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ABSTRACT 

This paper presents the numerical simulation of water hammer considering the 

mechanical rheological behavior of plastic pipes, HDPE (high density polyethylene) or 

PVC (polyvinyl chloride), involving transient liquid flows. In past or current applications 

based on the incorporation of unsteady friction, it has been widely observed that pressure 

damping effects are not sufficient to correctly predict the experimental data. Therefore, 

to solve this problem, it becomes important to also add the deformation effects of the 

selected pipe wall material. The detailed analysis of the viscoelastic model shows that the 

creep function deserves special attention: the parameters 𝐽𝑘  (creep compliance) and 

𝜏𝑘  (retarded time) must be well calibrated to obtain a perfect match between the 

laboratory data and the numerical results. Apart from these sometimes over-demanding 

concerns, the incorporation of the viscoelastic model seems sufficient to compensate for 

the pressure damping that eludes other traditional friction models such as the Brunone 

and Vardy-Brown models. 

Keywords: Water hammer, Hydraulic transient, Wave propagation, MOC, 

Viscoelasticity. 

ABBREVIATION 

𝐻  Piezometric head (m) 

𝑄  Discharge (𝑚3/𝑠) 

𝑥  Coordinate along the pipeline axis in (m) 

𝑡  Time (s) 

𝐿  Length of the pipeline (m)   

𝐷  Pipe inner diameter (m) 

𝐴  Cross-sectional area (𝑚2)  

𝑒  Pipe-wall thickness (m) 
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𝑔  Gravity due to acceleration (𝑚/𝑠2) 

𝑎  Wave celerity in (m/s) 

𝐸0  Young's modulus of elasticity of the pipe (Pa) 

𝐾  Fluid bulk modulus (Pa) 

𝛼  Parameter dependent on Poisson's ratio and type of pipe anchorage 

𝜈   Poisson's ratio 

ℎ𝑓𝑠
  Quasi-steady friction  

ℎ𝑓𝑢
  Unsteady friction 

𝑓𝑠  Darcy-Weisbach steady-state friction factor (-) 

𝐽  Creep compliance function of pipe wall material (𝑃𝑎−1)  

𝐽𝑘  Creep compliance parameter of pipe wall material (𝑃𝑎−1)  

𝜏𝑘  Retarded time (s) 

𝜀𝑟  Retarded strain is expressed using the Kelvin–Voigt model (KV) 

𝜎  Circumferential stress (Pa) 

𝜀  Circumferential total strain (-) 

𝜀𝑒  Circumferential elastic strain (-) 

𝜀𝑟  Circumferential retarded strain (-) 

𝑁𝐾𝑉  Number of each Kelvin–Voigt element 

𝐶𝑝, 𝐶𝑛, 𝐶𝑎 Coefficients used in the method of characteristics (MOC) 

𝑇𝑣  Valve closing time 

𝐻𝑉0  Steady-state piezometric head at downstream valve  

PE  polyethylene 

HDPE  High-density polyethylene 

LDPE  Low-density polyethylene 

PVC  Polyvinyl chloride 

MOC  Method of characteristics 

AB  Acceleration based - models 

CB  Convolution based - models 

MAPE  Mean Absolute Percentage Error 

INTRODUCTION 

Transient flows are very common in practice, and are encountered in many situations such 

as hydraulic systems, pressurized piping systems, water supply systems and heating or 

cooling systems in nuclear power plants. They are the cause of flow variations that occur, 

for example, when a shut-off valve is opened or closed very quickly, or when a pump is 

started or stopped suddenly. Sometimes, they also occur following a power cut that must 

supply the pump or other operating equipment in the hydraulic network.  In such 

situations, a phenomenon commonly known as water hammer occurs, causing strong 

oscillations in the pressure waves behind it, which can seriously impair the smooth 

running of the system (Chaudhry, 1979; Wylie and Streeter, 1993). 
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In many reviews of articles devoted to the phenomenon of water hammer, a key question 

is often asked concerning the correct modelling of the instantaneous wall shear stress. In 

the case of hydraulic systems made of plastic pipes such as PVC or HDPE, the approach 

to be followed differs somewhat from that usually applied to steel or copper pipes. This 

is the subject of our article here. 

In this paper, an extension of the method of characteristics (MOC) is presented to show 

how to include the viscoelastic mechanical behavior of the pipe in the continuity equation 

of the Water hammer problem. With such modifications, the effects of frictional energy 

losses are better taken into account (Aklonis et al., 1972; Covas et al., 2004, 2005; Soares 

et al., 2008; Keramat et al., 2013; Triki, 2016). This approach involves an additional term 

corresponding to an instantaneous derivative of the delayed deformation of the pipe wall. 

In the literature, several studies have been performed and discussed regarding the low 

pressure attenuation observed when applying the classical elastic models: (i) Quasi-steady 

friction model, (ii) unsteady friction model. 

In fact, there are two ways to present the unsteady friction that occurs in a long hydraulic 

pipe. First, Vitkovsky et al. (2000) and Bergant et al. (2001) carefully studied and 

analyzed the formula of Brunone et al. (1991). This approach based on the instantaneous 

acceleration of the local flow is implemented in several commercial software (AFT 

IMPULSE) because it is relatively easy to implement in the form of a computer program 

unlike other models, but also because it requires less memory storage and therefore runs 

quickly. Then, we have the convolution based models such as: (i) Zielke's model (1968) 

- applicable to the laminar regime of transient flows, (ii) Trikha's model (1975) - which 

represents a simplification of Zielke's formula, (iii) Vardy and Brown's model (1995, 

2003, 2004) - considered as the most recommended because it not only preserves the 

phase, but also better reproduces the shape of pressure peaks. 

By analogy, elastic models depend on the weighting function (Zielke, 1968). However, 

viscoelastic models use the creep compliance function of the pipe wall (Aklonis et al., 

1972). Therefore, both models depend on the flow history. A clarification regarding 

convolution, many complex physical problems make use of this trick. From a 

mathematical point of view, convolution is based on a very sound intuitive theorem. 

Convolution of signals and convolution of images using filters are very good examples. 

The main objective of this paper is to present an accurate and critical comparison of the 

numerical results obtained by applying the classical elastic model and the new 

viscoelastic approach to an experiment published by Covas et al. (2004). First, two 

unsteady elastic models Brunone et al. (1991) and Vardy and Brown (2003) are chosen 

to perform this work. Then, the viscoelastic model is applied and the results are discussed 

and analyzed with particular emphasis on the stress-strain and its necessary calibration 

parameters 𝐽𝑘 (Creep coefficients) and 𝜏𝑘 (retarded time). 
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MATHEMATICAL EQUATIONS 

The equations governing the modeling of hydraulic transients in pressurized pipes are 

described below. The convection terms are neglected, the unsteady friction term and the 

viscoelastic mechanical deformation are integrated in the problem (Covas e al., 2004; 

Soares et al., 2008; Keramat et al., 2013): 

𝜕𝐻(𝑥,𝑡)

𝜕𝑡
+

𝑎2

𝑔𝐴

𝜕𝑄(𝑥,𝑡)

𝜕𝑥
+ 2

𝑎2

𝑔

𝜕𝜀𝑟(𝑥,𝑡)

𝜕𝑡
= 0 (1) 

1

𝐴

𝜕𝑄(𝑥,𝑡)

𝜕𝑡
+ 𝑔

𝜕𝐻(𝑥,𝑡)

𝜕𝑥
+ 𝑔(ℎ𝑓𝑠

+ ℎ𝑓𝑢
) = 0 (2) 

with 𝐻 the piezometric head in m,𝑄the flow discharge in m3/s ,𝑔 the gravity acceleration 

m/s2, 𝐴the cross-sectional area of the pipe in m2, 𝑥 the coordinate along the pipeline axis 

in m, 𝑡 the time in s, 𝑎2 = (𝐾/𝜌)/(1 + 𝛼 ∗ 𝐷/𝑒 ∗ 𝐾/𝐸0) the wave celerity in m/s, 𝐷 the 

pipe inner diameter in m, 𝑒 the pipe-wall thickness in m, 𝜌 the density in kg/m3, 𝐾 bulk 

modulus of elasticity of the fluid in Pa, 𝐸0Young's modulus of elasticity of the pipe in Pa, 

𝛼 the Poisson's ratio dependent parameter (Wylie and Streeter, 1993). The steady friction 

term ℎ𝑓𝑠
= 𝑓𝑠𝑄|𝑄|/(2𝑔𝐷𝐴2) is calculated by the Colebrook-White formula. The 

unsteady friction term for model of Brunone ℎ𝑓𝑢
= (𝑘/𝑔𝐴) (𝜕𝑄/𝜕𝑡 + 𝑎𝑆𝐺𝑁(𝑄)𝜕𝑄/𝜕𝑥) 

(Vitkovsky et al., 2000; Bergant et al., 2001) and for model of Vardy and Brown (2003), 

see APPENDIX A. The retarded strain 𝜀𝑟 is expressed using the following Kelvin–Voigt 

model (Covas et al., 2005): 

𝜀𝑟(𝑥, 𝑡) = ∑
𝛼𝐷𝜌𝑔

2𝑒

𝑁𝐾𝑉
𝑘=1 ∫ {𝐻(𝑥, 𝑡 − 𝑠) − 𝐻(𝑥, 0)}

𝐽𝑘

𝜏𝑘
𝑒

−
𝑠

𝜏𝑘  𝑑𝑠
𝑡

0
 (3) 

with 𝜎 = 𝛼∆𝑃𝐷/2𝑒 is the circumferential-stress in Pa, ∆𝑃 = 𝜌𝑔{𝐻(𝑥, 𝑡 − 𝑠) −
𝐻0(𝑥, 𝑡 − 𝑠)} in Pa, 𝜖𝑒 = 𝜎/𝐸0 is the elastic circumferential strain, and total 

circumferential strain is given by Aklonis et al. (1972):  

𝜀(𝑥, 𝑡) = 𝜀𝑒(𝑥) + 𝜀(𝑥, 𝑡) = 𝜎𝐽0 + ∫ 𝜎(𝑥, 𝑡 − 𝑠)
𝑡

𝑡=0

𝜕𝐽(𝑥,𝑠)

𝜕𝑠
𝑑𝑠 (4) 

The creep function is described as follows (Aklonis et al., 1972; Keramat et al., 2013): 

𝐽(𝑥, 𝑡) = 𝐽(𝑥, 0) + ∑ 𝐽𝑘 (1 − 𝑒
−

𝑡

𝜏𝑘)
𝑁𝐾𝑉
𝑘=1  (5) 

The time derivative of the retarded deformation (Eq. 3) can be obtained by the analytical 

differentiation method presented in the appendix by Covas et al. (2005): 

𝜕𝜀𝑟(𝑥,𝑡)

𝜕𝑡
= ∑ [

𝐽𝑘

𝜏𝑘

𝛼𝐷𝜌𝑔

2𝑒
{𝐻(𝑥, 𝑡 − 𝑠) − 𝐻(𝑥, 0)} −

𝜀𝑟𝑘(𝑥,𝑡)

𝜏𝑘
]𝑁

𝑘=1  (6) 

Equations (1) and (2) are transformed into a system of ordinary differential equations with 

respect to time only by the method of characteristics described as follows: 

𝑑𝐻(𝑥,𝑡)

𝑑𝑡
±

𝑎

𝑔𝐴

𝑑𝑄(𝑥,𝑡)

𝑑𝑡
+

2𝑎2

𝑔

𝑑𝜀𝑟(𝑥,𝑡)

𝑑𝑡
± 𝑎(ℎ𝑓𝑠

+ ℎ𝑓𝑢
) = 0 (7) 
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Applying the first order finite difference method in space and the first explicit scheme in 

time, we obtain: 

𝐶+: 𝑄(𝑥, 𝑡) = 𝐶𝑝 − 𝐶𝑎𝐻(𝑥 − ∆𝑥, 𝑡) (8) 

𝐶−: 𝑄(𝑥, 𝑡) = 𝐶𝑛 + 𝐶𝑎𝐻(𝑥 + ∆𝑥, 𝑡) (9) 

𝐶𝑝 = 𝑄(𝑥 − ∆𝑥, 𝑡 − ∆𝑡) + 𝐶𝑎𝐻(𝑥 − ∆𝑥, 𝑡 − ∆𝑡) + ∆𝑡 (−2𝐴𝑎
𝜕𝜀𝑟

𝜕𝑡
−

𝑔𝐴ℎ𝑓) (10) 

𝐶𝑛 = 𝑄(𝑥 + ∆𝑥, 𝑡 − ∆𝑡) − 𝐶𝑎𝐻(𝑥 + ∆𝑥, 𝑡 − ∆𝑡) + ∆𝑡 (+2𝐴𝑎
𝜕𝜀𝑟

𝜕𝑡
−

𝑔𝐴ℎ𝑓) (11) 

Ca = gA/a (12) 

At the internal nodes (see Fig. 1), a simultaneous solution of linear equations (8) and (9), 

gives us the variables 𝐻(𝑥, 𝑡) and 𝑄(𝑥, 𝑡) at the present instant, knowing already their 

values at the previous instant. The coefficients 𝐶𝑝 and 𝐶𝑛 are therefore defined at time 𝑡 −

∆𝑡. Several boundary conditions are exposed in these articles (Chaudhry, 1979; Wylie 

and Streeter, 1993). 

 

Figure 1: Rectangular grid of characteristics 

NUMERICAL RESULTS 

In the literature (Covas et al., 2004, 2005; Soares et al., 2008; Keramat et al., 2013; Triki, 

2016), the experimental creep curve is obtained by following the inverse calculation 

procedure or simply by tensile and compressive creep tests on one or more polymer 

samples. In several experiments, wave celerity between 350 and 450 m/s were tested to 

better account for the strain rate. In principle, a single creep curve should correspond to 

each test. Then, for numerical purposes, the creep coefficients 𝐽𝑘 and 𝜏𝑘 can be 

determined using the least squares procedure of the Levenberg algorithm. The creep 
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function modeled as a series of several exponentials was found to be very effective in 

reproducing the input data set correctly. As an initial parameter, the creep coefficient 𝐽0 

corresponding to the inverse of the Young's modulus  𝐸0 must be imposed before starting 

the least squares procedure. 

In this work, the data collected in this paper (Covas et al., 2004) at location T1 (see Fig. 

2), near the valve located 271 m from the high-pressure tank (Air Vessel), are presented 

in Table 1. In contrast, the new calibrated creep parameters 𝐽𝑘 and 𝜏𝑘 are presented in 

Table 2. 

 
 

Figure 2: Imperial College experimental facility, London 

 

Table 1: Experimental data performed by Covas et al. (2004, 2005) 

L D e E 𝝂 𝑸𝟎 𝑯𝟎 𝑻𝒗 

277 m 50.6 mm 6.3 mm 1.27 GPa 0.46 1.01 l/s 45 m 0.09 s 

 

Table 2: New calibrated parameters for the creep coefficient 𝑱𝒌 and delay time 

𝝉𝒌 with 𝑸𝟎=1.0(l/s) 

  
(𝝉𝒌,  𝑱𝒌) 

  𝝉𝒌  𝒊𝒏 (𝒔) ;  𝑱𝒌 𝒊𝒏 (𝟏𝟎−𝟗𝑷𝒂−𝟏) 

𝒂 (𝒎/𝒔) 𝑱𝟎 (𝝉𝟏, 𝑱𝟏) (𝝉𝟐, 𝑱𝟐) (𝝉𝟑, 𝑱𝟑) (𝝉𝟒, 𝑱𝟒) 

372 0.79 (0.0500, 0.0259) (0.5000, 0.0712) (1.5001, 0.1360) (10.000, 0.4648) 

381 0.75 (0.0932, 0.0187) (0.4932, 0.0605) (1.3726, 0.1354) (9.1731, 0.4404) 

394 0.70 (0.1752, 0.0388) (1.0553, 0.1592) (6.3123, 0.0679) (8.5282, 0.3516) 

410 0.64 (0.0826, 0.0370) (0.9204, 0.1587) (7.0333, 0.2008) (7.1073, 0.1874) 

426 0.59 (0.3945, 0.1135) (1.6342, 0.0895) (6.2501, 0.3344) (9.0713, 0.0000) 
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In contrast to the elastic models presented in Figure 3 Quasi-steady, Brunone et al. (1991) 

and Vardy-Brown (2003), the viscoelastic approach currently proposed therefore proves 

highly effective in better absorbing high hydraulic pressures in pressurized HDPE pipes. 

It should also be remembered that recent studies carried out on hydraulic systems 

composed mainly of steel or copper pipes have led to the following conclusions: 

1. The quasi-steady model is too simplified to be applied to transient flows.  

2. Brunone's model, based on instantaneous acceleration, gives an inappropriate 

form to pressure peaks, due to the difficulty of correctly estimating the 

empirical decay coefficient k that enters its equation. 

3. In contrast to the other approaches, models based on integral convolution (BC) 

predict the profile of measured pressure waves almost perfectly. 

  

Figure 3: Piezometric head profiles at location T1 for Q=1.01 l/s and a=372 m/s 

In Fig. 4, three wave velocities have been selected to show the effects induced on pressure 

phase shift and damping ratio. In this case, only the viscoelastic model was simulated. It 

can be seen that the observed shift is more closely related to phase-shift problems, which 

do indeed require an appropriate choice of pressure wave velocity. Physically, this 

appropriate choice of pressure wave velocity can be interpreted as the result of the margin 

of error of the experimentally transmitted frequency band, or sometimes of the exact 

location of the pressure transducer due to the stability condition that must be satisfied. 



Messaoudene B. & Ferrouk M. / Larhyss Journal, 58 (2024), 7-19 

14 

 

Figure 4: Piezometric head profiles at location T1 for Q=1.01 l/s and various wave 

velocity 

As a viscoelastic material, the inherent nature of HDPE's mechanical and viscoelastic 

properties means that it often undergoes time-dependent deformation (strain), as shown 

in Fig. 5. Throughout the simulation, the magnitude of the offset between total and 

delayed deformation is very large. The offset between these two deformation profiles can 

be represented by elastic deformation (elastic-strain), which can be easily estimated using 

a fixed initial Young's modulus. 

 

Figure 5: Numerical results (total and retarded strain) of viscoelastic transient at 

location 1 for Q=1.01 l/s and a=372 m/s 
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In Fig. 6, a wave velocity nuance was illustrated by describing creep as a function of time 

for high and low density polyethylene. At the initial time, all creep curves start at 𝐽0 and 

end up marking their respective depths at the final time, defined in the upper right corner. 

Therefore, the lower the celerity, the higher the creep, which results in a larger 

deformation in that direction. On the other hand, the creep becomes a critical parameter 

to fit the numerical data with better accuracy. The analysis established on the basis of 

phase shift and pressure attenuation effects allowed to find a compromise for the wave 

velocity a=372 m/s. On the other hand, even with a simple choice made from Table 2 or 

Fig. 6, the viscoelastic transient model often gives an acceptable fit compared to the 

classical elastic model. Strictly speaking, the major drawback is more related to the phase 

shift than to the pressure attenuation effects. If we continue our analysis at higher speeds, 

we encounter other types of polymers such as nylon, polyester, PVC and finally steel at 

the last line where the creep is zero and the wave velocity close to 1300 m/s.  

In the literature, it is also mentioned that the wave velocity depends essentially on the 

initial Young's modulus E_0. For example, if we take the case of a PE pipe illustrated in 

Fig. 6, the wave velocity varies between 372 and 426 m/s, corresponding to an initial 

Young's modulus ranging from 1.27 to 1.69GPa. In the case of a PVC pipe, on the other 

hand, the velocity varies between 411 and 440 m/ s, corresponding respectively to a 

Young's modulus of between 2.40 and 2.75 GPa (Soares et al., 2008). Covas et al. (2004, 

2005) have shown that wave velocity is a time-dependent function in transient flow, due 

not only to the effects of unsteady friction and fluid inertias, but also to the viscoelastic 

and rheological behavior inherent in the pipe wall. 

 

Figure 6: Creep function profiles for several Young's modulus Initial for Q=1.01 l/s 

and a=372 m/s 

According to the quantitative analysis of pressure attenuation (Pressure decrease rate), 

the mean absolute percentage error MAPE, widely used in a comparison process, is too 

glaring for the classical friction models presented, namely an error of over 18.76% for the 
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quasi-steady model, 16.63% for Brunone and 12.91% for Vardy-Brown (see figure 3). In 

contrast to these friction-based models, viscoelasticity shows a significant improvement, 

with a mean absolute error of less than 1.09%. The comparison was carried out over the 

entire interval t = [0, 20] for n=1195 observations. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑃𝑒𝑖−𝑃𝑖

 𝑃𝑒𝑖 
|𝑛

𝑖=1    (13) 

where n is the number of values observed over time, 𝑃𝑒𝑖 and 𝑃𝑖  represent the observation 

and prediction data respectively. 

The 𝐸𝑡 parameter describes the proposed method for estimating the relative errors 

between measured and numerically calculated frequencies (see figure 4). The 13 points 

𝑇𝑒𝑖 and 𝑇𝑖 , corresponding respectively to the half-period of each measured and calculated 

oscillation, are obtained by the intersection between the straight line 𝑦 = 𝐻𝑉0 and the 

experimental or numerical data set. The relative errors evaluated are summarized in Table 

3. Analysis of these data shows that the appropriate wave velocity is indeed closer to 

372m/s. In summary, the frequency error increases more with higher wave velocity. 

𝐸𝑡 =
1

𝑛
∑ |

𝑇𝑒𝑖−𝑇𝑖

 𝑇𝑒𝑖 
|𝑛

𝑖=1   (14) 

where 𝑇𝑒𝑖 and 𝑇𝑖  represent respectively the observation and prediction data to the half-

period of each oscillation. 

Table 3: Mean relative frequency errors 

𝒂 (𝒎/𝒔) 372 381 394 410 426 

𝑬𝒕 (%) 0.20 3.50 5.40 7.10 8.80 

CONCLUSION 

In this paper, we have shown how to accurately calibrate the creep function with respect 

to Young's modulus when water flows transiently through a high density PHD pipe. 

Although the linear viscoelastic model, as illustrated, appears to give good agreement 

with the experimental data and therefore better describes the effects of pressure 

attenuation in terms of pressure oscillations, the process of calculating creep parameters 

remains highly criticized due to the dependence of these creep parameters on reference 

data. Consequently, this process does not necessarily lead to generalizable results and will 

depend always on some benchmark experiments. This is the main drawback of the linear 

viscoelastic model. During the multiple wave celerity simulations, we also found that the 

period of oscillation decreased as the velocity increased. Therefore, a slight manipulation 

of the CFL (Courant-Friedrichs-Lewy) condition allows us to obtain a more accurate 

oscillation period. Finally, the numerical results obtained were found to be consistent with 

the experimental data encountered in the literature. 
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APPENDIX A: Description of quasi-steady and unsteady friction models 

In this appendix, quasi-steady and unsteady elastic models are presented to show how 

wall shear stress has been modeled. First, let's recall the momentum equation: 

1

𝐴

𝜕𝑄(𝑥,𝑡)

𝜕𝑡
+ 𝑔

𝜕𝐻(𝑥,𝑡)

𝜕𝑥
+   𝑔(ℎ𝑓𝑠

+ ℎ𝑓𝑢
)  = 0 

The quasi-steady friction term is calculated by the Colebrook-White formula: 

ℎ𝑓𝑠
= 𝑓𝑠

𝑄|𝑄|

2𝑔𝐷𝐴2
 

where 𝑓𝑠 is the Darcy friction coefficient which can be calculated according to the flow 

regime: 

For transient laminar flow (𝑅𝑒 ≤ 2300), the Hagen-Poiseuille law is used: 

𝑓𝑠 = 64/𝑅𝑒. 

For transient turbulent flow (𝑅𝑒 > 2300), the Colebrook-White formula as: 

1

√𝑓𝑠

= −2𝑙𝑜𝑔 (
2.51

𝑅𝑒√𝑓𝑠

+
𝜀/𝐷

3.71
) 

The unsteady friction term presented by Brunone et al. (1991): 

ℎ𝑓𝑢
=  

𝑘

𝑔𝐴
(

𝜕𝑄

𝜕𝑡
+ 𝑎 𝑆𝐺𝑁(𝑄)

𝜕𝑄

𝜕𝑥
) 

where k = empirical decay coefficient, and 𝑆𝐺𝑁(𝑄) = 𝑎𝑏𝑠(𝑄)/𝑄. This sign of the 

average discharge (SGN operator) was introduced by Vitkovsky et al. (2000). 

The unsteady friction term based on integral-convolution (Zielke, 1968): 

ℎ𝑓𝑢
=  

16𝜈

𝑔𝐷2𝐴
∫

𝜕𝑄

𝜕𝑡
(𝑢)𝑊(𝑡 − 𝑢)𝑑𝑢

𝑡

0
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The Vardy-Brown weighting function is given by Vardy and Brown (1995, 2003): 

𝑊(𝜏) =
𝐴∗𝑒−𝜏/𝐶∗

√𝜏
 

where 

𝐴∗ = 1/√2𝜋, 𝐶∗ = 12.86/𝑅𝑒𝑘, 𝑘 = 𝑙𝑜𝑔10(15.29/𝑅𝑒0.0567) 

The simulations carried out using these models lead to the following conclusions: 

• Brunone's model depends on the empirical decay coefficient k, which makes it 

difficult to generalize. It does, however, have the advantage of being quick to 

run. 

• The Vardy-Brown model is very practical in the case of a rapidly evolving 

velocity field. However, it has the disadvantage of running very slowly. 

• In plastic pipes, the combination of Vardy and Brown's formula and the 

viscoelastic term introduced in the continuity equation generally gives very 

appreciable results. 
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