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ABSTRACT 

The present work compares the performance of three recent metaheuristic algorithms 

which are crow search algorithm, Rao-1 algorithm and the CSARao-1 hybrid algorithm 

in identifying spatially distributed hydraulic conductivities in a steady-state groundwater 

flow model. The employed algorithms were benchmarked on a hypothetical problem, and 

the identification process was conducted by combining each algorithm with the 

corresponding finite element model. Two inverse problems were analyzed; the first was 

based on errorless hydraulic head measurements, and the second on noisy measurements. 

The CSARao-1 hybrid algorithm was found to be the most efficient in terms of accuracy, 

robustness and speed of convergence. 

Keywords: Metaheuristics, Finite element, Performance, Optimization, Hydraulic 

conductivity. 

INTRODUCTION 

Steady flow of water through confined aquifers is governed by an elliptic partial 

differential equation (PDE) that contains spatially distributed physical parameters termed 

hydraulic conductivities that should be accurately identified to construct a reliable flow 

model. Their identification consists of resolving an inverse problem which is generally 

performed by linking an optimization algorithm to a numerical model that solves the 

corresponding PDE over the flow domain. The purpose of this linkage is to estimate the 

hydraulic conductivities of the flow domain by minimizing an objective function that 

measures the discrepancies between the measured (observed) state variables (i.e hydraulic 

head) and those computed using the numerical model. The objective functions 

encountered in such optimization problems are non-convex, highly nonlinear and 

http://creativecommons.org/licenses/by/4.0


Tadj W.& al; / Larhyss Journal, 58 (2024), 31-38 

32 

complexes, therefore, the best choice is to avoid the use of deterministic optimizers and 

to employ metaheuristics as optimization algorithms for the qualities they offer such as 

derivation free mechanism, local optima avoidance, flexibility (Mirjalili et al., 2014). The 

field of optimization has been continuously flooded with new metaheuristic algorithms 

ever since the introduction of the ‘’no free lunch theorem‘’ (Wolpert and Macready, 

1997). This theorem asserts that there is no universally efficient algorithm capable of 

solving all optimization problems. Over the past decade, an average of 38 algorithms per 

year have emerged (Rajwar et al., 2023), and most of them draw inspiration from nature. 

This trend is driven by the recognition that different optimization problems necessitate 

distinct techniques, as certain algorithms are more suitable for specific types of 

optimization than others. Metaheuristic algorithms are in majority population-based and 

have two main characteristics: exploration (diversification) and exploitation 

(intensification). Exploration is responsible in exploring the search space in its totality in 

order to find promising regions that may contain the global optimum, while exploitation 

intensifies the search in the neighborhood of the founded promising regions. Apart from 

introducing new algorithms, the hybridization of metaheuristics could create an even 

more efficient algorithm in terms of accuracy, speed of convergence and robustness. The 

present work evaluates for the first time the performance of three recent optimizers on 

identifying spatially distributed hydraulic conductivity tensors of a finite-element-steady-

state groundwater flow model, which are: the crow search algorithm (CSA) (Askarzadeh, 

2016), Rao-1 algorithm (Rao, 2020) and the CSARao-1 hybrid algorithm (Tadj et al., 

2021). Note that the latter algorithm has been developed to make the two formers work 

in a synergic way to achieve better performance. The remainder of the paper has the 

following structure: Section 2 briefly presents the proposed CSARao-1 hybrid algorithm. 

Section 3 describes the finite-element-steady-state groundwater flow model. Section 4 is 

dedicated to the results and discussion. Conclusion of the present study is provided in 

Section 5. 

THE CSARAO-1 HYBRID ALGORITHM 

Like all population-based algorithms, CSARao-1 hybrid algorithm (Tadj et al., 2021) 

iteratively guides a population of candidate solutions (crows) towards the global 

optimum. It hybridizes two recent optimization algorithms which are CSA (Askarzadeh, 

2016) and Rao-1 algorithm (Rao, 2020), and was proposed to address the shortcomings 

of the CSA that are slow convergence and poor robustness (Han et al., 2020). The 

weakness of the CSA can be summarized in two points: (1) the main CSA's search 

mechanism does not invoke the best solution found so far (available in the memory matrix 

at current iteration) in the calculation of the next solution which weakness its ability in 

exploiting promising regions in the search space, and (2) the random search mechanism 

when called generates a random new solution in the search space which slows down the 

algorithm's convergence. Hence, CSARao-1 hybrid algorithm replaces the CSA’s random 

search mechanism by the Rao-1 search mechanism. This new search mechanism is 

exploitative and is free of any tuning parameters. Instead of generating a random solution, 

it exploits the knowledge available in the memory matrix which enhances the new hybrid 
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algorithm's local search; and this is the essence of the proposed CSARao-1 hybrid 

algorithm. Fig. 1 shows the pseudo-code of the proposed CSARao-1 algorithm, where 
N is the population size, d is the number of parameters being optimized, fl is the flight 

length, AP is the awareness probability, iter denotes the current iteration, itermax is the 

maximum number of iteration, rand [1,0] refers to random numbers, x (N,d) is the matrix 
of candidate solutions, and m (N,d) denotes memory matrix. CSARao-1 hybrid 

algorithm has proved its superiority over other competitive optimization techniques in 

terms of accuracy, speed of convergence and robustness in analyzing transient time-

drawdown data in leaky and confined aquifers (Tadj et al., 2021), and in this note we 

extend its applicability in identifying spatially distributed physical parameters of an 

elliptic PDE. 

 

Figure 1: FORTRAN style pseudo-code of the CSARao-1 hybrid algorithm (Tadj et 

al., 2021). 

FINITE-ELEMENT-STEADY-STATE GROUNDWATER FLOW MODEL 

A steady-state two-dimensional flow through a heterogeneous and anisotropic confined 

aquifer (Fig. 2a), governed by the following elliptic PDE is considered is this study. 
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) = 𝑄𝑤 . 𝛿(𝑥𝑤 , 𝑦𝑤) (1) 

where h [L] represents the hydraulic head; the terms 𝑘𝑥(𝑥, 𝑦) and 𝑘𝑦(𝑥, 𝑦 ) [L²/T] are the 

diagonal elements of the hydraulic conductivity tensor in x direction and in y-direction, 

respectively; 𝑄𝑤 [L3/T] represents steady source/sink points; 𝛿 is Kronecker  delta 

function which equals to 1 in the presence of injection/pumping well at xw, yw [L], 

otherwise, it is taken as zero. The flow domain consists of two zones having constant 

hydraulic conductivities: k1x , k1y   for zone 1 , and  k2x , k2y for zone 2. The mathematical 
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model is solved by the finite elements method that consists of replacing the continuous 

system by an equivalent discrete one. In this work, the flow domain was meshed using 

four nodes quadrilateral elements (Fig 2b). The finite element formulation of the 

governing PDE was obtained using Galerkine's weighted residual method (Smith et al., 

2014; Hutton, 2008). The problem treated in this work is hypothetic in order to eliminate 

the sources of uncertainty due to measurements of the hydraulic head. 

 

Figure 2: Hypothetical problem: (a) flow domain (b) mesh and location of observed 

hydraulic heads. 

RESULTS AND DISCUSSION 

A direct finite element simulation with a set of hydraulic conductivities provided the 

inversion measurements, which are the errorless observed hydraulic heads, and their use 

allows us to test the ability of the selected metaheuristic algorithms to identify the 

physical parameters that were used for their calculation. The errorless hydraulic heads 

were then perturbed with a Gaussian noise of mean µ=0 and standard deviation σ = ± 

0.05, to simulate the measurement errors that can be made in the field and to check the 

stability of the identification process. The simulation-optimization linkage (Figure 3) 

consists of incorporating the finite-element simulation model into the optimization 

scheme. While the simulation model calculates the hydraulic heads, the optimization 

algorithm is responsible for the accuracy of the hydraulic conductivities to be identified. 

The objective function to be minimized is the sum of squared errors (SSE) between the 

observed hydraulic heads and those computed by the considered numerical model. Since 

the employed algorithms are stochastic, each one was independently executed 30 times, 

and the standard deviation (SD) was used as an index to assess the algorithms robustness; 

the most robust algorithm is the one that provides the same results at every run and thus 

has the lower SD values. In this work, the population size N was set equal to 60. The 

lower and upper bounds of the search space are 10E-10 and 0.1, respectively. The flight 

length fl and the awareness probability AP were set equal to 2 and 0.1, respectively, and 

the maximum number of iterations was fixed to 500. The results are presented in terms 
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of mean values. The reported values were rounded to few significant digits; the whole 

precision cannot be presented, this is common to avoid reporting too many digits, but the 

most accurate values were written in bold. 

It can be seen from tables 1 and 2 that the hydraulic conductivities were successfully 

identified by the three employed algorithms even for a limited number of observation 

points (6 points). As we can see, the relative errors rise when a white noise is added to 

hydraulic head measurements. With a standard deviation SD=0, CSARao-1 hybrid 

algorithm was the most robust, followed by CSA. The identified conductivities by the 

three algorithms using noisy measurements were inserted in the direct simulation model 

to plot the identified hydraulic head. As Fig. 4 shows, the hydraulic head maps provided 

by the inverse problems match well with the reference hydraulic head map. 

 

Figure 3: Simulation–optimization linkage, (b):  Reference hydraulic map and 

identified hydraulic maps using noisy measurements. 

Table 1: Identified hydraulic conductivities (errorless measurements) 

Algorithms 
Exact 

Parameters 

Identified 

parameters 

Relative errors 

(%) 
SD 

CSA k1x = 0.02 

k1y = 0.05 

k2x = 0.06 

k2y = 0.01 

k1x = 0.0200 

k1y = 0.0500 

k2x = 0.0601 

k2y = 0.0100 

0.04 

0.08 

0.10 

0.01 

3.37E-13 

Rao-1 k1x = 0.02 

k1y = 0.05 

k2x = 0.06 

k2y = 0.01 

k1x = 0.0200 

k1y = 0.0500 

k2x = 0.0601 

k2y = 0.0100 

0.04 

0.08 

0.10 

0.01 

1.26E-10 

CSARao-1 k1x = 0.02 

k1y = 0.05 

k2x = 0.06 

k2y = 0.01 

k1x = 0.0200 

k1y = 0.0500 

k2x = 0.0601 

k2y = 0.0100 

0.04 

0.08 

0.10 

0.01 

0. 
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The convergence curves are presented in Fig. 5. It can be seen that CSARao-1 hybrid 

algorithm converged faster towards the global optimums; and this is because of its 

enhanced exploration-exploitation balance. CSA ranks second in terms of speed of 

convergence. 

Table 2: Identified hydraulic conductivities (noisy measurements) 

Algorithms Exact 

Parameters  

Identified 

parameters  

Relative errors 

(%) 

SD 

CSA k1x = 0.02 

k1y = 0.05 

k2x = 0.06 

k2y = 0.01 

k1x = 0.0202 

k1y = 0.0509 

k2x = 0.0596 

k2y = 0.0098 

0.84 

1.89 

0.74 

2.47 

1.32E-

18 

Rao-1 k1x = 0.02 

k1y = 0.05 

k2x = 0.06 

k2y = 0.01 

k1x = 0.0202 

k1y = 0.0509 

k2x = 0.0596 

k2y = 0.0098 

0.84 

1.89 

0.74 

2.47 

9.53E-

11 

CSARao-1 k1x = 0.02 

k1y = 0.05 

k2x = 0.06 

k2y = 0.01 

k1x = 0.0202 

k1y = 0.0509 

k2x = 0.0596 

k2y = 0.0098 

0.84 

1.89 

0.74 

2.47 

0 . 

 

Figure 4: Reference hydraulic map and identified hydraulic maps using noisy 

measurements. 
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Figure 5: Convergence curves: (a): errorless measurements, (b): noisy 

measurements. 

CONCLUSION 

This study assessed the performance of three recent metaheuristic algorithms in 

estimating coefficients of an elliptic PDE that governs steady flows through porous 

media. Three optimization frameworks were developed by linking each algorithm to the 

corresponding finite element model, and the purpose of these linkages was to minimize 

the misfit between observed and computed  hydraulic heads. The results obtained by these 

frameworks were compared with each other in terms of accuracy, speed of 
convergence and robustness. Overall, the CSARao-1 hybrid algorithm exhibited 
better accuracy, speed of convergence and robustness. CSA ranked second followed 
by Rao-1 algorithm. Finally, the application of CSARao-1 hybrid algorithm may be 
extended to further real-world engineering problems. 
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