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ABSTRACT 

The uniform flow in a horseshoe-shaped tunnel is often encountered in many practical 

cases. This pipe can be used for water drainage in sewerage and construction. For the 

purpose of designing this type of channel with the presumption of uniform flow, it is 

necessary to refer to Chezy and Manning relationships. In general, Chezy's and Manning's 

coefficients are given as data of the problem and are mostly considered constants 

regardless of the normal flow depth. This is an approximation of the fact that the flow 

resistance should vary with depth or hydraulic radius. In this study, the pipe is designed 

with a variable flow resistance coefficient, depending on the fill rate of the pipe. The 

Chezy coefficient is no longer data of the problem but a variable to be determined. The 

determination of Chezy's coefficient is made possible by the rough model method 

(RMM). The proposed sizing method is valid in the entire turbulent flow domain, 

encompassing smooth, transitional, and rough turbulent flow regimes in a wide practical 

range. 

Keywords: Uniform flow, Rough model method, Reynolds, Chezy's coefficient, 

Turbulent flow. 

INTRODUCTION 

Free surface flow is common in engineering, where fluids such as water flow with a free 

boundary exposed to the atmosphere (Violeau et al., 2016). It is prevalent in open 

channels, rivers, and natural water systems, and engineers analyze it to design structures 

such as dams and irrigation channels. The behavior of free surface flow is influenced by 

factors such as channel geometry, slope, roughness, and flow rate, and mathematical 
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models such as Manning's equation are used for predictions (Al Hindasi and Abushandi, 

2023). 

Water channels vary in size based on their purpose and location. Various elements, such 

as flow rate, velocity needs, topography, gradient, sediment transport, and environmental 

factors, impact the size of the channel. Engineers consider these factors and site-specific 

conditions to determine appropriate dimensions, following local regulations and design 

guidelines. 

The calculation of flow in circular or noncircular-shaped pipes is frequently encountered 

in the practice of hydraulic engineers (Kim et al., 2016). Using a horseshoe-shaped 

channel in water projects offers advantages such as greater hydraulic efficiency, reduced 

energy losses, and preventing sediment accumulation and blockages (Achour, 2014). It 

can accommodate larger flow rates while maintaining stability, making it suitable for 

high-volume water conveyance projects. These benefits and careful consideration of flow 

rate, velocity, and environmental conditions make the horseshoe-shaped channel a 

favorable choice for various water projects. 

Currently, and for more than two centuries, hydraulic calculations are based on the two 

famous formulas of Chezy and Manning, which have proven their effectiveness in the 

field of engineering because, from a conceptual and practical point of view, they are the 

most well-founded formulas and the simplest to use (Loukam et al., 2020; Zegait and 

Achour, 2016). These two formulas express the average velocity of the flow as a function 

of the hydraulic radius, the longitudinal slope of the channel, and the coefficient of 

resistance to the flow, which is absolutely considered a constant. 

To size the horseshoe-shaped pipe of height D, equal to the diameter of the circle that 

generated it (meaning the linear dimension "a" in the functional relation

( ) 0a, , i , ,    =  (Achour et al., 2002). The existing studies related to the sizing of 

such pipes are not numerous. They propose either a graphical resolution or iterative 

solutions (Chow, 1973), which are often based on the equations of Chézy (1769) and 

Manning (1809), which are all based on a constant flow resistance coefficient, regardless 

of the normal depth of the flow. This is an approximation of the fact that the flow 

resistance should vary with depth or hydraulic radius. Others give, with explicit 

approximate relationships, solutions for large pipes filled to 75% (Swamee and Swamee, 

2008). Currently, no theoretical approach gives solutions incorporating any value of fill 

rate  between 0 and 1. The rough model method (RMM) has recently demonstrated 

successful application in sizing circular or noncircular shape channels (Achour, 2007). 

In contrast to conventional approaches, this advocated method relies on practical data for 

absolute roughness, which accurately characterizes the condition of the channel's inner 

wall. The implementation of the Darcy-Weisbach relationship began with a referential 

rough model, where the friction factor was arbitrarily chosen. This initial step allowed for 

explicitly establishing a relationship between the aspect ratio and the relative 

conductivity. By utilizing the known aspect ratio of the rough model, the nondimensional 

diameter and the diameter of the actual channel under study were deduced, considering a 
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dimensionless correction factor. A practical example we proposed effectively 

demonstrated the reliability, simplicity, and efficiency of the RMM. 

In this study, the pipe is designed for a variable flow resistance coefficient, depending on 

the filling rate of the pipe. The coefficient C of Chezy is no longer a given of the problem 

but a variable to be determined. 

HYDRAULIC CHARACTERISTICS 

Three distinct case studies can be individually examined in the channel depicted in Fig. 

1, following the standard depth yn. As a result, the hydraulic properties, notably including 

the wetted perimeter P, top width e wetted cross-sectional area A, and hydraulic radius 

Rh, can be expressed in terms of the fill rate represented by the ratio ƞ = yn/D.  

 
Figure 1: Horseshoe-shaped channel profile 

It can be demonstrated geometrically that η belongs to three domains for which the 

hydraulic characteristics are as follows: 

η ≤ 0.08856 

𝑒 = 2𝐷√𝜂(2 − 𝜂)                                                                                 (1) 

𝑃 = 2𝐷𝜎(𝜂)                                                                                         (2) 

𝜎(𝜂) = cos−1(1 − 𝜂)                                                                              (3) 
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𝐴 = 𝐷2𝜎(𝜂)𝜑(𝜂)                                                                                (4) 

( )
( ) ( )

( )1

1 2
1

1cos

  
 


−

− −
= −

−
                                                              (5) 

𝑅ℎ =
𝐷

2
𝜑(𝜂)                                                                                        (6) 

0.08856≤ η ≤ 0.5 

2
1 1

2 1
2 2

e D = − − −
 

 
  

   

                                                               (7) 

( )P D =                                                                                          (8) 

( ) 1 1
1 69612416 2

2
.  

−
= − −

 
 
 

sin                                                  (9) 

( )2
DA  =                                                                                         (10) 

( )
2

1 1 1 1
0 93662425 1

2 2 2
.     

−
= − − − −

    
− − −    

    
sin                  (11) 

( )

( )
h

R D
 

 
=                                                                                   (12) 

0.5 ≤ η ≤ 1 

( )2 1De = −                                                                            (13) 

( ) ( )1
3 26692049 2 1.  

−
= − −cos                                              (14) 

( )P D =                                                                                     (15) 

( )2
A D  =                                                                                    (16) 

( ) ( ) ( )1 1
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1
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−
= − − + − −

 
 
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( )
h

R D
 

 
=                                                                                   (18) 
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BASIC EQUATIONS 

The relationships on which the study is based are simple, well-known hydraulic 

equations, namely, the Darcy-Weisbach equation (Darcy, 1854), the Colebrook-White 

equation (Colebrook,1939), and the Reynolds number formula. The energy slope of a 

conduit or channel is given by the Darcy-Weisbach relationship as follows: 

2

22h

f Q
i

D gA
=                                                                                                        (19) 

where Q is the discharge, g is the acceleration due to gravity, A is the wetted area, Dh is 

the hydraulic diameter, and f is the friction factor given by the well-known Colebrook-

White formula: 

1 2 51
2

3 7

h/ D .

.f R f


= − +

 
 
 

log                                                             (20) 

where e is the absolute roughness and R is the Reynolds number, which can be expressed 

as follows: 

4Q
R

P
=                                                                                                       (21) 

where   is the kinematic viscosity  

REFERENTIAL ROUGH MODEL 

The symbol distinguishes the rough model's geometric and hydraulic characteristics"  

". Fig. 2 compares the geometric and hydraulic characteristics of the current tunnel with 

those of its rough model. This model is a pipe characterized by a relative roughness

0.037D =  arbitrarily chosen. The flow is assumed to be turbulent and rough such 

that the friction coefficient is equal to 1/16 f =  according to the Colebrook-White 

equation for a Reynolds number. R R= →  
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Figure 2: Definition sketch of normal depth in a horseshoe-shaped channel. 

a) Current tunnel. b) Rough model 

Furthermore, the rough model is characterized by a diameter D , flowing a flow Q   of a 

liquid of kinematic viscosity   corresponding to a filling rate    under a longitudinal 

slope i . 

SIZING OF HORSESHOE-SHAPED TUNNEL USING THE RMM  

When the diameter D of the pipe is not a given of the problem, the known parameters of 

the problem are the volume flow rate Q, the filling rate η of the pipe, the longitudinal 

slope i, the absolute roughness η  , and the kinematic viscosity ν of the flowing liquid. 

For these parameters alone, the RMM (Achour, 2007) allows the determination of the 

diameter D by the fundamental equation of the RMM, which is applicable to any form of 

geometric profile of pipes and channels (Achour and Bedjaoui, 2006): 

D D=                                                                                                               (22)
 

where D  represents the diameter of the reference rough model and ψ is a dimensionless 

correction factor of linear dimension. 

Calculation of the diameter D  using the RMM 

According to the RMM, the flow in the rough reference model is characterized by a 

friction coefficient 1 16f /=  (Achour, 2007), which translates into a Chezy resistance 

coefficient: 

8 8 2 constante=C g / f g= =                                                            (23) 

To determine the diameter 'D' of the pipe, let us assume the following conditions: 
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D D Q Q i i ,, , ,     = = = =
 

Let us define the relative conductivity
*Q  

5

*

2

Q

C D i
Q =                                                                                            (24) 

Equation (24) is then written in dimensionless terms as follows: 

η ≤ 0.08856 

( ) ( ) 
3 2

2

/

*
Q

   
=                                                                                    (25) 

0.08856≤ η ≤ 0.5 

( ) 

( ) 

3 2

1 2

/

*

/
Q

 

 
=                                                                                               (26) 

0.5 ≤ η ≤ 1 

( ) 

( ) 

3 2

1 2

/

*

/
Q

 

 
=                                                                                               (27) 

According to equation (24) and taking into account conditions ( )Q Q i i,= = , the 

relative conductivity 
*

Q  of the reference rough model would be such that: 

5

*

2

Q
Q

C D i

=                                                                                     (28) 

Or, taking into account equation (23): 

5

*

128

Q
Q

g D i

=                                                           (29) 

The relative conductivity 
*

Q  is governed by equations (25), (26), and (27) depending on 

the range of values of the filling ratio η. Thus, for: 
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η ≤ 0.08856 

( ) ( ) 
3 2

2

/

*

Q
   

=                                                                       (30) 

From equations (29) and (30), it can be deduced that the diameter D  of the reference rough 

model is as follows: 

( )  ( ) 

0 4

0 4 0 6

0 43527
,

. .

. Q
D

g i   
=

 
  
 

                                                          (31) 

0.08856≤ η ≤ 0.5 

( ) 

( ) 

3 2

1 2

/

*

/
Q

 

 
=                                                                                     (32) 

Equations (29) and (32) allow us to write the following: 

( ) 

( ) 

0 40 2

0 6
2 639

..

.

Q
D

. g i

 

 
=

 
  
 

                                                                (33) 

0.5 ≤ η ≤ 1 

( ) 

( ) 

3 2

1 2

/

*

/
Q

 

 
=                                                                                     (34) 

One can deduce from equations (29) and (34) that: 

( ) 

( ) 

0 40 2

0 6
2 639

..

.

Q
D

. g i

 

 
=

 
  
 

                                                          (35) 

Nondimensional correction factor of linear dimension 

The dimensionless parameter   as 0 1   is defined by the following equation 

(Achour and Bedjaoui 2006):  
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2 5

8 5
1 35

19

/

h

.
.

R R




−

= − +
  

  
  

log                                                              (36) 

where 
h

R  the hydraulic radius of the reference rough model is given by equations (6), 

(12), and (18) depending on the range of values of the filling ratio, while the Reynolds 

number R  is given by the following equation (Achour and Bedjaoui, 2006): 

3

32 2
hg i

R
R


=                                                                                          (37) 

Currently, there is no general relationship that can evaluate the hydraulic radius Rh by 

itself for a horseshoe pipe in the full state, corresponding to the filling ratio η= 1; the 

hydraulic radius Rh,p is governed by equation (18), and it is easy to show that Rh,p is, by 

virtue of equations (14), (17) and (18), as follows: 

0 254
h , p

R . D                                                                                      (38) 

Therefore, the Reynolds number Rp in the full state of the reference rough model is, 

according to equation (37): 

3

5 7882p

g i D
R .


                                                           (39) 

Using equations (6), (12), and (18) for 
h

R  and (39) for 
p

R , equation (37) gives: 

η ≤ 0.08856 

( ) 
3 2

2 764
/

p
R . R =                                                                             (40) 

Equation (36) becomes: 

( ) ( ) 

2 5

3 2

3 075
1 35

9 5

/

/

p

/ D .
.

. R



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−

= − +
  

  
    

log                                  (41) 

Then, equation (19) gives: 

( ) ( ) 

2 5

3 2

3 075
1 35

9 5

/

/

p

/ D .
D .

. R
D



   

−

= − +
  

  
    

log                                        (42) 
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0.08856≤ η ≤ 0.5 

( )

( )

3 2

7 8185
p

/

R . R
 

 
=

 
 
 

                                                                      (43) 

Equation (36) becomes: 

( ) ( ) ( ) ( )

2 5

3 2

1 087
1 35

19

/

/

p

/ D .
.

R/ /




      

−
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  

  
         

log                          (44) 
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3 2
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/

/

p

/ D .
D .

R
D

/ /



      

−

= − +
  

  
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log           (45) 

0.5 ≤ η ≤ 1 

( )

( )

3 2

7 8185
p

/

R . R
 

 
=

 
 
 

                                                                      (46) 

Equation (36) becomes: 
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/
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p
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.

R/ /



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−
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1 35
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/

/

p

/ D .
D .

R
D

/ /


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−

= − +
  

  
         

log     (48)  

COMPUTATION STEPS OF SIZING 

To determine the diameter (D) of a horseshoe-shaped tunnel, the following data must be 

given: Q , , , i , and . Note first that these data are measurable in practice, and 

second, the flow resistance coefficient, such as Chezy's or Manning's roughness 

coefficient, is not required. To calculate the diameter (D) of the horseshoe-shaped tunnel, 

it is recommended to follow these steps: 

1. Knowing the value of the filling rate  , one of the equations (31), (33), or (36) 

allows us to evaluate the diameter D  of the reference rough pattern. 

2. The known parameters are introduced in equation (39) for calculating the 

Reynolds number
p

R  in the full state. 
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3. The coefficient  can then be evaluated by one of the equations (41), (44) or (47). 

4. Finally, the diameter can be evaluated by equation (22). 

PRACTICAL EXAMPLE 

The horseshoe-shaped pipe represented by Fig. 1 is the seat of a uniform flow. It flows a 

volume flow Q=2.25m3/s of a liquid of kinematic viscosity ν=10-6m2/s under a 

longitudinal slope i=3.10-4. The filling rate is η=0.75 and the absolute roughness is  = 0. 

Calculate the value of the diameter D  of the horseshoe-shaped tunnel. 

Solution 

Since 0.5≤ η ≤ 1, the diameter D  of the reference rough model is given by equation (35). 

The functions ( )   ( )   are given by equations (14) and (17), respectively, and take 

values: 

( ) ( ) ( )( )1 1
3 26692049 2 1 3 26692049 2 10 75. . .  

− −
= − − − −=cos cos

              
          2.219722924=   

( ) ( ) ( )1 1

2

1
0 82932

4
2 1 1.     

−
= − − + − −

 
 
 

cos  

( )( ) ( )1 1

2

1
0 82932

4
2 1 10 75 0 75 0 75 0 75 0 675777118. . . . . .−

= − − + − −
 

= 
 

cos  

According to equation (35), the diameter D  is: 

𝐷 =
[𝜏(𝜂)]0,2

2.639[𝜆(𝜂)]0,6
(

𝑄

√𝑔𝑖
)

0,4

=
[2.219722924]0,2

2.639[0.675777118]0,6
(

2.55

√9.81 × 0.0003
)

0,4

 

     = 2.622987939 

The Reynolds number 
p

R  in the full state is, according to relation (39): 

𝑅𝑝 ≅ 5.7882
√𝑔𝑖𝐷

3

𝜈
= 5.7882 ×

√9.81 × 0.0003 × 2.6229879393

10−6
 

      = 1333930.186     

The factor   is, therefore, according to relation (47): 

𝜓 = 1.35 [−log (
𝜀/𝐷

19[𝜆(𝜂)/𝜏(𝜂)]
+

1,087

[𝜆(𝜂)/𝜏(𝜂)]3/2𝑅𝑝

)]

−2/5
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𝜓 = 1.35 [−log (
1.087

(0.675777118/2.219722924)3/21333930.186 
)]

−2/5

 

     = 0.71250894 

The diameter D can be evaluated by the fundamental relationship of the RMM, applicable 

to any form of geometric profile of pipes and channels: D D=  

𝐷 = 𝜓𝐷 = 0.71250894 × 2.622987939 = 1.868902355 ≅ 1.87𝑚 

Let us check our calculations by determining the flow volume Q by applying the general 

formula (Achour and Bedjaoui, 2006): 

𝑄 = −4√2𝑔𝐴√𝑅ℎ𝑖log (
𝜀

14.8𝑅ℎ
+

10.04

𝑅
) 

To do this, let us first evaluate the wetted cross-sectional area A, the hydraulic radius Rh, 

and the Reynolds number R for the diameter D that we calculated in the first step. 

The area of the wetted section A is given by equation (16), i.e.: 

𝐴 = 𝐷2𝜆(𝜂) = 1.8689023552 × 0.675777118 = 2.360352𝑚2   

The hydraulic radius is given by equation (12) as follows: 

𝑅ℎ = 𝐷
𝜆(𝜂)

𝜏(𝜂)
= 1.86890236 ×

0.675777118

2.219722924
= 0.56897257𝑚 

The Reynolds number R  is governed by equation (37), that is: 

𝑅 = 32√2
√𝑔𝑖𝑅ℎ

3

𝜈
= 32 × √2 ×

√9.81 × 0.0003 × 0.568972573

10−6
= 1053651.76  

Thus, according to the general relationship, the volume flow Q is equal to: 

𝑄 = −4√2𝑔𝐴√𝑅ℎ𝑖log (
𝜀

14.8𝑅ℎ
+

10.04

𝑅
) 

= −4 × √2 × 9.81 × 2.360352 × √0.56897257 × 0.0003 × log (
10.04

  1053651.76
) 

= 2.5513 𝑚3/𝑠 

The deviation between the volume flow Q that we have just calculated and the one given 

in the problem statement is less than 0.051%. 

CONCLUSION 

The practical application of the rough model method (RMM) has yielded successful 

results in sizing a horseshoe-shaped channel. In contrast to current methods, this approach 

utilizes practical data to determine the absolute roughness, which describes the condition 

of the inner wall of the channel. 
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The Darcy-Weisbach relationship was initially employed on a reference rough model, 

with the friction factor arbitrarily chosen. This process facilitated the establishment of an 

explicit relationship between the aspect ratio and the relative conductivity. By utilizing 

the known aspect ratio of the rough model, the nondimensional diameter and, 

subsequently the diameter in the studied channel were derived through a nondimensional 

correction factor. 

We presented a practical example demonstrating the reliability, simplicity, and efficiency 

of the RMM. These findings highlight the effectiveness of this method for accurately 

sizing a horseshoe-shaped channel. 
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