human lives saved. If the objectives are 

noncommensurate, the classic methods of optimization cannot be applied easily. Of the 

several approaches developed to deal with multiple objectives, tradeoff methodologies 

have shown promise as an effective means for considering noncommensurate objectives 

that are to be subjectively compared in operation determination (Cohon and Marks, 1975). 

Therefore, the efficient generation of a set of alternatives for multiple objectives is very 

important with minimum computational requirements. The operation of dams by 

considering the quantitative‒qualitative characteristics of reservoir inflow and demand is 

a complicated process that should take into account a variety of issues. The simultaneous 

effects of climate change on inflow reduction and the consequent increase in demand and 

other changes in water quality should be considered in reservoir operation modeling. 

The operation model is an important tool to study reservoir operation, but it adopts 

relatively simple mathematical formulas or physical equations to conceptually and 

abstractly describe reservoir operation, which often causes distortion phenomena (the 

alteration from reality to estimated decision). Because of the mutual influence of different 

external factors in the simulation process, a reservoir operation simulation model always 
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has errors between the true optimal and simulation values. The resulting uncertainty from 

inevitable distortion phenomena and errors needs to be analyzed and evaluated to develop 

a robust reservoir operation model. Uncertainty always exists in the physical parameters 

of a reservoir operation model, such as reservoir characteristics (e.g., stage-storage curve, 

hydropower generation process, and parameters representing operation performance). 

Therefore, uncertainty in reservoir operation is a problem that cannot be ignored in 

modeling research. 

The operation of dams by considering the quantitative‒qualitative characteristics of 

reservoir inflow and demand is a complicated process that should take into account a 

variety of issues. The simultaneous effects of climate change on inflow reduction and the 

consequent increase in demand and other changes in water quality should be considered 

in reservoir operation modeling. 

The world is trying to supply water in different sectors, such as drinking water, 

agriculture, industry, and the environment. Throughout the world, there are water 

reservoirs whose function is the provision of drinking water, meeting irrigation needs, 

flood control, and supplying water for environmental purposes. Additionally, the outflow 

of some dam reservoirs is used to generate electricity in downstream power plants. Even 

if there is great demand for the construction of dams in many countries, it is very 

expensive to build them. Furthermore, there are several environmental restrictions on 

building dams. Hence, optimizing the operation of dam reservoirs to supply maximum 

water is required so that in every operation cycle, water shortages for downstream 

consumers are minimized. In its recent report, the World Commission on Dams has placed 

intense emphasis on the issue that utilization optimization techniques and using dams 

with greater output can be a good substitute for dam construction and their ensuing 

expenses. The main issue in the optimization of reservoir operation is expressed as the 

amount of water released for downstream consumers, provided that reservoir reserves are 

not reduced to less than some specified levels. Another problem is the timing of the water 

release. Therefore, optimization of reservoir operation helps to satisfy the consumers’ 

water needs such that the efficiency and reliability coefficient are high enough in this 

regard and the reservoir’s supply does not diminish below the allowable limits. 

Reservoir operation is complex in nature, as it has to incorporate all the input imprecision 

and uncertainties (Verma et al., 2023a). The output should fulfill all the system 

requirements, such as meeting various demands, without violating the physical 

constraints of the system (Verma et al., 2023b). For complex systems, no single 

technology can easily satisfy all the requirements of the problem. In the quest for a 

solution to the problem at hand, it is natural to combine more than one technology to 

create hybrid systems. Hybrid systems are designed to take advantage of the strengths 

and avoid the limitations of each system. Many successful applications of fuzzy systems 

have been reported in the literature, especially in control and modeling (Fontane et al. 

1997; Dubrovin et al. 2002). 
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They are suitable for situations where an exact model of a process is either impractical or 

very costly to build, but an imprecise model based on existing human expertise can do 

the job (Waikhom et al., 2015; Zeinalie et al., 2021). In such situations, fuzzy systems are 

considered the best alternative, although they do not perform optimally. Fuzzy sets are an 

aid in providing information in a more human-comprehensible or natural form and can 

handle uncertainties at various levels. The knowledge contained in fuzzy systems is 

transparent to the user. On the other hand, ANNs are also used successfully for single-

reservoir and multireservoir operations (Raman and Chandramouli 1996; Jain et al. 1999; 

Chandramouli and Raman 2001). While neural networks are ideal for modeling known 

or unknown associations that exist between the input and output data, significant data 

cleaning and preprocessing are usually needed. In other words, input data must be 

carefully prepared for the network to process. The more input data there are, the better 

the training results. The richer the input data are, the more accurate the model. However, 

training requires substantial time and resources (Yadav et al., 2015). 

These difficulties restrict the widespread use of neural networks in many applications 

(Badiru and Cheung, 2002). In many decision-making systems, it is important to be able 

to explain the process by which the decision is made. The concepts of fuzzy logic 

complement those of neural networks. While fuzzy logic provides simple data 

representation, neural networks provide none. Where fuzzy logic can be used to model a 

system, neural networks are well suited to provide sophisticated models of diverse types 

of systems. However, if there is prior knowledge about the underlying system, fuzzy logic 

can readily encapsulate the knowledge in terms of rules and relations, while it is not 

particularly easy to preprogram a neural network with prior knowledge. Given a set of 

training samples, it is not simple to train a fuzzy model, but many algorithms have been 

developed in the past for training neural networks. 

The concept of neuro-fuzzy hybrid systems has emerged as researchers have tried to 

combine the transparent, linguistic representation of a fuzzy system with the learning 

ability of an ANN (Brown and Harris 1994). A neuro-fuzzy system uses an ANN learning 

algorithm to determine its parameters, i.e., fuzzy sets and fuzzy rules, by processing data 

samples. Therefore, it can be trained to perform an input‒output mapping, just as with an 

ANN, but with the additional benefit of being able to provide the set of rules on which 

the model is based. Deka and Chandramouli (2003) developed a fuzzy neural network 

model for deriving the river stage-discharge relationship at selected gauging stations of 

the Brahmaputra River in India and found it to be better than the other models considered. 

Deka and Chandramouli (2005) also found that fuzzy neural network modeling used in 

routing river flow was better than other models considered. Chaves and Kojiri 2007 

developed a conceptual fuzzy neural network CFNN for water quality simulation in the 

Barra Bonita reservoir system in Brazil using a genetic algorithm as the training method 

for finding fuzzy inference and connection weights. 

They found that the CFNN model showed greater robustness and reliability when dealing 

with systems for which data are considered vague, uncertain, or incomplete. In the past 

30 years, the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) has become 
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one of the most extensively used watershed-scale models across the world. It is a 

semidistributed, continuous-time hydrologic model with the following components: 

weather, surface/subsurface flows, return flow, percolation, evapotranspiration, 

transmission losses, pond and reservoir storage, crop growth and irrigation, reach routing, 

nutrient and pesticide loading, and water diversion. SWAT has been applied to perform 

simulations of streamflow, sediment, and water quality processes at watershed scales with 

over 3,800 peer-reviewed publications. It has proven to be an effective tool to quantify 

the impacts of anthropogenic activities such as management practices and land use 

changes under various climate scenarios in large watersheds (Xia et al., 2014; Abbaspour 

et al., 2015; Wang et al., 2016). In addition, the SWAT model has also been adopted by 

government agencies and policymakers, such as the Conservation Effects Assessment 

Project (CEAP) conducted by the Department of Agriculture, United States, and 

environmental assessments by the US EPA (Yen et al., 2016a). While many previous 

research studies and scientific projects across the globe have demonstrated the flexibility 

and effectiveness of SWAT in evaluating water quantity and quality subjects, several 

weaknesses and limitations of the model are shown to have a negative impact on future 

model development. By the SWAT developer group and scientists in the SWAT 

community worldwide, several issues have been addressed that could lead to less accurate 

simulation of individual processes, regional adaptations to specific environmental 

conditions, or linkages of SWAT with other models (Gassman, 2017). Numerous 

modifications have been added or revised in SWAT, which results in source code that is 

increasingly difficult to manage and maintain. 

The flexibility for potential model improvements is limited, and the computational speed 

in simulations is reduced in the current structure. Therefore, a completely reconstructed 

version of SWAT, dubbed SWAT+ (Bieger et al., 2017; Arnold et al., 2018), has been 

released recently with entirely new coding features. SWAT+ is more flexible than SWAT 

in terms of spatial representation, and the associated modular codes are designed to 

facilitate future applications and development for general users. The advancement of the 

SWAT+ model is expected to continue in the worldwide SWAT community, and the 

number of innovative applications continues to grow. Water is a vital resource that 

supports all forms of life (Pimentel et al., 2004). Unfortunately, water is not evenly 

distributed by location or by season across the globe. Some areas are arid, and water is a 

scarce and precious commodity, whereas some receive excess rain, causing flooding with 

loss of lives and property (Schultz et al., 2017). Throughout history, reservoirs and dams 

have been constructed to collect, store and manage the supply of water, which can provide 

benefits such as flood and drought control, recreation, fishery, wildlife habitats, and 

hydroelectric power generation. The impacts of reservoirs on water are substantial to the 

hydrologic cycle, causing significant effects, as reservoirs are interconnected throughout 

most river networks (Kim, 2013). Reservoir operation may vary substantially by the 

initiated purposes and goals. Research work can be found when different scientific targets 

are selected. For instance, hedging rule policies were investigated by analyzing the 

corresponding water availability demands and inflow uncertainty (You and Cai, 2008). 
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Flushing strategies were developed by using network flow programming to better 

represent and compromise the potential conflicts between sediment load releases versus 

the goal of maximizing water supply (Chou and Wu, 2016). However, it is difficult to 

develop universal reservoir operation routines or models for all possible cases. The 

development of realistic reservoir models can be tedious, whereas sophisticated 

algorithms such as data mining or linear/dynamic programming may be required (Hejazi 

and Cai, 2011). Therefore, most reservoir operation functions are embedded in programs 

with multiple tasks. For example, reservoir operation was incorporated with fish 

ecosystem restoration in east-central Illinois, United States (Yang and Cai, 2011). In this 

case, the fish community is the primary research subject, and reservoir operation is only 

the associated technical section. However, within the SWAT model, the reservoir module 

was simplistic and did not always provide an accurate estimation of reservoir releases and 

ultimately stream flow, sediment, and load nutrients. 

 It is complicated to build a better reservoir module in the current SWAT framework 

because of the limitations in the model structure. For instance, in the SWAT application 

in the Mekong River Basin, Vietnam (water release and the consequence of hydropower 

generation), it was found that the default SWAT framework cannot properly simulate 

complex hydrologic processes with a large number of reservoirs in the system (Khan et 

al., 2017). One has to manually revise the source code in each case study to provide 

scientifically reliable results. In addition, for national-scale environmental assessment 

(e.g., CEAP), even a simple, robust reservoir operation module that can be easily 

parameterized for all reservoirs in the U.S. is still needed. Thus, it is timely important to 

add a new reservoir release module into SWAT+, taking advantage of its modular 

structure (additional functions can be incorporated flexibly into the SWAT+ framework). 

The new functions of reservoir operation require additional parameters (a total of 15). 

Users may be confused about the associated functionalities, and the recommended ranges 

of parameters are not yet defined. In this study, the automatic calibration program 

Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT, Yen et al., 2014; 

Yen et al., 2019) was coupled with SWAT+ to conduct reservoir operations. IPEAT has 

been shown to have pronounced flexibility in integrating with watershed models such as 

SWAT and Agricultural Policy/Environmental eXtender (APEX) (Wang et al., 2014). 

Users can take advantage of the IPEAT platform to perform calibration work efficiently. 

The primary goal of this study is to develop a more realistic reservoir module for SWAT+ 

with recommended parameter ranges for national environmental assessments and the user 

community. Specifically, three objectives are defined: (i) develop a reservoir release 

model based on outflow-storage relationships; (ii) incorporate the release model into 

SWAT+ and optimize parameters by using IPEAT; and (iii) provide recommended 

parameter ranges for reservoirs in the CONUS. More than 120 reservoirs across the 

CONUS were simulated. 

Efficient planning and management strategies are essential for the optimum utilization of 

resources and are considered a process for continuous improvement and sustainable 

development. Additionally, it is necessary to formulate mathematical models and 
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introduce new techniques to solve them for planning efficient strategies. In the present 

study, three nontraditional optimization techniques, namely, simulated annealing (SA), 

simulated quenching (SQ), and real-coded genetic algorithms (RGAs), are employed in a 

case study of the Mahi Bajaj Sagar Project, India, with the objective of maximizing the 

annual net benefits that provide the optimum cropping pattern, storage and release policy 

with consideration of the conjunctive use of surface and groundwater. The study is 

divided into a literature review, a description of various techniques employed in the study, 

a case study, mathematical modeling, and results and discussion, followed by 

conclusions. 

RESULTS AND DISCUSSION 

To apply GA to the above-formulated model, average annual inflows into the reservoir 

have been used. The inflow scenarios represent normal seasons in the region. The 

parameters used in applying the GA to the reservoir operation model were studied through 

sensitivity analysis by varying each of the above-formulated parameters. The important 

input variables in the present GA model study are the monthly inflow into the reservoir 

system, the monthly irrigation demand, water supply, and industrial demands. The main 

objective of the study is to compute the quantity of water that should be released to meet 

the monthly irrigation demand. Since the fitness function is based on the monthly 

irrigation demands (Dt), monthly inflow in the reservoir (It), and other monthly demands, 

reservoir releases for irrigation (Rt) and initial storage (St) in the reservoir in the monthly 

time step are chosen as decision variables. Thus, twenty-four decision variables are 

considered. The fitness function evaluation gives the measure of the goodness of fit of 

the string. After fitness, the population size is increased up to a certain population size. 

With a further increase in population, the system still performs better, but no significant 

improvement occurs. In the present study, the significant point occurs at 250, and after 

that, the performance has not improved significantly. The genetic algorithm (GA) has 

been used to optimize the operation of existing multipurpose reservoirs in India and to 

derive reservoir operating rules for optimal reservoir operations. A comparative plot of 

actual demand and GA model release for an average inflow is shown in Fig. 1. Fig. 1 

shows that the demand is almost satisfied with the releases obtained through the GA 

model. To derive the rule curve, the results obtained are plotted in Fig. 2 (Shiyekar et al., 

2016). 
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Figure 1: Monthly irrigation demand and releases as per the GA model for ULBMC 

(Shiyekar et al., 2016) 
 

 
Figure 2: Monthly irrigation releases at different inflows (Shiyekar et al., 2016) 

The parameters used in applying the GA to the reservoir operation model were those 

selected after a thorough sensitivity analysis by varying each of the parameters. A 

population size of 250 and a crossover probability of 0.75 are chosen to run the model. 

The amount of water released for irrigation for each month. These rule curves show the 

final storage to be maintained in the reservoir in each month starting from June under 

inflows. Storage is maximum at the start of October, i.e., when the monsoon reaches its 

peak and consequently decreases to a minimum in July to receive the next monsoon 

inflow, reduce flood damage and reduce water losses from the system. This region falls 

under the assured rainfall zone, so the minimum target level to be achieved is kept as dead 

storage and is achieved at the start of the monsoon season. 
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The four-reservoir systems are a benchmark problem of reservoir operation optimization 

that has been used to compare the performance of various strategies proposed in the 

domain. JA was first applied to the Four-Reservoir system (benchmark) to test its 

applicability to reservoir operation studies. With its success in this benchmark study, it 

has been further applied to optimize the operation of the Mula reservoir, Upper Godavari 

Basin, India. The results of the two case studies are explained in the next sections. 

Results of various algorithms for the Rastrigen and Bulkin-6 functions 

The parameters of the algorithms are obtained from 30 runs based on sensitivity analysis. 

Because of the necessity for examining the stability of the algorithm and assuring high 

confidence, 30 runs are applied to investigate the proposed algorithms. Benchmark 

functions are necessary to evaluate the new proposed algorithm. In this research, the 

proposed AFSA was developed based on MATLAB interface coding, while the other 

methods have been recalled from the literature for comparative analysis purposes. The 

results achieved benchmark functions based on the results achieved in previous studies 

and reported in associated references and in addition to the one achieved based on the 

newly proposed method. 

Fig. 3 shows the performance of daily reservoir outflow simulations for 123 reservoirs 

across the whole CONUS. The NS values in most reservoirs ranged from 0.1 to 0.7, while 

several were larger than 0.5 (Wu et al., 2020). For PBIAS, values in most reservoirs 

ranged from −10 to 10. In addition, almost all reservoirs with low NS had satisfactory 

PBIAS values. Therefore, the performance of the daily reservoir outflow simulation was 

overall satisfactory based on both PBIAS and NS (Moriasi et al., 2007). Histograms of 

probability for 15 parameters based on reservoir release classification R2 in the reservoir 

model in SWAT+, given by Wu et al. (2020), are easy to attain with general release rules. 

However, it is difficult to obtain highly accurate daily release rates (NS) due to specific 

local conditions, such as irrigation demand and downstream flooding concerns. The 

observed mean outflow and highest outflow were further compared in the 123 selected 

reservoirs, as shown in Fig. 3. 

The simulated daily mean outflow was highly consistent with the observed mean outflow, 

with a correlation coefficient R almost equal to 1. For high outflow, the simulation 

performance in most reservoirs was satisfactory (R = 0.69), while overestimation for high 

flow was found in a few reservoirs (e.g., Number 5, 33, 91, and 120). In brief, from the 

perspective of the mean and high outflow, the simulation performance in most reservoirs 

was relatively satisfactory. Furthermore, the two best daily simulated and observed 

outflows were displayed from 1994 to 2015. The simulations underestimated the high 

outflow in the Great Salt Plains Reservoir, while in the Caddo Reservoir, the simulations 

overestimated the high outflow. In general, daily outflow simulations in both reservoirs 

were mostly under the statistical category of satisfactory. 
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Figure 3: Model performance of daily reservoir outflow simulations in 123 selected 

reservoirs (Wu et al., 2020) 

The MOGA approach is applied to the Bhadra reservoir system to derive operating 

policies for the multipurpose reservoir system under multiple objectives. In general, for 

any multiobjective optimization problem, no single solution is said to be optimal, and 

fortunately, with the MOGA approach, it is possible to generate different alternatives in 

a single run, which helps in plotting the transformation curve between the objectives, 

which consequently helps the decision maker to make a suitable decision. Figure 3 shows 

a set of well-distributed solutions along the Pareto optimal front for the three different 

inflow scenarios, viz., dry, normal, and wet seasons. In multiobjective optimization, after 

arriving at the Pareto front, the remaining task is decision-making, which requires a 

subjective judgment by the decision-maker based on his preferences. The MOGA model 

generates a large number of alternatives. To choose the best solution among the many 

alternatives, preliminary treatment of the solution is thus generally needed, which in some 

cases may be computationally cumbersome. To facilitate ease of decision-making, 

filtering is performed using a simple clustering technique to obtain a representative subset 

of the nondominated points. In Figures 4a, b, and c, the points of shaded dots represent a 

total of 200 nondominated points that were generated, while the points of dark diamonds 

represent the 20 filtered nondominated solutions (Reddy et al., 2006). 
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Figure 4: Pareto optimal front, showing the trade-off between irrigation (f1) and 

hydropower (f2) for different inflow scenarios. (f1 = sum of squared 

irrigation deficits, (Mm3)2; f2 =hydropower generated, MkWh) (Reddy 

et al., 2006) 
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When there is equal priority for irrigation and hydropower, it aims at concurrently 

maximizing benefits from both objectives. The points shown in square boxes represent 

the compromise solutions. For the selection of these optimal points, the marginal rate of 

substitution approach (Deb, 2001) is used. The marginal rate of substitution is the amount 

of improvement in one objective function, which is obtained by sacrificing a unit 

decrement in any other objective function. The solution having the maximum marginal 

rate of substitution is the one chosen by this method. Thus, the optimal point is the 

solution that corresponds to the maximum slope for the two-objective Pareto front. 

Therefore, the optimal points are chosen in such a way that the compromised highest net 

benefits can be achieved with respect to both objectives. Alternative storage and release 

policies can help the reservoir operator make a suitable decision for different inflow 

scenarios and priorities. The multiobjective GA approach is thus very useful in producing 

a well-defined solution set for conflicting objectives and eventually helps for better 

operation requiring a short computational time. 

CONCLUSION 

In this review, we have reviewed and analyzed various concepts and algorithms related 

to reservoir operation. We will give an overview of recent literature related to reservoir 

operation studies. The GA approach is applied to the Upper Wardha Reservoir system to 

derive operating policies for multipurpose reservoir systems with a single objective. The 

sensitivity analysis of the GA model applied to this particular reservoir suggests an 

optimal population size of 250 and a probability of crossover of 0.75 to find optimal 

releases for the Upper Wardha reservoir. The model resulted in irrigation releases equal 

to irrigation demand. Minimum storage is observed at the start of the monsoon, i.e., at the 

end of the water year, and maximum storage is observed when the monsoon reaches its 

peak. These types of rule curves are expected to be useful in the real-life implementation 

of reservoir operation. JA has been implemented and applied to two case studies, with the 

aim of contributing to the optimal use and sustenance of reservoir systems. When the JA 

was applied to a hypothetical four-reservoir system, it provided the optimal resource 

allocation results for the lowest FE values. The JA has been successfully applied to the 

mentioned four-reservoir system problem with faster convergence than other algorithms. 

With the increasing need for water resources and the associated requirements, reservoir 

operation optimization is of great importance. In this study, an attempt has been made to 

have better releases in comparison to the existing policy releases; therefore, JA has been 

applied to the reservoir operation optimization of Mula Reservoir, an existing installation 

in the Upper Godavari Basin, India. It was optimized for different probable inflows and 

was simulated for a scarce to wet period. The releases thus obtained from the simulation 

corresponding to an average inflow have been compared to those from existing ones. As 

a result, better releases were obtained with the help of the JA model in terms of maximum 

utilization of resources and better allocation of resources in terms of their need during the 

lean period. Hence, from this study, it can be concluded that JA was successful in 

achieving better operational releases for the Mula Reservoir. Therefore, it can be 
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summarized that JA can be further explored for other case studies and for the more 

complex problem of multireservoir systems. A hybrid method of AFSA and PSOA is 

introduced in which it increases the variety of results in PSOA and adds group movement 

and follow-up operators. To verify the hybrid method, it is first implemented on a few 

mathematical functions, and by using the Wilcoxon statistical test, 28 mathematical 

functions of the Central Europe Conference 2013 are optimized or minimized. The results 

are compared with some other evolutionary algorithms to confirm the superiority of this 

new method. Additionally, to minimize power shortages in the Karun-4 power plant, this 

method is used and tested with various indices and a multicriteria decision-making 

method, which indicates that the hybrid method ranked first and is superior to other 

methods. In future studies, this method can be implemented on multireservoir systems, 

including multiple power plants, or combined with fuzzy methods. The main novelty of 

the present study is its introduction of a new hybrid method for the optimization of water 

resource management. This method increases the convergence speed of the artificial fish 

swarm algorithm (AFSA). Additionally, due to the potential of the absolute optimum 

search tool in the particle swarm optimization algorithm (PSOA), it is expected that the 

AFSA will not be trapped in local optima. In addition, by adding follow-up and group 

movement operators to the PSOA, this hybrid approach strengthens the particle group 

based on the diversity of the particles and augments the solution candidates by adding 

new groups. Moreover, it solves the premature convergence problem of the PSOA. This 

hybrid algorithm resolves the problem of imbalance between scanning and exploitation 

in AFSA. Scanning capacity is the algorithm’s capability to search the search space freely, 

regardless of its achievements during the search process. Obviously, the higher this 

capacity is, the more random and unpredictable the behavior of the algorithm will be. For 

the sake of reinforcement, the property to profit causes the algorithm to be more cautious; 

therefore, it is very important to reach a balance between these two capabilities. The 

resultant hybrid algorithm in this study enhances this equilibrium. We focused on 

applying stochastic programming to water resource management. We built one operation 

model for reservoir operation for operating rule derivation. With a case study of China’s 

Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived 

operating rules, the reservoir is simulated with the inflow from 1882 to 2005, in which 

the mean hydropower generation is 85.71 billion kWh. The SDP works well in reservoir 

operation. In this study, a multiobjective genetic algorithm (MOGA) approach was 

applied for the optimization of a multiobjective reservoir operation problem. In the 

MOGA method, a nondominated sorting approach is used, which has a selection operator, 

elitism mechanism and crowded distance operator to obtain efficient solutions. A 

multiobjective model is formulated with irrigation and hydropower as two competing 

objectives, and the MOGA is applied to derive reservoir operation policies for the Bhadra 

reservoir system in India. The model is applied for three different inflow scenarios, and 

the corresponding Pareto optimal fronts are obtained for the three scenarios. Additionally, 

in this study, three kinds of priorities of the two objectives are analyzed, and the respective 

operating policies are presented. The main advantage of the MOGA approach is finding 

many Pareto optimal solutions in a single run, which is attractive and efficient and helps 

the decision maker make suitable decisions at different levels. Thus, this study has 



Review of reservoir operation 

207 

successfully demonstrated the efficacy and usefulness of different algorithms for evolving 

multiobjective reservoir operation policies. 
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