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ABSTRACT 

The objective of this study is to analyze the behavior of critical flow in a parabolic channel 

as a function of all the parameters that influence the flow, such as the slope of the channel 

S0, the absolute roughness  and the kinematic viscosity 𝜈. To do this, we applied two 

rational relations, namely, the relationship of the critical flow condition and the general 

formula of the discharge. The combination of these two relations results in an implicit 

relation consisting of five dimensionless terms that are the dimensionless critical depth 

𝜁𝑐 = √𝑦𝑐/𝐵, where 𝑦𝑐 is the critical depth and B is the linear dimension of the channel, 

the dimensionless normal depth 𝜁𝑛 = √𝑦𝑛/𝐵, where 𝑦𝑛 is the normal depth, the relative 

roughness 𝜀/𝐵, the longitudinal slope S0, and the modified Reynolds number 𝑅𝑒
∗. This 

implicit relationship was applied to a parabolic channel with a linear dimension B = 1 m 

in the whole domain of turbulent flow. The detailed study of the rational equations 

governing the critical and normal flows leads to intriguing results in addition to the 

establishment of other fundamental relations and significant graphs. 

Keywords: Critical depth, Critical flow, Discharge, Normal depth, Parabolic channel, 

Slope. 

INTRODUCTION 

As discharge and flow depth are uniquely correlated for a given canal geometry, critical 

flow conditions play a significant role in open channels (Hager, 1985). According to 

Chow (1959), a critical flow condition means that specific energy is a minimum for 

constant discharge or discharge reaches its maximum for constant specific energy. 

Moreover, it is the flow condition in which the Froude number equals unity. This property 

http://creativecommons.org/licenses/by/4.0
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is used to determine the critical depth in open channels, also called the critical criterion. 

The flow is said to be subcritical or calm flow if the Froude Number is less than 1 and 

supercritical or shooting flow if the Froude Number is greater than 1(Hager , 2010). The 

critical depth is the depth of flow in which the specific energy for a given discharge 

corresponds to the minimal value (Achour and Amara , 2020a). This depth is essential for 

identifying whether a flow is subcritical or supercritical and for classifying varied flows 

(Achour and Nebbar , 2015). For triangular, rectangular, and parabolic channels, there is 

an analytical solution to directly determine the critical depth (Chow, 1959 ; Wong and 

Zhou , 2004; Achour and Khattaoui , 2008), for other types of geometries, the equations 

that govern the critical depth are implicit; therefore, one must use chart methods with 

limited precision, trial-and-error, iteration procedures, or other methods (Liu et al., 2012). 

In the past, graphical methods for circular and trapezoidal channels have been suggested 

(Chow ,1959; Henderson , 1966; French , 1987). In recent years, numerous researchers 

have made an effort to create explicit equations for estimating critical depth in open 

channels with various geometric profiles, such as circular conduits, trapezoidal channels, 

rounded-bottom sections, egg-shaped channels, and semielliptical channels (Swamee , 

1993; Swamee and Rathie , 2005; Liu et al., 2012; Li et al., 2012; Vatankhah and Easa, 

2011;Cheng et al., 2018; Shang et al., 2019). 

In the majority of studies, the critical depth in different geometric shapes is determined 

by resorting to the relationship that governs the critical flow. However, in this relation, 

the influence of the slope of the channel, the kinematic viscosity of the liquid, and the 

roughness of the channel walls are not taken into account. In this context, some studies 

addressing the critical flow in conduits and channels have been published, taking into 

account the effects of all flow and channel parameters (Achour and Amara, 2020a ;  

2020b; Hachemi - Rachedi et al., 2021). 

The present study is interested in the study of critical flow in the parabolic channel. In 

practice, the geometry of natural rivers is frequently quite well approximated by the 

parabolic channel (Vatankhah, 2013). 

This study aims to examine the variation in the critical flow and depth in this type of 

channel as a function of all flow and channel parameters, such as the longitudinal slope 

S0, the absolute roughness 𝜀 and the kinematic viscosity 𝜈. To obtain this objective, we 

used two rational relations, namely, the relation of the critical flow condition in which the 

Froude number equals one and the general formula of the discharge proposed by Achour 

and Bedjaoui (2006). An implicit relationship of five dimensionless terms results by 

deleting the discharge Q between these two relations 𝜓(𝜁𝑐 , 𝜁𝑛 , 𝑆0, 𝜀/𝐵, 𝑅𝑒
∗) = 0 through 

a modified Reynolds number 𝑅𝑒
∗, and the effect of kinematic viscosity   is shown. In the 

domain of turbulent flow (smooth, rough and transition regimes), this implicit 

relationship was employed in a parabolic channel characterized by a linear dimension 

B=1 m to show the relative critical depth change according to each flow. The derived 

relation enabled the creation of graphs showing how the relative critical depth
c  varied 

versus the relative normal depth 𝜁𝑛 for different slope values S0. These graphs show 

unexpected characteristics of the critical flow in the parabolic channel. 
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By putting 𝜁𝑛 = 𝜁𝑐 in the deducted relation, the general equation that governs the critical 

flow in a parabolic-shaped channel can be deduced. This relationship is implicit and 

composed of four dimensionless parameters, namely, 𝜓(𝜁𝑐 , 𝑆0, 𝜀/𝐵, 𝑅𝑒
∗) = 0. To show 

how the critical depth is influenced by slope S0, a smooth parabolic channel with a linear 

dimension B = 1 m is used as an example. The graphs of the change in the relative critical 

depth 𝜁𝑐  versus the various values of the slope S0 provided a clear view of the flow’s 

behavior and led to some intriguing conclusions. 

The study's validation of suggested relationships will be accomplished through the 

examination of the equation for specific energy. 

METHODOLOGY 

Geometric properties 

According to Figure 1, the parabolic channel is characterized by three linear dimensions: 

the depth flow y and the geometrical elements Tm and Ym of the parabolic channel. 

 
Figure 1: Cross section of a parabolic channel. 

According to Achour and Khattaoui (2008), the geometric characteristics of a parabolic 

channel are given by the following relations: 

The water area A is: 

𝐴 =
2

3
𝐵2𝜁3  (1) 

where 𝜁 = √𝑦/𝐵
 
is the relative depth or the aspect ratio, and the linear dimension B is 

defined by: 

B =
Tm

2

Ym
      (2) 

The wetted perimeter P is: 

P =
B

8
[4ζ√1 + 16ζ2 + ln(4ζ + √1 + 16ζ2)]       (3) 
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The hydraulic radius 𝑅ℎ = 𝐴/𝑃 is then: 

𝑅ℎ = 𝐵𝜎(𝜁)                                                             (4) 

where: 

𝜎(𝜁) =
16

3

𝜁3

4𝜁√1+16𝜁2+𝑙𝑛(4𝜁+√1+16𝜁2)         

  (5) 

The top width T is:
 

𝑇 = 𝐵𝜁                                                                                                      (6) 

Fundamental relationships 

Critical flow 

The following gives the criterion for critical flow conditions in an open channel (Swamee, 

1993): 

1
3

2

=
c

c

gA

TQ   (7) 

where the subscript "c" indicates the state of the critical flow, Q is the discharge, Tc is the 

critical top width, g is the acceleration due to gravity and Ac is the critical water area. 

Normal flow 

For uniform flow conditions, Achour and Bedjaoui (2006) suggested a general equation 

of the discharge Q, which takes into consideration all the factors affecting the flow and 

channel. It is described by the equation below: 














+−=

enh

nhn
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SRAgQ
04.10

8.14
log24

,
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                                                 (8) 

where the subscript "n" indicates the uniform flow conditions, An is the normal water area, 

S0 is the slope of the channel,  is the absolute roughness of the channel internal wall, 

nhR ,
 is the hydraulic radius and eR  is the Reynolds number, which may be defined by: 



0

3

,
232

SgR
R

nh

e =                                                                                (9) 

where  is the kinematic viscosity. Inserting Eq. (4) into Eq. (9) results in: 
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)(232

BgS
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Eq. (9) can be rewritten as follows: 

  2/3* )( nee RR =                                                (11) 

where *

eR  is a modified Reynolds number and is written by: 



3

0* 232
BgS

Re =                         (12) 

Bearing in mind that 𝑅ℎ,𝑛 = 𝐴𝑛/𝑃𝑛, Eq. (8) can be rewritten as: 
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        (13) 

where Pn is the wetted perimeter. 

Relation between critical and normal depths 

The fundamental relationship linking the properties of the critical and normal flows in a 

parabolic channel is obtained by deleting Q between equations (7) and (13). It reads: 
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Using Equation (14) on the parabolic channel yields: 
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After simplifications, Eq. (15) is expressed as follows: 
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 *

eR  is defined by Eq. (12). 

According to Eq.(5), )( n  is determined by: 
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The general relationship of critical flow 

The critical flow in a parabolic channel is determined by the following general relation, 

which is obtained by changing the subscript "n" in Equation (16) to the subscript "c": 

( ) 
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According to Equation (5), )( c  is expressed as follows: 

)1614ln(16143
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              (19) 

*

eR  is always given by Eq.(12). 

Relationship of the specific energy 

The specific energy is written for any shape of the channel as: 

2

2

2gA

Q
yES +=    (20) 

When Eq. (20) is applied to the parabolic channel, the following result is obtained: 

6

2*
2*

8

9




Q
ES +=   (21) 

where 𝐸𝑆
∗ = 𝐸𝑆/𝐵

 
represents the relative specific energy,𝜁 = √𝑦/𝐵 and Q is the relative 

discharge expressed as 𝑄∗ = 𝑄/√𝑔𝐵5. 

For the parabolic channel, Eq.(13) can be used to compute the relative discharge 𝑄∗, as a 

result: 
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RESULTS AND DISCUSSION 

Variation in the critical depth versus the normal depth 

Special case of a smooth parabolic channel 

To observe the variation in the relative critical depth (𝜁𝑐) as a function of the relative 

normal depth (𝜁𝑛) while changing the slope of channel S0, let us use a smooth parabolic 

channel (𝜀 → 0) with a linear dimension B = 1 m and the kinematic viscosity 𝜈 =
10−6𝑚2/𝑠 of the flowing liquid. According to the implicit Eq. (16), the computations 
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were performed by varying 𝜁𝑛 for a fixed value of the slope of channel S0. Figure 2 

illustrates the computation results. 

 
Figure 2: Variation in 

c
 versus 

n
 in a smooth parabolic channel for various slopes 

S0. Red line: (  ) first bisector corresponding to 𝜻𝒄 = 𝜻𝒏. 

Figure 2 shows the supercritical zone of the flow, which is above the first bisector, and 

the subcritical zone, which is positioned below the first bisector. This latter corresponds 

to 𝜁𝑐 = 𝜁𝑛, i.e., it contains all the points where the flow is critical. As shown in Figure 2, 

some of the curves do not intersect the first bisector. This indicates that the channel cannot 

generate any critical state for certain values of B and S0, and its regime remains subcritical. 

As an illustration, we employ the situation of the slope S0 = 0.0005, preserving the smooth 

parabolic channel with a linear dimension B = 1 m. The basic Eq. (16) for this situation 

permits the charting of Figure 3. 

 
Figure 3: Variation curve of 𝜻𝒄 depending on 𝜻𝒏 for a slope S0 = 0.0005. 

After carefully examining Figure 1 and Eq. (16), it was concluded that there is a slope 

limit S0, so that the curve is tangent to the first bisector at one point. According to the 

results of the study, the smallest slope that can generate one critical state of the flow for 
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the smooth parabolic channel  of a linear dimension B = 1 m is S0 = 0.0023624406 

corresponding to 𝜁𝑐 = 𝜁𝑛 ≈ 0.451 or 𝑦𝑐 ≈ 0.203𝑚. Figure 4 provides an illustration of 

this case. 

 

Figure 4: Variation curve of 𝜻𝒄 depending on  𝜻𝒏 in a smooth parabolic channel for 

a slope S0 = 0.0023624406, (•) single critical flow state, 𝜻𝒄 = 𝜻𝒏 ≈ 𝟎. 𝟒𝟓𝟏. 

It was shown that for the smooth parabolic channel, all slopes S0 lower than the slope limit 

S0 = 0.0023624406 do not generate any critical state of the flow, as shown in Figure 3. 

However, slopes that are greater than this value cause two critical flow conditions, each 

with a different flow rate. The first critical state appears at shallow depths, while the 

second is observed at greater depths. Let us use the slope S0 = 0.003 as an example in this 

case, always keeping the considered channel. Figure 5 graphically illustrates the results 

of the calculation made using Eq. (16). Figure 5 (a) illustrates the first point of intersection 

at a low relative depth 𝜁𝑐 = 𝜁𝑛 = 0.17764529 ≈ 0.178, and Figure 5 (b) represents the 

second point of intersection observed at a higher relative depth 𝜁𝑐 = 𝜁𝑛 = 1.09998103 ≈
1.1. 

  
Figure 5 : Variation in 

c  versus
n  for a slope S0 = 0.003, (•) single critical flow state. 

(a) First critical state: 𝜻𝒄 = 𝜻𝒏 = 0.17764529 ≈ 𝟎. 𝟏𝟕𝟖.
 
(b) Second critical 

state: 𝜻𝒄 = 𝜻𝒏 = 1.09998103 ≈ 𝟏. 𝟏. 

(a) (b) 
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Special case of the transition regime 

The purpose of this part is to observe the variation in the critical depth (
c ) in the turbulent 

transition regime with respect to normal depth (
n ) for various slope S0 values of the 

channel. To attain this objective, we use Equation (16) and apply it to the parabolic 

channel with linear dimension B = 1 m and kinematic viscosity sm /10 26−= . Let us take the 

absolute roughness m001.0=  as an example. Figure 6 illustrates the variation between 

the critical depth and normal depth in a transition regime according to the calculations 

performed. 

 
Figure 6: Variation curve of 𝜻𝒄 depending on 𝜻𝒏 in the transition regime for various 

slopes S0. Red line: (  ) first bisector corresponding to 𝜻𝒄 = 𝜻𝒏. 

Figure 6 shows that there are curves in the subcritical zone that do not have any point 

intersection with the red line, which indicates that there is no critical state. On the other 

hand, there are some curves that meet the first bisector at two points, indicating that two 

critical depths can exist in the channel at various flow rates. The first critical state can be 

seen at low depths; although it is practically imperceptible in the illustration, this critical 

state of the flow truly exists theoretically. At higher depths, the second critical state is 

observed and can be viewed in Figure 6. 

By comparing the channel data in the transition regime with the smooth channel data, 

Figure 6 indicates that the relative critical depth (
c ) values in the turbulent transition 

domain are lower than those observed in the channel with a smooth surface, as shown in 

Figure 2. One can deduce that the critical depth is dependent on both the geometry of the 

channel and flow parameters, such as the linear dimension B, the slope of the channel S0, 

the absolute roughness , which characterizes the inner wall of the channel, and the 

kinematic viscosity  of the flowing water. 

According to the analysis of Equation (16) and Figure 6, Figure 7 shows that for the 

turbulent transition regime in the parabolic channel ( m001.0=  ) with a linear dimension 

B = 1 m, the smallest slope that produces a single flow critical state is the slope S0 = 
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0.004473377, which corresponds to 𝜁𝑐 = 𝜁𝑛 ≈ 0.4235. One can observe that the value of 

the smallest slope for the turbulent transition regime [Figure 7] is greater than the value 

obtained for the turbulent smooth regime [Figure 4], which demonstrates that the absolute 

roughness of the channel affects the occurrence of critical flow. 

 

Figure 7 : Variation curve of 𝜻𝒄 depending on 𝜻𝒏 in the transition regime for a slope 

S0 = 0.004473377, (•) single critical flow state, 𝜻𝒄 = 𝜻𝒏 ≈ 𝟎. 𝟒𝟐𝟑𝟓. 

Special case of a rough parabolic channel 

In this section, the curves of the variation between 𝜁𝑐  and 𝜁𝑛 based on different values of 

slope S0 are plotted by using Eq.(16) for a rough parabolic channel (𝑅𝑒
∗ → ∞) with a linear 

dimension B = 1 m as well as the absolute roughness characterizing the inner wall of the 

channel 𝜀 = 0.001𝑚 as an example. 

Figure 8 illustrates the variation between the relative critical depth and normal depth in a 

rough parabolic channel for various slopes S0 of the channel. Figure 8 refers to the same 

observations obtained in Figures  2 and 6. As seen in Figure 8, the critical depth values 

for the rough channel are close to those shown in Figure 6 for the transitional channel. 

In the case of a rough parabolic channel (𝑅𝑒
∗ → ∞) with a linear dimension B = 1 m and 

an absolute roughness 𝜀 = 0.001𝑚. Figure 9 illustrates the slope limit that results in only 

one critical state in this channel, which corresponds to S0 = 0.0044091014 and 𝜁𝑐 = 𝜁𝑛 ≈
0.4201. We find that this value of the slope limit is slightly lower than the value obtained 

in the transition regime [Figure 7]. This indicates that the effect of viscosity on the 

occurrence of critical flow is insignificant compared to the absolute roughness. 
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Figure 8: Variation in 𝜻𝒄 according to 𝜻𝒏 in a rough parabolic channel for various 

slopes S0. Red line :(  ) first bisector corresponding to 𝜻𝒄 = 𝜻𝒏. 

 

 
Figure 9 : Variation curve of 𝜁𝑐  depending on 𝜁𝑛 in a rough parabolic channel for a 

slope S0 = 0.0044091014, (•) single critical flow state, 𝜁𝑐 = 𝜁𝑛 ≈ 0.4201. 

Validation 

In this part, we will use the relationship of the specific energy to verify the obtained results 

of the two critical flow states, which are presented in Figure 5 for the smooth parabolic 

channel. Using Eq.(22) leads to the following two relative discharge values: 𝑄∗ =
0.000542098 and 𝑄∗ = 0.803565812, which correspond to 𝜁 = 0.178 and 𝜁 = 1.1, 

respectively. For a smooth parabolic channel (𝜀 → 0) with a linear dimension B = 1 m 

and a slope S0 = 0.003, Equation (21) allowed the drawing of the two diagrams shown in 

Figure 10. This illustrates the variation in the relative critical   versus *E . 

In Figure 10, one can observe that for the two relative discharges calculated above, the 

relative specific energy is minimal and that the corresponding relative depths are 𝜁 =
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0.178 and 𝜁 = 1.1, in fact, those shown in Figures 5(a) and 5(b). This confirms the 

validity of the proposed relationships. 

  

Figure 10: Curve of relative specific energy *E  for the smooth parabolic channel.  

(a): 80.00054209* =Q ,(•) 0421.0 minimum* E , 178.0= .  

(b): 20.80356581* =Q , (•) 1.6201 minimum* E , 1.1= . 

Critical State of Flow 

The aim of this section is to identify the flow behavior in the channel under study by 

observing the variation in the relative critical depth 𝜁𝑐  as a function of the slope of channel 

S0. To illustrate this, let us use the same smooth parabolic channel (𝜀 → 0) with a linear 

dimension B = 1 m. In this situation, the computations were performed using the implicit 

equation (18). The results we obtained enabled us to create the graph shown in Figure 11. 

 
Figure 11: Variation in the relative critical depth 𝜻𝒄 versus the slope S0. (•) The 

smallest slope S0 = 0.0023624406 generates only one critical state of the flow, (ο) the 

relative critical depth 𝜻𝒄 ≈ 𝟎. 𝟒𝟓𝟏. 

The behavior of the flow in the smooth parabolic channel is clearly shown in Figure 11. 

Looking at Figure 11, one can notice two curves for the flow's critical state because the 

slopes are higher than the smallest slope S0 = 0.0023624406, and as a result, two critical 

states of flow are generated. The first curve, shown in blue, corresponds to the first critical 

state that forms at shallow depths, while the second curve in red represents the second 

(a) 

(b) 
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critical state at larger depths. It shows four zones of the flow regime, which can be 

interpreted as follows: 

Zone 1: This zone is a subcritical flow region. The flow occurs in this zone regardless of 

the slope S0. 

Zone 2: In this zone, the flow is supercritical. The flow in zone 1, which was previously 

subcritical, changes to supercritical flow in zone 2 when it passes the critical state at the 

intersection with the red curve. 

Zone 3: The flow is subcritical in this zone. The flow, previously supercritical in zone 2, 

changes back to being critical on the blue curve before returning to being subcritical in 

zone 3. 

Zone 4: This area of the flow is subcritical. Since the slopes are weak and less than the 

slope limit S0 = 0.0023624406, this region does not generate any critical flow state and 

remains in the subcritical domain. 

CONCLUSION 

The main objective of this research was to determine how the critical depth in a parabolic 

channel change depending on all the parameters that influence the flow, including the 

slope of the channel, the absolute roughness that characterizes the inner wall of the 

channel, and the kinematic viscosity of the flowing water. The implicit relation between 

the critical and normal depths [Eq.(16)] was used in this study to achieve this purpose. 

The examination of this relationship revealed that there is a slope limit S0 corresponding 

to the smallest slope resulting in one critical condition for the flow. 

For the smooth parabolic channel with linear dimension B = 1 m, it seems that the slope 

S0  = 0.0023624406 indicates the minimum slope S0 that provides a single critical state of 

the flow corresponding to relative critical depth 𝜁𝑐 ≈ 0.451 [Figure 4]. For the turbulent 

transition regime in a parabolic channel with the linear dimension B = 1 m, the kinematic 

viscosity 𝜈 = 10−6𝑚2/𝑠, and the absolute roughness 𝜀 = 0.001𝑚 is taken as an example. 

The computations showed that S0 = 0.004473377 denotes the smallest slope of this 

channel [Figure 7], which corresponds to 𝜁𝑐 ≈ 0.4235. For the rough parabolic channel 

(𝑅𝑒
∗ → ∞), keeping the linear dimension of the channel at B = 1 m and the absolute 

roughness 𝜀 = 0.001𝑚, the smallest slope is S0 = 0.0044091014 corresponding to 𝜁𝑐 ≈
0.4201 [Figure 9]. By comparing the values of the slope limit for the three cases, we 

observe that the smallest slope for the transition regime  is the greatest value. This leads 

to the conclusion that the occurrence of the critical flow is influenced by the channel 

geometry and all the parameters flow previously mentioned. 

The general relationship governing the critical flow in a parabolic channel [Eq.(18)] was 

derived from the previous relationship by putting 𝜁𝑐 = 𝜁𝑛. This relationship allowed for 

the elicitation of the graph [Figure 11] showing the behavior of the flow in the smooth 

parabolic channel with linear dimension B = 1 m. The graph clearly demonstrates changes 

in flow regimes, going from subcritical to critical, then from critical to supercritical, and 
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ultimately returning to subcritical. Additionally, it can be seen that there are no critical 

flow states for all slopes lower than the smallest slope (S0 = 0.0023624406); instead, the 

flow stays in the subcritical zone, regardless of discharge, whereas slopes greater than 

this value cause two critical flow states. The first critical state occurs at shallower depths, 

while the second state appears at greater depths. 

 Additional investigation on the behavior of the critical flow in a parabolic channel is 

advised to complete this study. In the study's second part, the authors will attempt to 

elucidate this by focusing on the effects of diameter and absolute roughness. 
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