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ABSTRACT 

Analytical expressions for the determination of hydro-seismic forces acting on a rigid 

dam with irregular upstream face geometry in presence of a compressible viscous fluid 

are derived through a linear combination of the natural modes of water in the reservoir 

based on a boundary method making use of complete sets of complex T-functions. 

The formulas obtained for parametric analysis of both shear forces and overturning 

moments are computationally effective and useful for the preliminary design of dams. 

They show clearly the separate and combined effects of compressibility and viscosity of 

water. They also have the advantage of being able to cover a wide range of excitation 

frequencies even beyond the cut-off frequencies of the natural modes of the reservoir. 

Key results obtained using the proposed analytical expressions of the hydrodynamic 

forces are validated using numerical and experimental solutions published for some 

particular cases available in the specialized literature. 

Keywords: Hydro-seismic forces, Dams, Irregular upstream-face, Compressible viscous 

fluid, Earthquakes. 

INTRODUCTION 

Analytical expressions of hydrodynamic forces on dams are rare and available only under 

simple geometry of the water dam interface. (Westergaard, 1933) was the pioneer to have 

derived an analytical expression to evaluate the hydrodynamic pressures applied to a rigid 

dam with vertical upstream face under a horizontal harmonic ground motion. Using the 

electric analog method, (Zangar, 1953) studied experimentally the hydrodynamic effect 

of horizontal earthquake action on a rigid dam having upstream face with either constant 

or compound slopes in the presence of an incompressible fluid. (Chopra, 1967) published 

an analytical solution for vertical rigid dams under horizontal and vertical earthquake 
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ground motions taking into account the effect of compressibility of the fluid in the 

reservoir. (Tsai, 1992) developed a semi-analytical solution for hydrodynamic pressure 

distribution on rigid dams with arbitrary upstream face considering water compressibility.  

Moreover, several authors have used the numerical methods essentially based on the 

F.E.M, to include the effects of compressibility of the fluid (Hall and Chopra, 1982), the 

flexibility of the dam (Tiliouine and Seghir, 1998) and pressure wave absorption by 

sediments at the bottom of the reservoir (Fenves and Chopra, 1985). There are also, semi-

analytical methods, which remain valid and are an important input for the preliminary 

dam design (Avilés, 1998), (Tadjadit and Tiliouine, 2013). In this paper, analytical 

expressions for the determination and parametric analysis of hydro-seismic forces acting 

on a rigid dam with irregular upstream face geometry in presence of a compressible 

viscous fluid are derived through a linear combination of the natural modes of water in 

the reservoir based on a boundary method making use of complete sets of complex T-

functions. Key results obtained using the proposed analytical expressions are validated 

using numerical and experimental solutions published for some particular cases available 

in the specialized literature. 

BACKGROUND 

Assumptions 

Consider a rigid dam with partially inclined upstream face impounded by a reservoir of 

infinite length and rigid bottom subjected to horizontal earthquake short durations. In 

figure 1, the motion of the dam-reservoir system is two-dimensional and the water in the 

reservoir is considered linearly compressible, viscous and irrotational. H is the depth of 

the water in the reservoir; C is the fraction of height H and 𝜃 the angle formed by the 

inclined portion of the upstream face with the vertical. Since the dam undergoes a 

displacement of rigid body, consequently the set of points belonging to the fluid-structure 

interface are assumed to have, at each time, the same acceleration as the base of the dam. 

 

Figure 1: Rigid dam subjected to a horizontal ground motion 
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On figure 1, the reservoir is delimited by four contours defined as: 

S1∪S2: Contour delimiting the upstream face of the dam; S3: Contour defining the free 

surface of water; S4: Contour defining the boundary of truncation of the reservoir and S5: 

Contour defining the reservoir bottom. CH is defined as the height of the inclined portion 

of the upstream face and 𝑛⃗  is the outward normal direction to the dam-water interface. 

Formulation of governing equation 

The hydrodynamic pressure in excess of the hydrostatic pressure in the reservoir is 

governed by the equation of the compression waves given as follows: 

𝛻2 𝑝 = (1
𝑐2⁄
)(𝜕2𝑝 𝜕𝑡2) ⁄  (1) 

Where 

𝛻2 = 𝜕2 𝜕𝑥2⁄ + 𝜕2 𝜕𝑦2⁄   (2) 

Corresponds to the two-dimensional Laplace operator in Cartesian coordinates with: 

𝑐 = √𝜆 𝜌 ⁄  (3) 

In equation (3), c represent the speed of sound waves in water, λ the Lame’s modulus and 

ρ the mass density of water. Since we are assuming small deformations and considering 

the combined effects of compressibility and viscosity of the fluid in the reservoir, the 

linear visco-elastic Kelvin-Voigt model was adopted to represent the internal dissipation. 

Lame’s modulus is then expressed by a complex valued function depending on the 

angular frequency of excitation w and it is given by Eq. (4).  

𝜆𝑐 = 𝜆 (1 + 𝑖2𝜂𝜉) (4) 

Where η = wH/c is the dimensionless frequency; w is the angular frequency of the 

excitation and ξ the fraction of the critical damping of water. It is assumed that the dam 

vibrates as a rigid body with the same horizontal ground acceleration given as follows: 

𝑈̈𝑔(𝑡)  = 𝑒
𝑖𝑤𝑡  (5) 

The hydrodynamic pressure in the reservoir can be given in the frequency domain as: 

𝑝 =  𝑃(𝑥, 𝑦, 𝑤) 𝑒𝑖𝑤𝑡  (6) 

Substituting Eq. (6) in Eq. (1) provides the Helmholtz differential equation of 

compression waves in the water, where K = w/c, corresponds to the compression wave 

number. 

𝜕2𝑃 𝜕𝑥2⁄ + 𝜕2𝑃 𝜕𝑦2⁄ + 𝐾2𝑃 = 0  (7) 
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Boundary conditions 

1. On the upstream part of the dam enclosed by the contour S1∪S2, it is assumed that 

the hydrodynamic pressures gradient in the direction normal to the upstream face 

of the dam and the inertial forces generated in the mass of the water are in a state 

of equilibrium, which allows us to write: 

𝜕𝑃 (𝑥, 𝑦, 𝑤) 𝜕𝑛⁄ |𝑆1∪𝑆2 = −𝜌𝑈̈𝑛  (8) 

Ün is the normal component of the horizontal ground acceleration. 

2. At the free surface of water, we assume that: 

𝑃(𝑥, 𝐻, 𝑤)|𝑆3 = 0  (9) 

3. At the limit of truncation S4, supposed far enough from the dam upstream face 

(when L ≥ 3H; L is the length of the reservoir), we assume that   

𝑃 (∞, 𝑦, 𝑤)|𝑆4 = 0 (10) 

4. At the reservoir bottom, the gradient of associated hydrodynamic pressures is also 

zero: 

𝜕𝑃 (𝑥, 0, 𝑤) 𝜕𝑦⁄ |𝑆5 = 0 (11) 

Analytical expression for distribution of the total shear forces 

The hydrodynamic pressure P(x, y, w) is given by the following relationship: 

𝑃 = ∑ 𝐴𝑖
+∞
𝑖=1 𝑇𝑖(𝑥, 𝑦, 𝑤) = 𝐶𝑠𝛾𝐻𝐶𝑝 (12) 

with 

𝑇𝑖(𝑥, 𝑦, 𝑤) = 𝑒
−µ𝑖𝑥 𝑐𝑜𝑠 𝜆𝑖𝑦 (13) 

Where, Ti(x, y, w) define the natural water modes of vibration in the reservoir propagating 

horizontally, CS = Ün/g, g is the acceleration of gravity, γ is the unit weight of water and 

Cp the pressure coefficient. Here, Cp is approximated by a series of complex functions of 

real variable y belonging on the compact interval I= [0, H] as follows: 

𝐶𝑝(𝑦)|𝑆1∪𝑆2
= (1 𝐶𝑠𝛾𝐻⁄ ) ∑ 𝐴𝑖

+∞
𝑖=1 𝑒−µ𝑖𝑥 𝑐𝑜𝑠 𝜆𝑖𝑦  (14) 

Where    𝜆𝑖 = (2𝑖 − 1)𝜋 2𝐻          𝑎𝑛𝑑           ⁄ µ𝑖 = √𝜆𝑖
2 −𝐾2 (15) 

Ai, correspond to the unknown coefficients with i = 1, 2, …, ∞. They are obtained after 

solving a system of linear equations given by the relation below (Eq. (16)) using a 

numerical calculation program (MATLAB). 

[𝐹𝑗𝑖]{𝐴𝑖} = {𝐺𝑗}     ∀ 𝑗, 𝑖 = 1, 2, . . . , ∞ (16) 
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The elements of the Hermitian matrix [Fji] and the column vector {Gj} are calculated as 

defined in (Avilés, 1998).  

The distribution of the horizontal component of the total shear forces along S1∪S2 is given 

as follow: 

𝐹ℎ(𝑦) = ∫ 𝐶𝑠𝛾𝐻𝐶𝑝   𝑑𝑠
⬚

𝑆
 (17) 

ds represent infinitely small segment of the S1∪S2 boundary.  Substituting Eq. (14) into 

Eq. (17) yields: 

𝐹ℎ(𝑦) = ∫ ∑ 𝐴𝑖
+∞
𝑖=1 𝑒−µ𝑖𝑥𝑐𝑜𝑠 𝜆𝑖𝑦 𝑑𝑦

𝐻

𝑦
 (18) 

When we interchanges between the operator (∫) and the operator (Σ), the Eq. (18) takes 

the following form: 

𝐹ℎ(𝑦) = ∑ 𝐴𝑖
+∞
𝑖=1 ∫ 𝑒−µ𝑖𝑥𝑐𝑜𝑠 𝜆𝑖𝑦 𝑑𝑦

𝐻

𝑦
 (19) 

After successive integrations, we finally obtain:  

𝑓𝑜𝑟 𝑦 ∈  [0, 𝐶𝐻]           𝐹ℎ(𝑦) = ∑ 𝐴𝑖 {

−𝑒−𝛾𝑖(𝐶𝐻−𝑦)𝐹𝑖(𝑦)

+𝐹𝑖(𝐶𝐻)

+
[𝑠𝑖𝑛 𝜆𝑖𝐻−𝑠𝑖𝑛 𝜆𝑖𝐶𝐻]

𝜆𝑖

}+∞
𝑖=1  (20) 

And for y ∈ [CH, H]      𝐹ℎ(𝑦) = ∑ 𝐴𝑖{[𝑠𝑖𝑛 𝜆𝑖𝐻 − 𝑠𝑖𝑛 𝜆𝑖𝑦]/𝜆𝑖}
+∞
𝑖=1  (21) 

𝑊𝑖𝑡ℎ      𝐹𝑖(𝑦) = (𝜆𝑖𝑠𝑖𝑛 𝜆𝑖 𝑦 + 𝜇𝑖  𝑡𝑎𝑛𝜃 𝑐𝑜𝑠 𝜆𝑖𝑦) 𝛼𝑖
+⁄ , 

𝐹𝑖(𝐶𝐻) = (𝜆𝑖𝑠𝑖𝑛 𝜆𝑖 𝐶𝐻 + 𝜇𝑖𝑡𝑎𝑛𝜃 𝑐𝑜𝑠 𝜆𝑖𝐶𝐻) 𝛼𝑖
+⁄ , 

𝛾𝑖 = 𝜇𝑖𝑡𝑎𝑛𝜃,    𝛼𝑖
+ = 𝜆𝑖

2 + 𝛾𝑖
2  and  𝛼𝑖

− = 𝜆𝑖
2 − 𝛾𝑖

2 (22) 

Analytical expression for distribution of the overturning moments 

The distribution of the total overturning moments about the Z-axis at any elevation y is 

defined as: 

𝑀𝑧(𝑦) = ∫ 𝐹ℎ(𝑦) 𝑑𝑠
⬚

𝑆
 (23) 

After successive integrations, Eq. (23) becomes:  

for 𝑦 ∈  [0, CH] 
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𝑀𝑍(𝑦) = ∑ 𝐴𝑖
+∞
𝑖=1

{
 
 

 
 

𝑒−𝛾𝑖(𝐶𝐻−𝑦)𝑀𝑖(𝑦) −𝑀𝑖(𝐶𝐻) +

(𝐶𝐻 − 𝑦) [
(𝜆𝑖𝑠𝑖𝑛 𝜆𝑖𝐶𝐻 + 𝛾𝑖𝑐𝑜𝑠 𝜆𝑖𝐶𝐻) 𝛼𝑖

+⁄

+(𝑠𝑖𝑛 𝜆𝑖𝐻 − 𝑠𝑖𝑛 𝜆𝑖𝐶𝐻) 𝜆𝑖 ⁄
]

+
[𝜆𝑖𝐻(1−𝐶)𝑠𝑖𝑛 𝜆𝑖𝐻−𝑐𝑜𝑠 𝜆𝑖𝐶𝐻]

𝜆𝑖
2 }

 
 

 
 

 (24) 

And for y ∈ [CH, H]           

𝑀𝑧(𝑦) = ∑ 𝐴𝑖
+∞
𝑖=1 {[𝜆𝑖(𝐻 − 𝑦)𝑠𝑖𝑛 𝜆𝑖𝐻 − 𝑐𝑜𝑠 𝜆𝑖𝑦]/𝜆𝑖

2} (25) 

𝑊𝑖𝑡ℎ ∶  𝑀𝑖(𝑦) = [𝑚𝑖 𝑠𝑖𝑛 𝜆𝑖𝑦 + 𝑛𝑖𝑐𝑜𝑠𝜆𝑖𝑦]/𝛼𝑖
+2,                                  

                𝑀𝑖(𝐶𝐻) = [𝑚𝑖 𝑠𝑖𝑛 𝜆𝑖𝐶𝐻 + 𝑛𝑖𝑐𝑜𝑠𝜆𝑖𝐶𝐻] 𝛼𝑖
+2⁄ , 

   𝑚𝑖 = 2𝜆𝑖𝛾𝑖  and  𝑛𝑖 = −𝛼𝑖
−. (26) 

RESULTS AND DISCUSSION 

In order to implement the proposed analytical formulas, a computer program in Matlab 

language (Tadjadit, 2013) was modified to incorporate, in the frequency-domain, the 

effects of compressibility and viscosity of water in the reservoir. Results obtained for total 

shear forces and overturning moments are expressed, respectively in terms of 

dimensionless coefficients CF = |Fh|/Fst and CM = |Mz|/Mst, in which |Fh| and |Mz| are the 

modulus of the complex frequency responses of Fh and Mz. Fst = ρgH2/2 and Mst = ρgH3/6 

are respectively, the total hydrostatic force and the corresponding overturning moment at 

the base of the dam. They are, respectively expressed, in Newton and Newton-meter per 

unit of width of the dam. 

The results obtained were presented for a wide range of values of the dimensionless 

frequency η and different damping ratios ξ of the water. The characteristic parameters of 

the dam-reservoir system are ρ = 1000 kg/m3 and Cs = 0.1. In figures 2 and 3, both real 

and imaginary parts of CF are presented for the dimensionless frequencies η = 0, 1.5, 3 

and 6. We can easily see the effect of the excitation frequency on the response of the 

system. When η exceeds π/2 (𝑤 > 𝑤1 , where 𝑤1 represent the first fundamental 

frequency of the reservoir), the response is complex valued with the imaginary part 

representing the loss of energy in waves moving away from the dam. 
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Figure 2: Real parts of total shear 

forces on dam with  

 = 37.6° C = 0.75  and  𝝃 =  𝟎 % 

Figure 3: Imaginary parts of total 

shear forces on dam with  

 = 37.6° C = 0.75   and  𝝃 = 𝟎 % 

The same reasoning can be adopted for the distribution of the total overturning moments 

(Figures 4 and 5).  

  

Figure 4: Real parts of total overturning 

moments on dam: 

 𝜽 = 𝟑𝟕. 𝟔°, 𝑪 =  𝟎. 𝟕𝟓,   𝝃 =  𝟎 % 

Figure 5: Imaginary parts of total 

overturning moments on dam: 

𝜽 = 𝟑𝟕. 𝟔°, 𝑪 =  𝟎. 𝟕𝟓,   𝝃 = 𝟎 % 

 

Now, to evaluate the combined effects of compressibility and viscosity of water, another 

example is given for, respectively the cases of a vertical and partially inclined dams. 

Figures 6 and 7 shows the variation of the dimensionless coefficient CF with the frequency 

ratio w/w1 for damping ratios ξ = 1% and ξ = 5%. It is seen that the effect of water viscosity 

can be considered negligible insofar as the excitation frequency is not very close to that 

of the fundamental modes of the reservoir. 

η=1.5 

η=0 
η=3 

η=6 

η=3 

η=6 

η=3 
η=6 η=6 

η=3 

η=0 

η=1.5 
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Figure. 6 Total shear forces on dam 

with a vertical upstream face 

for  𝝃 = 𝟏 %  and 𝝃 = 𝟓 % 

Figure. 7 Total shear forces on a 

partially inclined dam 𝜽 = 𝟑 𝟕. 𝟔°,  

𝐂 =  𝟎. 𝟕𝟓, 𝝃 = 𝟏 % and  𝝃 = 𝟓 % 

CONCLUSION 

Analytical expressions for the determination of hydro-seismic forces acting on a rigid 

dam with irregular upstream face geometry in presence of a compressible viscous fluid 

are derived through a linear combination of the natural modes of water in the reservoir 

based on a boundary method making use of complete sets of complex T-functions. They 

show clearly the separate and combined effects of compressibility and viscosity of water. 

The study was then extended to the case of a rigid dam with irregular geometry in 

presence of compressibility and viscosity of the water. When compressibility effect is 

neglected, the percent errors, in the present study, are found to be in the order of 14–17 

% for shear forces and less than 13 % for overturning moments. In general, the effect of 

viscosity of the water may be neglected insofar as the frequency of the seismic excitation 

is not very close to that of the natural modes of vibration of the reservoir. However, at the 

resonance frequency, the generalized seismic forces are controlled essentially by the 

damping ratio of the water in the reservoir. The formulas obtained for distributions of 

both shear forces and overturning moments are simple, computationally effective and 

useful for the preliminary design of dams. They also have the advantage of being able to 

cover a wide range of excitation frequencies even beyond the cut-off frequencies of the 

natural water modes of the reservoir. 
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APPENDIX A 

 SPECIAL CASES FOR THE DISTRIBUTIONS OF 𝑭𝐡(𝐲) AND  𝑴𝐙(𝐲) 

Rigid dam with sloping upstream face  

𝐹ℎ(𝑦) = ∑ 𝐴𝑖
+∞
𝑖=1 [−𝑒−𝛾𝑖(𝐻−𝑦)𝐹𝑖(𝑦) + 𝐹𝑖(𝐻)]                                         (A1) 

With        𝐹𝑖(𝑦) =
[𝜆𝑖𝑠𝑖𝑛 𝜆𝑖 𝑦+𝜇𝑖𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜆𝑖𝑦]

𝛼𝑖
+  

𝐹𝑖(𝐻) = [𝜆𝑖𝑠𝑖𝑛 𝜆𝑖 𝐻 + 𝜇𝑖𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜆𝑖𝐻] 𝛼𝑖
+⁄   

𝑀𝑍(𝑦) = ∑ 𝐴𝑖
+∞
𝑖=1 [

𝑒−𝛾𝑖(𝐻−𝑦)𝑀𝑖(𝑦) − 𝑀𝑖(𝐻)

+[𝜆𝑖(𝐻 − 𝑦)𝑠𝑖𝑛 𝜆𝑖𝐻]/𝛼𝑖
+]                                      (A2) 

With     𝑀𝑖(𝑦) =
[𝑚𝑖 𝑠𝑖𝑛 𝜆𝑖𝑦+𝑛𝑖𝑐𝑜𝑠𝜆𝑖𝑦]

𝛼𝑖
+2

  

𝑎𝑛𝑑            𝑀𝑖(𝐻) = 𝑚𝑖 𝑠𝑖𝑛 𝜆𝑖𝐻 𝛼𝑖
+2⁄  

Rigid dam with vertical upstream face 

In this case, we have:    𝛼𝑖
+ = 𝛼𝑖

− = 𝜆𝑖
2    and    𝛾𝑖 =  0 

𝐹ℎ(𝑦) = ∑
𝐴𝑖

𝜆𝑖

+∞
𝑖=1 [𝑠𝑖𝑛 𝜆𝑖𝐻 − 𝑠𝑖𝑛𝜆𝑖𝑦],             (A3) 

𝑀𝑍(𝑦) = ∑
𝐴𝑖

𝜆𝑖
2

+∞
𝑖=1 [−𝑐𝑜𝑠 𝜆𝑖𝑦 + 𝜆𝑖 (𝐻 − 𝑦)𝑠𝑖𝑛 𝜆𝑖𝐻]             (A4) 

Maximum values of the total shear forces and overturning moments  

The maximum values of the total shear forces and the associated overturning moments 

are given at the base of the dam (y = 0) as follows: 

𝐹ℎ(0) = ∑ 𝐴𝑖
+∞
𝑖=1 {

−𝜇𝑖𝑡𝑎𝑛𝜃 𝑒
−𝛾𝑖𝐶𝐻 𝛼𝑖

+⁄ + 𝐹𝑖(𝐶𝐻) +

[𝑠𝑖𝑛 𝜆𝑖𝐻 − 𝑠𝑖𝑛 𝜆𝑖𝐶𝐻]/𝜆𝑖
}              (A5)  

𝑀𝑍(0) = ∑ 𝐴𝑖
+∞
𝑖=1

{
 
 

 
 

𝑒−𝛾𝑖𝐶𝐻𝑀𝑖(0) − 𝑀𝑖(𝐶𝐻) +

𝐶𝐻 [
(𝜆𝑖𝑠𝑖𝑛 𝜆𝑖𝐶𝐻 + 𝛾𝑖𝑐𝑜𝑠 𝜆𝑖𝐶𝐻) 𝛼𝑖

+⁄

+(𝑠𝑖𝑛 𝜆𝑖𝐻 − 𝑠𝑖𝑛 𝜆𝑖𝐶𝐻) 𝜆𝑖 ⁄
]

+
[𝜆𝑖𝐻(1−𝐶)𝑠𝑖𝑛 𝜆𝑖𝐻−𝑐𝑜𝑠 𝜆𝑖𝐶𝐻]

𝜆𝑖
2 }

 
 

 
 

      (A6) 

With        𝑀𝑖(0) = 𝑛𝑖 𝛼𝑖
+2⁄  


