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ABSTRACT 

The intricate flow dynamics within a vortex settling basin (VSB) make it challenging to 

establish a generalized regression model for accurately estimating sediment removal 

efficiency. Therefore, this study proposes an alternative approach using the Adaptive 

Neuro Fuzzy Inference System (ANFIS) to predict the sediment removal efficiency of 

VSB. The model is developed based on a comprehensive and reliable database sourced 

from literature, encompassing a wide range of hydraulic and geometrical variables from 

laboratory and field studies. The sediment removal efficiency of the VSB is modelled as 

a function of five key variables: water abstraction ratio, depth ratio, width ratio, diameter 

ratio, and particle Reynolds number. Training and testing data are extracted from 

laboratory and field datasets in various reputable references. Numerical tests reveal that 

ANFIS yields more accurate VSB removal efficiency predictions than previous empirical 

approaches. Sensitivity analysis further indicates that the particle Reynolds number exerts 

a more significant influence on sediment removal efficiency than the other independent 

parameters. This ANFIS-based approach offers an enhanced understanding and 

prediction capability for the complex processes occurring within a VSB. 

Keywords: ANFIS, Vortex, Settling basin 

http://creativecommons.org/licenses/by/4.0


Ansari M.A. & al. / Larhyss Journal, 59 (2024), 193-209 

194 

INTRODUCTION 

The sedimentation of canals, especially in power canal systems, poses a risk of turbine 

damage and reduced power plant efficiency if sediment loads exceed the canal's transport 

capacity (Remini and Remini, 2003; Remini and Bensafia, 2016; Remini, 2019; Toumi 

and Remini, 2020). In hydroelectric facilities and irrigation canals, sediment extractors 

are often used to avert this. Various extractors, including tunnels, vortex tubes, 

rectangular settling basins, and vortex settling basins, aim to exclude sediment particles 

from the diverted water (Remini and Hallouche, 2005; Remini, 2011; Remini, 2017). 

Vortex-settling basins are the subject of the present investigation due to their potential 

advantages. The study evaluates the performance of vortex settling basins compared to 

other extractor types, considering factors such as sediment removal efficiency, 

dimensions, residence time, and cost-effectiveness. The investigation involves 

experimental work, data collection, and analysis to assess the effectiveness of vortex-

settling basins in mitigating sediment-related issues in canals and hydropower plants. 

Additionally, reviewing existing literature and case studies contributes to a 

comprehensive understanding of sediment extraction methods in this context. 

By introducing a tangential, higher-velocity flow into a cylindrical basin that features an 

orifice at its central bottom, Vortex-type sediment extractors have successfully addressed 

the limitations associated with traditional settling basins by utilizing vortex flow within a 

basin as a separation mechanism. Consequently, a combination of vortex conditions 

arises, with a free vortex forming near the orifice and a forced vortex developing in the 

outer region toward the periphery. The resulting secondary flow prompts fluid layers near 

the basin floor to move towards the central outlet orifice. This movement causes sediment 

particles in the flow to follow a helicoidal path towards the orifice, allowing for a longer 

settling length than the basin's dimensions. Consequently, relatively higher velocities can 

be sustained within the basin. The sediment that reaches the centre can be continuously 

flushed out through the orifice. The definition sketch of a vortex settling basin is shown 

in Figure 1 (Ansari and Athar, 2013; Ansari and Khan, 2014; Athar, 2000; Athar et al., 

2002, 2005; Cecen and Bayazit, 1975; Curi et al., 1979; Mashauri., 1986; Ogihara and 

Sakaguchi, 1984; Paul et al., 1991).  

 
Figure 1: Definition sketch of vortex settling basin 
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Cecen and Akmandor, (1973) provided formulas for determining the basin diameter, 

sidewall height, and orifice diameter based on a given discharge, sediment size, and 

desired η0. Several empirical equations for establishing the dimensions of the vortex basin 

and η0, when sediment and flow-related factors are specified (Paul, 1988; Paul et al., 

1991). Vortex chamber-type sediment extractors with different geometric configurations 

into three types and derived an expression for the parameter (Athar, 2000; Athar et al., 

2002). Athar et al., (2005) analyzed the literature and laboratory experiment data, 

considering a wide range of water abstraction ratios, sediment particle Reynold’s number, 

aspect ratio, and a new parameter represented as hp/du. Ansari and Athar (2013) 

investigated the impact of the diameter and width ratio on the sediment removal efficiency 

of Vortex Settling Basins (VSB). Ansari and Khan (2014) investigated how the 

placements of the inlet and outlet channels affected the differences in the sediment 

removal efficiency of vortex settling chambers and created a new removal efficiency 

prediction model. Sharafati et al. (2021) introduced four hybrid AI models (ANFIS-PSO, 

ANFIS-GA, ANFIS-ACO, and ANFIS-DE) for predicting removal efficiency in sediment 

dischargers. The ANFIS-PSO model demonstrated the highest predictability, showing 

maximum correlation coefficient values of 0.915 and 0.916 for the training and testing, 

respectively, among the developed hybrid models. Kiringu and Basson, (2021) employed 

both numerical and physical modeling techniques to investigate the trapping of very fine 

sand particles (greater than 75 mm) utilizing Vortex Settling Basins (VSBs) in the context 

of small river diversion projects. 

Despite the thorough analysis of extensive laboratory and field data gathered from the 

literature, the estimated removal efficiency values often need to be more consistent with 

their actual values. This discrepancy is attributed in part to the intricate nature of the 

phenomenon and, in part, to the limitations of the commonly employed analytical tool by 

many earlier investigators, namely, statistical regression. Adopting the Adaptive Neuro-

Fuzzy Inference System (ANFIS) is an alternative approach to address the challenges 

associated with variability in physical modelling. ANFIS, known for its high flexibility 

in data mining, is utilized in the current study to predict the sediment removal efficiency 

of a vortex-settling basin. 

This study aims to consolidate past observations regarding sediment removal efficiency 

in vortex-settling basins and assess the efficacy of ANFIS compared to statistical 

approaches for modelling sediment removal efficiency prediction in Vortex Settling 

Basins (VSB). 

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) 

The fuzzy logic approach expresses uncertainty through linguistic terms rather than 

numerical values. The fuzzy inference system consists of three main components: a rule 

base with fuzzy if-then rules, a database defining membership functions, and an inference 

system combining rules to produce results (Şen and Altunkaynak, 2004). The fuzzy logic 

modelling process involves determining membership functions, constructing fuzzy rules, 
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and defining output characteristics, output membership functions, and system results 

(Firat and Güngör, 2008; Sazi Murat, 2006). 

ANFIS combines the learning capabilities of artificial neural networks (ANNs) with the 

reasoning abilities of fuzzy logic. ANFIS can model complex and nonlinear relationships 

without requiring expert knowledge traditionally needed in standard fuzzy logic design. 

There are two types of fuzzy inference systems: Mamdani and Takagi-Sugeno (TS). 

Mamdani is preferred for capturing expert knowledge due to its intuitive rule base, but it 

involves a substantial computational burden and requires a defuzzification step. Takagi-

Sugeno uses a weighted average for crisp output, avoiding the need for classical 

defuzzification and offering better processing time. However, TS requires effective 

parameter selection, and ANFIS was developed to optimize these parameters using a 

hybrid learning algorithm. The present study employs a first order Sugeno inference 

system within ANFIS (Jang, 1993). 

To present the ANFIS architecture, two fuzzy if-then rules based on first order Sugeno 

model are considered. 

Rule 1. If 𝑥1 𝑖𝑠 𝐴1 and 𝑥2 𝑖𝑠 𝐵1  then 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1 

Rule 2. If 𝑥1 𝑖𝑠 𝐴2 and 𝑥2 𝑖𝑠 𝐵2  then 𝑓2 = 𝑝2𝑥1 + 𝑞2𝑥2 + 𝑟2 

where 𝑥1 and 𝑥2are the crisp inputs to the ith node, Ai and Bi are the linguistic labels such 

as low, medium, high etc., which are characterized by convenient membership functions, 

and Ai, qi and ri are the consequent parameters. 

The ANFIS architecture having five layers to implement the above mentioned two rules 

is shown in Figure (2), in which a circle indicates a fixed node, where as a square indicates 

an adoptive node. 

The functional details of these layers are as follows: 

Layer 1 (Input Layer): This layer represents the input variables to the system. Each node 

in this layer generates membership grades of the crisp inputs which belong to each of the 

convenient fuzzy sets by using membership functions. 

Each node's output Oi can be represented as: 

𝑂𝑖
1 = 𝜇(𝐴𝑖)(𝑥1) for i = 1,2  

𝑂𝑖
1 = 𝜇(𝐵𝑖−2)(𝑥2) for i = 3,4                      (1) 

𝑂𝑖
1 = 𝜇(𝐴𝑖)(𝑥1) = 𝑒

−0.5(
𝑥−𝑐𝑖

2

𝑎𝑖
)
        (2) 

Where μAi and μBi are the membership functions for the Ai and Bi fuzzy sets respectively 

and ai and ci are the premise parameters and these parameters change the shape of the 

membership function from 1 to 0. Various membership functions, such as triangular, 

generalized bell function, Gaussian function, etc., can be applied to determine the 

membership grades. In the present study, the Gaussian membership function represented 

as Equation (2) is used. 
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Layer 2 (Fuzzification Layer): Fuzzy membership functions are applied to the input 

variables to represent their degree of membership to linguistic terms. The nodes in this 

layer are fixed nodes. The AND/OR operator is applied to get one output representing the 

antecedent results for a fuzzy rule, i.e., firing strength. The outputs of the second layer, 

called firing strengths Oi
2, are the products of the corresponding degrees obtained from 

layer 1, termed w, i.e. 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇(𝐴𝑖)(𝑥1)𝜇(𝐵𝑖)(𝑥2) i=1,2                      (3) 

Layer 3 (Rule Layer): This layer computes the firing strength of each rule by combining 

the fuzzy membership values. The nodes of this layer are fixed nodes-labelled N. The 

main target is to compute the ratio of firing strength of each ith rule to the sum of the firing 

strength of all rules. The firing strength in this layer is normalized as: 

𝑂𝑖
3 = �̄�𝑖 =

𝑤𝑖

∑ 𝑤𝑖𝑖
 i=1,2        (4) 

Layer 4 (Normalization Layer): The firing strengths are normalized to ensure consistent 

scaling. The nodes of this layer are adoptive nodes and uses the above ratio as weighing 

factor. The contribution of the ith rule towards the total output or the model output and/or 

the function defined is calculated by: 

𝑂𝑖
4 = �̄�𝑖𝑓𝑖 = �̄�𝑖(𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖) i=1,2         (5) 

where �̅�𝑖 is the ith node output from the previous layer and (pi, qi, ri) is the set of 

parameters of this layer. These parameters are called as consequent parameters. 

Layer 5 (Output Layer): The output of the system is computed by aggregating the 

contributions of all rules. This layer has one node for single output, which is a fixed node 

labelled as S. This node computes the overall output by summing all incoming signals 

and it is the last step of ANFIS. The overall output of the ANFIS is calculated as: 

𝑓(𝑥1, 𝑥2) =
𝑤1(𝑥1,𝑥2)𝑓1(𝑥1,𝑥2)+𝑤2(𝑥1,𝑥2)𝑓2(𝑥1,𝑥2)

𝑤1(𝑥1,𝑥2)+𝑤2(𝑥1,𝑥2)
=
𝑤1𝑓1+𝑤2𝑓2

𝑤1+𝑤2
        (6) 

𝑂𝑖
5 = 𝑓(𝑥1, 𝑥2) = ∑ �̄�𝑖𝑓𝑖𝑖   

𝑂𝑖
5 = �̄�1𝑓1 + �̄�2𝑓2 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
        (7) 

The task of the learning algorithm is to tune all the modifiable parameters, namely (ai ci) 

and (pi, qi, ri) to make the ANFIS output match the training data. This learning algorithm 

is a hybrid algorithm consisting of the gradient descent and the least-squares estimate. 

Using this hybrid algorithm, the rule parameters are recursively updated until acceptable 

error is reached. Each iteration includes two sweeps, one forward and one backward. In 

the forward pass, the antecedent parameters are fixed, and the consequent parameters are 

obtained using the linear least-squares estimate. In the backward pass, the consequent 

parameters are fixed, and the output error is back propagated through the network, and 

the antecedent parameters are updated accordingly using the gradient descent method. 

The output of the ANFIS is calculated by employing the consequent parameters found in 

the forward pass.  
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The learning mechanism employed in the Adoptive Neuro-Fuzzy Inference System 

(ANFIS) employs a hybrid strategy that merges the gradient descent method with the 

least-squares estimate. This amalgamated algorithm plays a pivotal role in fine-tuning the 

adjustable parameters of the ANFIS model, explicitly targeting the antecedent parameters 

(ai ci) and the consequent parameters (pi, qi, ri). The primary objective of this learning 

algorithm is to iteratively modify these parameters to ensure a harmonious alignment 

between the ANFIS output and the training data. This iterative process persists until a 

satisfactory level of error is attained. 

Let's delve into the specifics of the hybrid-learning algorithm: 

a) Initialisation: The parameters amenable to modification (ai, ci, pi, qi, ri) undergo an 

initialisation process, either randomly or according to predefined criteria. 

b) Forward Pass: In the forward pass, the antecedent parameters (ai ci) remain constant, 

while the consequent parameters (pi, qi, ri) are determined using the linear least-

squares estimate. The linear least-squares estimate minimises the sum of squared 

errors between the actual output and the output predicted by the current parameter set. 

This step is critical for refining the consequent parameters to better suit the training 

data. 

c) Backward Pass: During the backward pass, the consequent parameters (pi, qi, ri) are 

held steady, and the output error undergoes backpropagation through the network. The 

antecedent parameters (ai ci) are then updated using the gradient descent. This method 

involves adjusting the parameters opposite to the gradient of the error function 

concerning the parameters. This iterative refinement process enables the system to 

minimise the overall error by fine-tuning the antecedent parameters. 

d) Iteration: A single iteration of the learning algorithm encompasses both the forward 

and backward passes. This iterative process is repeated for a predetermined number 

of iterations or until a convergence criterion is met. 

e) Convergence Check: The learning algorithm updates the parameters until the error 

reaches a satisfactory level or until a predefined convergence criterion is fulfilled. This 

criterion might be based on the error change or the parameter alteration between 

successive iterations. 

f) Output Calculation: Upon achieving convergence, the final set of consequent 

parameters obtained from the forward pass is utilised to compute the output of the 

ANFIS for new input data. 

It is crucial to emphasise that this hybrid learning algorithm, elucidated by Jang, (1993), 

amalgamates the advantages of gradient descent and least-squares estimation methods. 

The gradient descent facilitates local adjustments for parameter fine-tuning, while the 

least-squares estimate contributes a global optimisation perspective, enhancing the 

adaptability and generalisation capabilities of ANFIS. 
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METHODOLOGY 

The methodology of the present study is presented herein. 

Collection of Laboratory and field data 

Comprehensive experimental data about various types of vortex-settling basins were 

acquired through laboratory experiments conducted by researchers viz. (Ansari, 2008; 

Ansari and Athar, 2013; Ansari & Khan, 2014; Athar, 2000; Athar et al., 2002; Curi et 

al., 1979; Esen, 1989; Mashauri., 1986; Paul et al., 1991). Additionally, field data sourced 

from the investigations of (Mashauri., 1986; Paul, 1988; Paul et al., 1991) were 

incorporated. The non-dimensional parameters employed in the present study have been 

systematically organized in Table 1. 

Table 1: Range of dimensionless parameters used in present study 

S.No. Source 

𝑄𝑢/𝑄𝑖 𝑍ℎ/ℎ𝑝 𝜔𝑜𝑑50 𝜈⁄  

Min.- Max 

(%) 
Min.- Max Min.- Max 

1 (Curi et al., 1979) 3.60–10.60 0.337 – 0.727 65.30 

2 (Mashauri., 1986) M-I 5.60–18.20 0.848 1.25 – 120.8 

3 (Mashauri., 1986) M-II 3.90–6.60 0.793 4.26 – 20.63 

4 (Mashauri., 1986) M-III 3.30–14.0 0.832 0.21 – 8.45 

5 (Paul, 1988) 2.20 – 22.0 0.538 0.43 – 0.51 

6 (Esen, 1989) 4.70 – 6.90 0.30- 0.75 10.1-126.6 

7 (Paul et al., 1991) 12.0 – 22.0 0.172-0.571 4979.8 

8 (Athar, 2000; Athar et al., 2002) 8-17 0.192-0.649 0.15-127.29 

9 (Ansari, 2008; Ansari & Athar, 2013) 0.0 - 20.0 0.558 - 0.684 0.175 - 100.77 

10 (Ansari & Khan, 2014) 0.0 - 20.0 0.56-0.67 18.35-100.41 

 

S.No. Source 

𝐷𝑇/𝑑𝑢 𝐷𝑇/𝐵 ℎ𝑝/𝑑𝑢
 

𝜂𝑜 

Min.- Max Min.- Max Min.- Max 
Min.- Max 

(%) 

1 (Curi et al., 1979) 17.72-70.87 5.0 2.76-2.90 48.0 – 89.0 

2 (Mashauri., 1986) M-I 25.0-33.33 1.28 - 45.0 – 80.0 

3 (Mashauri., 1986) M-II 25.0-50.0 1.28 - 87.0 – 90.0 

4 (Mashauri., 1986) M-III 17.98-59.88 1.28 - 40.0 – 90.0 

5 (Paul, 1988) 24.10-97.09 3.01-5.02 - 23.0 – 41.0 

6 (Esen, 1989) 37.03 5.0 2.77 84.0 – 90.0 

7 (Paul et al., 1991) 21.23-28.33 5.0 5.0-8.46 72.0 – 90.0 

8 (Athar, 2000; Athar et al., 2002) 10.0 5.0 1.45-1.61 20.0–90.0 

9 (Ansari, 2008; Ansari & Athar, 2013) 9.91 - 38.76 4.87 - 25.17 1.5-2.8 21 – 89 

10 (Ansari & Khan, 2014) 9.91 4.87 1.18-1.41 21 – 95 
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Dimensional analysis for sediment removal efficiency of vortex settling basin 

The removal efficiency of vortex settling basin (η0) can be expressed as a function of the 

discharge in inlet channel (Qi), discharge through underflow outlet (Qo), difference in 

elevation between bed of vortex chamber and overflow outlet channel (Zh), the head at 

the periphery of the basin (hp), diameter of vortex chamber (DT), width of inlet canal (B), 

diameter of underflow outlet (du), median size of sediment particles (d50), the fall velocity 

of the sediment particle (ω0), the kinematic viscosity of water (ν) and acceleration due to 

gravity (g) (Ansari and Athar, 2013). 

η0 = f (Qi, Qu, Zh, hp, DT, B, du, d50, ω0, ν, g) (8) 

The Buckingham theorem makes it simple to organize the variables of Equation (1) into 

the subsequent non-dimensional form (Ansari and Athar, 2013). 

𝜂𝑜 = 𝑓 (
𝑄𝑢

𝑄𝑖
,
𝑍ℎ

ℎ𝑝
,
𝐷𝑇

𝐵
,
𝐷𝑇

𝑑𝑢
, (
𝜔𝑜𝑑50

𝜈
))        (9) 

Here 𝑄𝑅 =
𝑄𝑢

𝑄𝑖
 represents the discharge ratio, 𝑍𝑅 =

𝑍ℎ

ℎ𝑝
 is the depth ratio, 𝐵𝑅 =

𝐷𝑇

𝐵
 is the 

width ratio, 𝐷𝑅 =
𝐷𝑇

𝑑𝑢
 is the diameter ratio and 𝑅𝑒 = (

𝜔𝑜𝑑50

𝜈
) is the particle Reynolds 

number. Such a functional relationship can be used to develop an ANFIS model for the 

removal efficiency of the vortex settling basin. 

Development of ANFIS model 

The ANFIS input, illustrated in Figure 2, undergoes conversion into fuzzy membership 

functions. These functions are combined, and an average process is applied to obtain 

output membership functions, leading to the final desired output. 

The construction of the ANFIS model, depicted in Figure 3, involves inputs (QR, ZR, BR, 

DR, Re) and output η0. Genfis2 is employed to create a first-order Sugeno fuzzy system, 

utilizing seven membership functions for η0 estimation. A fuzzy logic toolbox in 

MATLAB is utilized to establish the causal relationship for sediment removal efficiency. 

The training process involves 80% of randomly selected data for training and 20% for 

testing/validation. ANFIS, combined with a fuzzy subtractive clustering algorithm, forms 

the initial rule base. The number of clusters is determined experimentally, with a cluster 

radius of 0.557 and seven clusters. The ANFIS model employs a hybrid learning rule for 

training based on input/output data pairs, completing training at epoch 300. Details of the 

membership functions are presented in Figure 3Erreur ! Source du renvoi introuvable., 

showcasing the influence of each input parameter on the output after training. Table 2 

summarizes the results of the ANFIS model. 

The performance evaluation of the ANFIS model includes the coefficient of 

determination (R2), Mean Absolute Percentage Error (MAPE), and Root Mean Square 

Error (RMSE). The training stops when an acceptable error level is achieved, or the 

number of iterations exceeds a predetermined maximum. 
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Figure 2: Basic architecture of ANFIS 

 

 

Figure 3: The ANFIS for sediment removal efficiency 
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Figure 4: Comparison between observed and computed values of efficiency 

Table 2: Detail of ANFIS model parameters 

S. No. Parameters Number 

1 Number of inputs 5 

2 Number of membership functions for each input 7 

3 Type of membership functions for each input Gaussian 

4 Fuzzy rules 7 

5 Type of membership functions for each output Linear 

6 Number of membership functions for output 7 

7 Nodes 92 

8 Linear parameters 42 

9 Nonlinear parameters 70 

10 Total parameters 112 

11 Training data pairs 311 

12 Checking data pairs 77 

13 Cluster radius 0.557 
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RESULTS AND DISCUSSIONS 

The assessment of model performance is conducted through error estimation parameters, 

namely R2, MAPE, and RMSE. Table 4 provides these metrics for both the regression and 

ANFIS models. A visual representation of the comparison between the calculated 

sediment removal efficiency, derived from the ANFIS model, and observed values is 

illustrated in Erreur ! Source du renvoi introuvable. for both the training and testing 

datasets. This comparative analysis offers insights into the accuracy and reliability of the 

ANFIS model in predicting sediment removal efficiency. 

Table 3: Available relationships for sediment removal efficiency of vortex settling 

basin 

S.No. Investigator Available Relationships 

1 (Paul et al., 1991) 𝜂0 = 98 + 0.92 ⥂ 𝑙𝑜𝑔(𝑉𝑠/𝑊)
  

2 (Paul et al., 1991) 𝜂0 = 97.8(𝑉𝑠/𝑉𝑡𝑜)
0.0045(𝑄𝑢/𝑄𝑖)

0.01  

3 (Athar et al., 2002) 𝜂0 = 2.24(𝑄𝑢/𝑄𝑖)
0.25(𝑍ℎ/ℎ𝑝)

0.35
(𝜔0𝑑50/𝜈)

0.15(𝑄𝑤
2 /

𝑔𝑅𝑇
3ℎ𝑝
2)
0.11

and  

𝜂0 = 1.35(𝑄𝑢/𝑄𝑖)
0.25(𝑍ℎ/ℎ𝑝)

0.35
(𝜔0𝑑50/𝜈)

0.15(𝑄𝑤
2 /𝑔𝑅𝑇

3ℎ𝑝
2)
0.11  

4 (Athar et al., 2005) 𝜂0 = 0.4(𝑄𝑢/𝑄𝑖)
0.27(𝐷𝑇/𝑑𝑢)

0.1(𝜔0𝑑50/𝜈)
0.12(ℎ𝑝/𝑑𝑢)

0..35  

5 (Ansari and Athar, 

2013) 
𝜂𝑜 = 0.44  (

𝑄𝑢

𝑄𝑖
)
0.19

 (
𝑍ℎ

ℎ𝑝
)
0.15

(
𝜔𝑜𝑑50

𝜐
)
0.11

 (
𝐷𝑇

𝑑𝑢
)
0.11

(
𝐷𝑇

𝐵
)
0.10

 
 

6 (Ansari and Khan, 

2014) 

𝜂0 = 0.559(𝐷𝑇/𝐵)
−0.212(𝐷𝑇/𝑑𝑢)

−0.025(ℎ𝑝/𝑑𝑢)
0.227

(𝑄𝑢/

𝑄𝑖)
0.116(𝝎𝟎𝒅𝟓𝟎/𝝂)

𝟎.𝟏𝟎𝟕(𝒁𝒉/𝒉𝒑)
−𝟎.𝟐𝟓𝟕

   

Table 4: Performance parameters of existing and ANFIS model 

Source Data set 
Performance parameters 

R2 APE MAPE AAD RMSE STDV 

(Paul et al., 1991) 
Model I 

Training 0.390 -93.0804 93.09521 61.85399 0.438161 92.25061 
Testing 0.415 -83.4572 83.45724 57.31896 0.422229 77.42678 

(Paul et al., 1991) 

Model II 

Training 0.395 -77.8913 78.58665 49.7755 0.381599 84.85917 

Testing 0.420 -77.0255 77.46916 52.20955 0.381994 77.40152 
(Athar et al., 2002) Training 0.255 17.5660 41.40200 42.98800 0.334000 28.39500 

Testing 0.153 18.6220 40.18300 42.13500 0.323000 27.97300 

(Athar et al., 2005) Training 0.686 -2.81844 25.92357 22.94885 0.172541 25.81265 
Testing 0.641 -2.12772 26.52212 23.08555 0.181221 28.23479 

(Ansari & Athar, 

2013) 

Training 0.423 2.59899 32.88808 31.08978 0.225918 24.90411 

Testing 0.369 4.417783 32.13546 30.41322 0.234456 28.83672 
(Ansari & Khan, 

2014) 

Training 0.753 -8.96823 25.02786 20.2135 0.149747 25.58304 

Testing 0.737 -7.88695 24.36534 20.01028 0.152936 24.9883 

ANFIS Model Training 0.915 -3.27051 13.39407 11.00353 0.095064 15.41759 
Testing 0.884 -4.44876 15.83605 13.36804 0.105335 15.78243 
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Comparison of ANFIS model with existing relationships for 𝜼𝒐  

A comparative analysis was conducted to assess the predictive accuracy of the ANFIS 

model regarding the sediment removal efficiency of Vortex Settling Basins (VSB). The 

ANFIS model was compared with existing relationships found in the literature, utilizing 

the same dataset, and the results are detailed in Table 4. The selected models for 

comparison were those formulated by (Ansari and Athar, 2013; Ansari and Khan, 2014; 

Athar et al., 2002, 2005; Paul et al., 1991), as indicated in Table 3. 

It is evident from Erreur ! Source du renvoi introuvable. and Table 4 that the ANFIS 

model outperforms the available relations in predicting sediment removal efficiency. 

Table 4 explicitly highlights that the R2 value attains its maximum at 0.915, while the 

MAPE, ADE, and RMSE values are notably low at 13.394, 11.004, and 0.0951, 

respectively, for the ANFIS model. These results signify a satisfactory estimation of VSB 

sediment removal efficiency, indicating the efficacy of the ANFIS approach in addressing 

nonlinearity within the data. The comparison suggests that applying fuzzy if-then rules in 

ANFIS is more suitable for processing efficiency data than the crisp value processing 

employed in existing relations. The present ANFIS model should be utilized within the 

range of data outlined in Table 1. 

Sensitivity analysis 

Sensitivity tests were conducted to assess the relative significance of each independent 

parameter (input) on the efficiency of removal (output) in the context of the Vortex 

Settling Basin (VSB). In the sensitivity analysis, each input parameter was systematically 

eliminated from the model, and its impact on predicting the removal efficiency of the 

VSB was evaluated based on criteria such as R2, MAPE, and RMSE. 

The comparison of different ANFIS models, where each model had one independent 

parameter removed, is outlined in Table 5. The results from Table 5 indicate that the 

Reynolds number, Re, emerges as the most significant parameter for predicting the 

removal efficiency of the vortex settling basin. The variables, in descending order of 

sensitivity for the ANFIS model, are: Re, DR, QR, ZR, and BR. These findings align with 

the established understanding of the hierarchical importance of various parameters in 

influencing the removal efficiency of a vortex settling basin. 

Table 5: Sensitivity analysis for ANFIS model 

Input 

variables 

Data set Performance parameters 

R2 APE MAPE AAD RMSE STDV 

All (Eq.9) Training 0.914526 -3.27051 13.39406 11.00353 0.095063 15.41758 
Testing 0.883868 -4.44876 15.83605 13.36804 0.105334 15.78243 

NO 𝑸𝑹 Training 0.866239 -5.49981 17.35569 14.23432 0.117417 19.64364 

Testing 0.839035 -6.00590 18.94599 16.28553 0.130895 19.69554 

NO 𝒁𝑹 Training 0.8677 -5.07330 17.13828 14.04259 0.116816 20.08586 

Testing 0.823569 -4.43862 19.30155 16.3027 0.128441 19.35565 

NO 𝑩𝑹 Training 0.874829 -4.70265 16.39800 13.72777 0.113841 17.33267 
Testing 0.837571 -4.27344 16.99944 14.99758 0.122535 16.75058 

NO 𝑫𝑹 Training 0.863044 -4.91318 17.06345 14.35562 0.118705 20.41694 

Testing 0.812217 -5.21910 18.63489 16.22231 0.128462 17.19098 
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NO 𝑹𝒆 Training 0.805484 -7.36045 22.48465 17.89191 0.139265 21.97371 
Testing 0.772839 -11.2471 24.22015 18.73921 0.14112 23.98218 

CONCLUSION 

This study explores the applicability of the Adaptive Neuro Fuzzy Inference System 

(ANFIS) as an alternative to conventional empirical prediction equations for estimating 

the sediment removal efficiency of vortex settling basins. The analysis involves an 

extensive dataset, incorporating both laboratory and field data, to predict sediment 

removal efficiency based on parameters such as Qi, Qu, Zh, hp, DT, B, du, d50, ω0. 

Comparing the results, the ANFIS technique demonstrates generally superior 

performance compared to traditional empirical equations, characterized by lower errors 

and higher correlation coefficients. The accuracy of sediment removal efficiency 

equations proposed by various researchers were evaluated using a diverse dataset, 

revealing that none of the existing predictors achieve satisfactory performance for vortex 

settling basin sediment removal efficiency. In contrast, the recommended ANFIS model 

provides computed sediment removal efficiency values that closely align with measured 

values. Qualitatively, the ANFIS model exhibits the lowest MAPE = 13.394, RMSE = 

0.0951, APE = -3.4356, and the highest R2 = 0.915 compared to existing relations. 

Sensitivity analysis indicates that Reynolds number (Re) is the most significant parameter, 

with the variables ranked in decreasing order of sensitivity for the ANFIS model being 

Re, DR, QR, ZR, and BR. However, given the limitations and uncertainties in the data, an 

ANFIS model incorporating all input variables is deemed desirable for a more 

comprehensive analysis. 
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Notations 

𝐵 = Bed width of the inlet channel 

𝑐 = Concentration in parts per million 

𝑑 = Diameter of the inlet pipe 

𝐷𝑇  = Diameter of the vortex-settling basin 

𝐷𝑇 𝐵⁄ = 𝐵𝑅= Width ratio 

𝑑50 = Median size of the sediment particles  

𝑑𝑢 = Diameter of the under flow outlet orifice 

𝑔 = Gravitational acceleration 

hi = Depth of flow at entrance of the vortex settling basin 

hp = Depth of flow at the periphery of the vortex settling basin 
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ℎ𝑢 = Depth of flow at the centre of the underflow outlet  

𝑝𝑝𝑚 = Parts per million 

𝑄𝑖  = Discharge in inlet channel 

𝑄𝑢 = Discharge through underflow outlet 

𝑄𝑢 𝑄𝑖⁄ = 𝑄𝑅  = Water abstraction ratio 

𝑆𝑇 = Bottom slope of the vortex settling basin 

𝑧 = Depth in the basin measured from the bottom of basin 

𝑍ℎ =  Difference between the bed levels of vortex settling basin and overflow 

outlet channels 

𝑍ℎ ℎ𝑝⁄ = 𝑍𝑅 = Depth ratio 

𝜂𝑜 = Efficiency of sediment removal 

𝜈 = Kinematic viscosity 

𝜔𝑜 = Fall velocity of the sediment particle 
𝜔𝑜𝑑50

𝜈
  = 𝑅𝑒 = Particle Reynolds number 
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APPENDIX 

IMPLEMENTING THE CURRENT ANFIS-BASED PREDICTION MODEL FOR 

SEDIMENT REMOVAL EFFICIENCY OF VORTEX SETTLING BASIN 

The utilization of the current model is characterized by its inherent simplicity and ease of 

application. Upon training, the neural networks can be serialized into a file format for 

preservation. Subsequently, within the MATLAB environment, the procedure involves 

invoking a designated function to derive the corresponding output for a specified input. 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑓𝑖𝑠, 𝑖𝑛𝑝𝑢𝑡);  

This function conducts a simulation of the Fuzzy Inference System as fis based on the 

input and target data as input and target, respectively, producing corresponding output 

data as output. In a system featuring N input variables and L output variables, input 

represents an M × N matrix, where each row corresponds to a distinct input value. 

Likewise, target denotes a vector, where each row contains the corresponding target 

values. 

 

Example 1 

(i) The values of input parameters, (
𝑄𝑢

𝑄𝑖
,
𝑍ℎ

ℎ𝑝
,
𝐷𝑇

𝐵
,
𝐷𝑇

𝑑𝑢
, (
𝜔𝑜𝑑50

𝜈
)) and the target, (η0) are: 

(ii) 𝑖𝑛𝑝𝑢𝑡 =

(

 
 

0.074 0.411 5.000 35.433 65.296
0.059 0.727 5.000 35.433 65.296
0.186 0.249 5.000 35.433 65.296
0.143 0.269 5.000 17.717 65.296
0.106 0.428 5.000 17.717 65.296)

 
 
  𝑡𝑎𝑟𝑔𝑒𝑡 =

(

 
 

0.960
0.890
0.970
0.930
0.890)

 
 

 

(iii) The predicted values of removal efficiency of vortex settling basin (η0) can be 

calculated utilizing the subsequent functions: 

(iv) 𝑓𝑖𝑠𝑚𝑎𝑡 = 𝑎𝑛𝑓𝑖𝑠([𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡], 𝑔𝑒𝑛𝑓𝑖𝑠(𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡)); 

(v) 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑓𝑖𝑠𝑚𝑎𝑡, 𝑖𝑛𝑝𝑢𝑡); 

(vi) The results of output are as follows: 

(vii) 𝑜𝑢𝑡𝑝𝑢𝑡 =

(

 
 

0.880
0.757
0.972
0.912
0.912)

 
 

 

 


