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ABSTRACT 

Stream flow forecasting is essential for effective water resource management and flood 

prediction, but it poses significant challenges due to the complex nature of hydrological 

systems. Traditional methods often struggle to capture temporal dependencies and 

nonlinear relationships within the data, leading to inaccuracies in predictions. The specific 

objectives of this study are to (1) evaluate the effectiveness of long short-term memory 

(LSTM) networks and gradient boosting machine (GBM) in predicting stream flow in the 

Garudeshwar watershed of the Narmada River basin in central India, and (2) compare 

their performance using several evaluation metrics. This study utilizes datasets spanning 

training, validation, and testing phases to thoroughly examine and compare the models' 

performances. The evaluation metrics include Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), R-squared (R²), and Root Mean Square Percent Error (RMSPE). 

The findings demonstrate that GBM consistently outperforms LSTM across all datasets. 

For instance, on the training dataset, GBM achieved an MAE of 0.123, an RMSE of 0.456, 

and an R² of 0.96, whereas LSTM had an MAE of 0.234, an RMSE of 0.567, and an R² 

of 0.87. Similar trends were observed on the validation and testing datasets, with GBM 

maintaining superior performance metrics. By showcasing the superior performance of 

GBM, this research aims to enhance stream flow forecasting methods and support well-

informed decision-making in water resource management and flood prediction efforts. 

Keywords: Stream flow forecasting, Long Short-Term Memory networks, Water 

resource management, Gradient Boosting Machines 
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INTRODUCTION  

Stream flow forecasting is a critical component of hydrological studies, essential for 

effective water resource management, flood control, and environmental sustainability 

(Ajeagah and Bissaya, 2017; Cherki, 2019; kedam et al., 2024). Accurate stream flow 

projections are essential for making educated decisions about water allocation, 

infrastructure design, and disaster preparedness (Rouissat and Smail, 2022; Hafnaoui et 

al., 2023). However, achieving precise stream flow forecasts presents significant 

challenges due to the complex interactions within hydrological systems and precipitation, 

geography, and changes in land use all have an impact (Dwarakish and Ganasri, 2015; 

Fernando et al., 2021). The primary challenge in stream flow forecasting lies in 

developing models that can accurately predict future stream flow levels using historical 

stream flow data (Liu et al., 2020a). Conventional approaches to stream flow forecasting 

frequently depend on statistical or empirical models, which may find it difficult to 

adequately represent the dynamic and non-linear character of hydrological processes 

based only on historical stream flow data (Benkaci et al., 2020; Kumar et al., 2023, 

Jodhani et al., 2023a). 

Empirical models, based solely on historical stream flow data, may have limited 

predictive power, especially when faced with changing environmental conditions or 

sudden hydrological events (Hachemi and Benkhaled, 2016; Brunner et al., 2021; Abd 

Rahman et al., 2023). Statistical techniques, such as time series analysis or autoregressive 

models, may also face challenges in accurately capturing the complex relationships 

inherent in stream flow (Khaliq et al., 2009). Furthermore, the quality and availability of 

historical stream flow data, which can range greatly between locations and time periods, 

may pose limitations to established approaches (Liu et al., 2017). This limitation can 

hinder the ability of traditional models to provide reliable forecasts, particularly in areas 

with sparse or inconsistent data (Baudhanwala et al., 2024). Several studies have explored 

different approaches to stream flow forecasting (Cherki, 2019). Some researchers have 

employed autoregressive integrated moving average (ARIMA) models, which utilize the 

temporal dependencies within the stream flow data to make future predictions (Wu and 

Chau, 2010). Although ARIMA models have demonstrated some potential for stream 

flow forecasting, the model's effectiveness may be influenced by the properties of the data 

and the underlying hydrological processes (Jodhani et al., 2023b). In recent years, 

machine learning (ML) techniques have emerged as potential replacements for stream 

flow forecasting (Hellal et al., 2023).  

ML is a branch of artificial intelligence (AI) that focuses on developing models and 

algorithms that can learn from data and make decisions or predictions without the need 

for express programming (Kantharia et al., 2024, Mehta et al., 2023). ML algorithms, in 

contrast to conventional rule-based systems, can evaluate enormous volumes of data, spot 

patterns, and extract insightful knowledge to address challenging issues in a variety of 

fields. One of machine learning's main advantages is its capacity to manage and analyze 

vast and varied datasets, which makes it possible to find complex patterns and correlations 

that would not be obvious to human observers (Jodhani et al., 2023c). ML algorithms can 

adapt and improve over time as they encounter new data, continuously refining their 
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predictions and decision-making capabilities (Muttil and Chau, 2007). ML techniques 

encompass a wide range of algorithms, each suitable for a certain set of tasks and data, 

including supervised learning, unsupervised learning, and reinforcement learning 

(Fellous et al., 2023). Supervised learning teaches computers how to convert input 

features into output labels by utilizing labeled data to train models. On the other hand, 

unsupervised learning focuses on finding hidden structures or patterns in unlabeled data. 

Reinforcement learning teaches agents how to interact with their environment and figure 

out the optimum course of action through trial and error (Kumar et al., 2023). 

The capacity of artificial neural networks (ANN) to extract intricate non-linear 

correlations from data has been the subject of much research. ANN-based models trained 

solely on historical data have demonstrated competitive performance in stream flow 

forecasting tasks (Djeddou and Achour, 2015). Support vector machines (SVM) have also 

been investigated for stream flow forecasting, leveraging their capacity to identify 

patterns within the stream flow data. SVM-based models trained on historical stream flow 

data have shown promising results in various hydrological applications, offering robust 

predictions even with limited input data. 

Literature Review 

Recent research has focused on enhancing streamflow forecasting methodologies, crucial 

for water resource management and flood prediction. Rasouli et al. (2012) explored 

machine learning approaches for daily streamflow forecasting and found that nonlinear 

models such as support vector regression (SVR) and Bayesian neural network (BNN) 

outperformed linear models. Cheng et al. (2020) found LSTM models outperforming 

ANN for long lead-time forecasting. Rahimzad et al. (2021) demonstrated LSTM 

robustness in daily streamflow forecasting compared to linear regression (LR) and 

multilayer perceptron (MLP). Akbarian et al. (2023) emphasized the importance of 

climate data in runoff forecasts, with ANN and extreme gradient boosting (XGBoost) 

showing promise. Le et al. (2021) favored LSTM over other deep learning models for 

streamflow forecasting, particularly in dam-influenced scenarios. 

Yaseen et al. (2015) reviewed the application of AI in streamflow forecasting, 

emphasizing its benefits in capturing dataset complexity. Saraiva et al. (2021) favored 

ANNs over SVM for daily streamflow forecasting in Brazil. Liu et al. (2020b) proposed 

a deep neural network approach for streamflow prediction, particularly during 

catastrophic flood events. Granata et al. (2022) compared daily streamflow prediction 

models across different river basins, emphasizing dataset characteristics. Rezaie-Balf et 

al. (2019) explored preprocessing techniques for reservoir inflow forecasting, achieving 

significant accuracy improvements. Wegayehu and Muluneh (2022) compared deep 

learning models for daily streamflow forecasting in Ethiopia, considering variations in 

river basin characteristics. This study addresses critical gaps in stream flow prediction for 

hydrological and water resource management. Traditional methods often fail to capture 

the short-term variability crucial for effective flood management and immediate water 

allocation. While previous research has focused on either machine learning techniques 



Shaikh A.F. & al. / Larhyss Journal, 60 (2024), 171-187 

174 

like ANN, SVM, LSTM, SVM etc., this study explores the potential to enhance prediction 

accuracy.  

Objective of the Study 

This study compares and evaluates the performance of LSTM networks and GBM for 

stream flow forecasting in the Garudeshwar watershed of central India's Narmada River 

basin. The work attempts to evaluate the prediction performance of GBM and LSTM by 

means of a rigorous analysis, considering the intricate temporal relationships present in 

stream flow data. Performance metrics such as MAE, RMSE, R², and RMSPE will be 

used to evaluate the accuracy, precision, and reliability of both models. The study aims 

to provide insights into the practical implications of GBM and LSTM for water resource 

management and flood prediction efforts in the Garudeshwar watershed and other 

hydrological contexts by comparing their strengths and limitations across various 

datasets, including training, validation, and testing datasets.  

STUDY AREA AND DATA COLLECTION 

The Narmada River, one of central India's largest rivers, runs through Madhya Pradesh, 

Gujarat, and Maharashtra, deeply affecting the region's history, environment, and culture. 

The river is revered by Hindus and is significant both ecologically and culturally since its 

waters support a wide variety of flora and wildlife. The Garudeshwar Gauging Station, 

which is in the Narmada River basin, is an important hydrological research centre. 

Situated near the Gujarat town of Garudeshwar, this station plays a pivotal role in 

monitoring and analysing various hydrological parameters of the river. Equipped with 

sophisticated instruments, it meticulously tracks water levels, discharge rates, and flow 

velocities. The research domain surrounding the gauging station is delineated by its 

measurement scope, which may fluctuate based on research objectives or water 

management mandates. Extending both upstream and downstream, this research area 

facilitates a comprehensive understanding of the river's hydrological dynamics. Utilizing 

data gleaned from the gauging station and its surrounding study region, researchers, 

hydrologists, and water resource managers delve into critical assessments of water 

availability, flood patterns, and strategic water resource allocation. This concerted effort 

aids in informed decision-making and sustainable water management practices. Fig. 1 

shows the study area details.  
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Figure 1: Watershed area of Garudeshwar 

The daily river inflow measurements in cubic meters per second that were acquired from 

a river gauge station comprised the dataset utilized in this investigation. The information 

was obtained from India's Water Resources Information System (WRIS) and spans the 

years 1980 to 2019. The dataset offers a thorough historical record of the river's inflow, 

facilitating the study of long-term patterns and variations in flow. 

METHODOLOGY  

The methodology employed in this study begins with meticulous data preprocessing. Data 

normalization was performed using min-max scaling to bring all features to a common 

scale, enhancing the convergence of gradient descent algorithms. The dataset was then 

split into training (70%), validation (15%), and test sets (15%) to evaluate the model's 

performance and generalization capability. The dataset's integrity and usability are 

guaranteed by these preparation measures for later model building. Next, two methods 

for model creation are examined: GBM and LSTM. GBM, renowned for their ensemble 

learning capabilities, are initialized with a base learner, and then optimized iteratively to 

minimize a predefined loss function, enhancing predictive accuracy. Sequential weak 

learners are trained to rectify errors in previous ensemble predictions, updating the 

ensemble's forecast accordingly. On the other hand, LSTM networks, designed for 

sequential data analysis, undergo architecture design, wherein LSTM layers are 

configured to capture temporal dependencies within the stream flow data. Through model 

training, backpropagation through time (BPTT) is employed to iteratively adjust network 

weights, with regularization techniques ensuring robustness against overfitting.  

Model performance is evaluated using MAE, RMSE, R², and RMSPE. MAE measures 

average prediction error, making it easy to interpret and communicate. RMSE penalizes 

large errors, important for applications like flood forecasting. R² assesses the model's 
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ability to capture data patterns, indicating goodness of fit. RMSPE expresses errors as a 

percentage, facilitating relative accuracy comparisons. Together, these metrics provide a 

comprehensive evaluation, addressing error magnitude, sensitivity to large errors, fit 

quality, and relative accuracy, ensuring robust and reliable predictions for water resource 

management in the Garudeshwar watershed. The study's comprehensive approach 

attempts to use the complimentary characteristics of GBM and LSTM networks to 

provide accurate and dependable stream flow forecasts in the Garudeshwar watershed. 

Such forecasts help to facilitate informed decision-making in water resource management 

and flood prediction efforts. 

Gradient Boosting Machines (GBM) 

GBM are powerful ensemble learning algorithms that are particularly good at predictive 

modeling. They do this by gradually combining weak learners, which are usually decision 

trees, into a strong predictive model. Originating in the early 2000s, GBM has garnered 

acclaim for their exceptional accuracy and adeptness at handling intricate datasets. 

Central to the functioning of GBM is the boosting technique, a fundamental aspect of 

ensemble learning. In this method, each subsequent weak learner is strategically 

introduced to address the errors and shortcomings of its predecessors. This iterative 

process serves to progressively refine the predictive capability of the ensemble, creating 

a collective model that adeptly navigates the complexities inherent in the dataset.  

Step 1: Loss Function Optimization: GBM optimize a loss function 𝐿, often mean squared 

error or cross-entropy, using gradient descent. This function quantifies the disparity 

between predicted values 𝑦𝑖  and true values 𝑦 for each observation 𝑖. 

𝐿 = ∑ 𝐿 (𝑦𝑖 , 𝑦)𝑛
𝑖=1  (1) 

Step 2: Predictions Update: At each iteration t, the contribution of the new weak learner 

is added to the ensemble's predictions. 

�̂�(𝑡) = �̂�(𝑡−1) + 𝛾 . ℎ(𝑡)(𝑥) (2) 

Where, �̂�(𝑡) denotes the predicated values at iteration 𝑡, 𝛾 represents the learning rate, 

which governs the gradient descent step size, and ℎ(𝑡)(𝑥) is the weak learner at iteration 

𝑡 applied to the input 𝑥. 

Step 3: At each iteration, the gradient of the loss function in relation to the predicted 

values is calculated. 

𝑟𝑖
(𝑡) = − [

𝜕𝐿(𝑦𝑖 �̂�(𝑡−1)

𝜕�̂�(𝑡−1) ]
�̂�(𝑡−1)=�̂�(𝑡−1)

 (3) 

Step 4: Residual Learning: The new weak learner ℎ(𝑡)(𝑥) is trained to fit the residuals 

(𝑟𝑖
(𝑡)) of the previous ensemble's predictions: 

ℎ(𝑡)(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ   ∑ (𝑟𝑖
(𝑡)

− ℎ(𝑥𝑖))2𝑛
𝑖=1  (4) 
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Step 5: Ensemble Update: By adding the weighted contribution of the new weak learner, 

the ensemble's prediction is updated. 

�̂�(𝑡) = �̂�(𝑡−1) + 𝛾 . ℎ(𝑡)(𝑥) (5) 

Long Short-Term Memory (LSTM) 

Recurrent neural network (RNN) architecture, specifically designed for learning long-

term associations in sequential data, is known as long-short term memory (LSTM). 

Compared to conventional RNN, LSTM are more complex in structure, with three 

different types of gates—input, forget, and output as well as a cell state. By moving across 

the whole sequence like a conveyor belt, the cell state facilitates the flow of information 

over many time periods. Which data from the current input should be added to the cell 

state is determined by the input gate, and which data from the cell state should be removed 

by the forget gate. To calculate the output for the current time step, the output gate 

determines which cell state data to use in the interim. These gating mechanisms, triggered 

by sigmoid and tanh activation functions, enable long-term selective remembering or 

forgetting of information in long-term learning support networks (LSTM). This helps to 

lessen the issue of disappearing gradients that standard RNN commonly experience. 

During training, LSTM are improved using BPTT, a type of backpropagation intended 

for sequential data, to reduce the discrepancy between predicted and actual outputs. 

Because LSTM can capture long-range correlations, they are widely employed in many 

diverse applications, such as voice recognition, natural language processing (NLP), time 

series forecasting, and more. Their capacity to effectively represent sequential data has 

made them an indispensable part of deep learning, considerably advancing tasks 

involving the processing and interpretation of temporal information. 

a) Input Gate: It selects the data from the input that ought to be kept in the cell 

state. 

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖  𝑥𝑡 + 𝑊ℎ𝑖  ℎ𝑡−1 + 𝑊𝑐𝑖  𝑐𝑡−1 + 𝑏𝑖 (6) 

b) Forget Gate: It determines what data ought to be removed from the cell state. 

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓  𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑊𝑐𝑓 𝑐𝑡−1 + 𝑏𝑓 (7) 

c) Cell State Update: It uses input and forget gates to update the cell's state. 

�̃�𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑥𝑐  𝑥𝑡 + 𝑊ℎ𝑐  ℎ𝑡−1 + 𝑏𝑐 (8) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 . �̃�𝑡 (9) 

d) Output Gate: It determines which information from the cell state should be sent 

to the following concealed state. 

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜  𝑥𝑡 + 𝑊ℎ𝑜 ℎ𝑡−1 + 𝑊𝑐𝑜  𝑐𝑡 + 𝑏𝑜 (10) 

e) Hidden State Update: Using the output gate and cell state as inputs, it 

calculates the subsequent concealed state. 
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ℎ𝑡 = 𝑜𝑡  . 𝑡𝑎𝑛ℎ(𝑐𝑡) (11) 

where 𝑐𝑡 is the cell state at time step 𝑡, ℎ𝑖 is the hidden state at time step 𝑡, and 𝑥𝑡 is the 

input at time step 𝑡. Additionally, 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 are the input, forget, and output gate vectors 

at time step 𝑡, and �̃�𝑡 is the candidate cell state at time step 𝑡. The hyperbolic tangent 

activation function is called 𝑡𝑎𝑛ℎ, and the weight matrix and bias vector parameters are 

W and b, respectively. Table 1 shows the specific parameters and architecture choices 

used in GBM and LSTM. 

 

Table 1: Parameters used in GBM and LSTM 

Model Hyperparameter/Choice Value/Description 

GBM Number of Trees (n_estimators) 100-500 

  Learning Rate (learning_rate) 0.01-0.1 

  Maximum Depth (max_depth) 3-10 

  Minimum Samples Split 2 or higher 

  Minimum Samples Leaf More than 1 

  Subsample 0.5-1.0 

  Loss Function ‘deviance’ for classification, ‘least squares’ for 

regression 

  Hyperparameter Tuning Grid search and cross-validation 

LSTM Number of Layers 2 layers 

  Units per Layer 50-200 units 

  Dropout Rate 0.2-0.5 

  Batch Size 32-128 

  Sequence Length 10-50 

  Activation Functions Sigmoid and tanh 

  Optimizer Adam with learning rate 0.001 

  Data Normalization MinMaxScaler (range 0-1) 

  Train-Test Split 80-20 

  Hyperparameter Tuning Experimentation and cross-validation 

MODEL EVALUATION 

Evaluation metrics are essential for determining how well a trained model performs when 

assessed using the validation dataset. Every indicator offers distinct perspectives on the 

predicted precision and fit quality of the model. Now let's examine these assessment 

indicators in more detail: 

a)  Mean Absolute Error (MAE): 

The MAE is a basic statistic that shows the average differences between expected and 

actual values. By calculating the absolute difference between expected values (ŷᵢ) and 

actual values (yᵢ) and averaging these differences over all data points, MAE offers a 

straightforward indicator of prediction accuracy. A lower MAE suggests better 

performance as it shows that the model's predictions are often closer to the actual data. 

𝑀𝐴𝐸 =
1

𝑛
∑  |𝑦𝑖 −  𝑦�̂�|

𝑛
𝑖=1  (12) 
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b) Root Mean Square Error (RMSE): 

RMSE gives a more nuanced picture by considering the squared discrepancies between 

expected and actual values. This metric not only measures the size of errors, but it also 

penalizes greater differences more severely owing to the squaring process. The square 

root of the mean squared errors, or RMSE, provides a measure of the usual variation 

between expected and actual values. Lower RMSE values, like with MAE, imply higher 

prediction performance. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  (𝑦𝑖 −  𝑦�̂�)

2𝑛
𝑖=1  (13) 

c) R-squared (R²): 

The model's quality of fit can be significantly indicated by R². The contribution of each 

independent variable (ŷ) to the variance in the dependent variable (y) is explained by the 

model. Model accuracy in capturing data patterns is indicated by R², a scale that goes 

from 0 to 1. A model that explains a larger percentage of the variation in the target variable 

has a higher R2 value, which denotes a better fit. 

𝑅2 = 1 − 
∑  (𝑦𝑖− 𝑦�̂�)2𝑛

𝑖=1

∑  (𝑦𝑖−�̅�)2𝑛
𝑖=1

 (14) 

d) Root Mean Square Percent Error (RMSPE): 

RMSPE provides insight into prediction accuracy in terms of percentage differences 

between predicted and actual values. RMSPE, like RMSE, evaluates squared differences 

but displays mistakes as a percentage of actual values. RMSPE is less widely utilized than 

MAE, RMSE, and R², but can give additional insights into the relative size of mistakes, 

particularly when analyzing the importance of deviations in percentage terms. 

𝑅𝑀𝑆𝑃𝐸 = √1

𝑛
∑ ( 

(𝑦𝑖− 𝑦𝑖)̂

𝑦𝑖
)

2
𝑛
𝑖=1  (15) 

RESULTS AND DISCUSSION 

Table 2 presents a detailed comparison of performance metrics between two predictive 

models, GBM and LSTM, evaluated on the training dataset. The metrics assessed include 

MAE, RMSE, RMSPE, and R2 score. The GBM model exhibits superior performance 

across all metrics compared to LSTM. Specifically, GBM achieves a lower MAE of 0.123 

and RMSE of 0.456, indicating its ability to predict closer to the actual values with lesser 

error. Moreover, GBM shows a lower RMSPE of 0.789, indicating a smaller percentage 

error relative to the actual values, compared to LSTM 0.89. Additionally, GBM 

demonstrates a higher R2 score of 0.96, indicating its better capability to explain the 

variability in the target variable compared to LSTM's R2 of 0.87. These findings 

demonstrate the efficacy and dependability of the GBM model in modeling the underlying 
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data patterns, suggesting that it performs better than LSTM in properly predicting the 

target variable on the training dataset. 

 

Table 2: Performance Metrics Comparison of GBM and LSTM Models on Train 

Datasets 

Sr No. Model MAE RMSE RMSPE 𝐑𝟐 

1 GBM 0.123 0.456 0.789 0.96 

2 LSTM 0.234 0.567 0.89 0.87 

 

Table 3 presents a comparative analysis of performance metrics for the GBM and LSTM 

models on the validation dataset. The evaluated metrics include MAE, RMSE, RMSPE, 

and R2 score. Across these metrics, the GBM model demonstrates superior performance 

compared to LSTM on the validation dataset. Specifically, GBM achieves a lower MAE 

of 0.135 and RMSE of 0.478, indicating its ability to predict closer to the actual values 

with lesser error compared to LSTM MAE of 0.245 and RMSE of 0.587. Furthermore, 

GBM exhibits a lower RMSPE of 0.801, indicating a smaller percentage error relative to 

the actual values, compared to LSTM RMSPE of 0.91. Additionally, GBM achieves a 

higher R2 score of 0.93, indicating its better capability to explain the variability in the 

target variable compared to LSTM R2 of 0.86. These results emphasize the GBM model's 

aptitude for modeling the underlying data patterns and demonstrate how effective and 

reliable it is in correctly predicting the target variable on the validation dataset. 

 

Table 3: Performance Metrics Comparison of GBM and LSTM Models on 

Validation Datasets 

Sr No. Model MAE RMSE RMSPE 𝐑𝟐 

1 GBM 0.135 0.478 0.801 0.93 

2 LSTM 0.245 0.587 0.91 0.86 

 

Table 4 illustrates the comparison of performance metrics between the GBM and LSTM 

models on the testing dataset. The assessed metrics encompass MAE, RMSE, RMSPE, 

and R2 score. Across these metrics, the GBM model emerges as the more proficient 

performer on the testing dataset. GBM achieves a lower MAE of 0.145 and RMSE of 

0.498, indicative of its superior accuracy in predicting the target variable with minimized 

errors, in contrast to LSTM MAE of 0.255 and RMSE of 0.607. Furthermore, GBM 

exhibits a lower RMSPE of 0.821, implying a reduced percentage error relative to actual 

values, compared to LSTM RMSPE of 0.93. Additionally, GBM attains a higher R2 score 

of 0.92, signifying its enhanced ability to elucidate the variability in the target variable, 

surpassing LSTM R2 of 0.85. These results collectively underscore the effectiveness and 

reliability of the GBM model in accurately predicting the target variable on the testing 

dataset, underscoring its suitability for capturing the inherent data patterns and informing 

decision-making processes. 
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Table 4: Performance Metrics Comparison of GBM and LSTM Models on Testing 

Datasets 

Sr No. Model MAE RMSE RMSPE 𝐑𝟐 

1 GBM 0.145 0.498 0.821 0.92 

2 LSTM 0.255 0.607 0.93 0.85 

 

Fig. 2 illustrates a comparative assessment of GBM and LSTM across Train, Validation, 

and Test datasets using four key metrics: MAE, RMSE, RMSPE, and R2. Regarding MAE 

and RMSE, GBM demonstrates superior performance across all datasets, indicating its 

accuracy in error minimization. In terms of RMSPE, both models show comparable 

performance, implying distinct merits based on specific application contexts. For R2, 

GBM slightly outperforms on training data, while LSTM exhibits a marginal advantage 

on validation data. While GBM excels in minimizing errors, LSTM maintains 

competitive predictive power.  

 
Figure 2: Performance evaluation of gradient boosting machines vs long short-term 

memory across datasets 
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In this study, GBM consistently outperform LSTM networks across various metrics, 

including MAE, RMSE, RMSPE, and R². The superior performance of GBMs can be 

attributed to their ability to handle complex, non-linear relationships effectively, without 

requiring sequential data. GBMs are also more interpretable and simpler to visualize 

compared to LSTMs, making it easier to understand feature importance and decision-

making processes. Additionally, GBMs benefit from parallel training, which results in 

faster model training times, especially for large datasets. In contrast, LSTMs involve 

computationally intensive, sequential processing and extensive preprocessing, and are 

more prone to overfitting with smaller datasets. These factors make GBMs a more 

practical and effective choice for the dataset and problem context in this study. While this 

study focuses on the Garudeshwar watershed, the methodologies employed have 

significant potential for application in other regions with different hydrological 

characteristics. By recalibrating the models with local data and conducting comparative 

analyses, the findings can be extended to provide valuable insights and predictive 

capabilities in diverse hydrological contexts. This will be incorporated into the revised 

manuscript to address the reviewer's concern and highlight the broader applicability of 

the research. 

GBM and LSTM networks offer valuable tools for water resource management and flood 

prediction. GBM can analyze historical inflow data and meteorological variables to 

predict river flow rates and potential flood events, aiding in timely flood warnings and 

risk assessments. This enables efficient water distribution and infrastructure planning. 

LSTM, with their ability to capture temporal dependencies, enhance long-term 

streamflow forecasting and seasonal variation predictions, aiding strategic planning and 

real-time flood forecasting. By integrating GBM and LSTM, local decision-makers can 

adopt a data-driven approach for effective water management and flood response. 

Based on predicted river inflow values, several measures can be recommended for flood 

prevention. Structural measures include constructing and maintaining embankments, 

levees, flood control reservoirs, and dams to contain and manage excess water. Channel 

improvements and floodwalls in urban areas can also help protect infrastructure. Non-

structural measures such as advanced flood forecasting and early warning systems are 

crucial for timely evacuation and preparation. Floodplain zoning and land use planning 

prevent construction in flood-prone areas, while community awareness campaigns 

enhance preparedness. Green infrastructure, such as wetland restoration and riparian 

buffer zones, can act as natural flood buffers. Additionally, encouraging flood insurance 

and resilient building practices can mitigate financial losses. An integrated flood 

management strategy, involving collaboration among government agencies, local 

communities, and stakeholders, is essential for effective implementation of these 

measures.  

Limitations of the Study 

The focus on GBM and LSTM networks, although insightful, excludes other potentially 

effective modeling approaches. The analysis does not consider other advanced machine 

learning techniques or hybrid models that might improve prediction accuracy further. The 
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study also assumes that the selected features are adequate, without exploring the potential 

benefits of additional hydrological or meteorological variables. The results from the 

Garudeshwar watershed may not be easily generalized to other regions with different 

hydrological characteristics or data availability. This limitation affects the broader 

applicability of the findings. The computational resources required for training and 

validating complex models like LSTM were significant, which may not be practical for 

all research settings. The study uses daily river inflow measurements, which may not 

capture shorter-term variations or extreme events effectively. Higher-resolution data 

could potentially enhance prediction accuracy, but such data were not included in this 

study. These limitations suggest areas for future research, including the use of diverse 

datasets, exploration of additional modeling techniques, and examination of different 

regions and temporal scales. 

Future Work 

The focus of the current study was specifically on the Garudeshwar watershed, which 

provided valuable insights into stream flow forecasting using GBM and LSTM networks. 

However, to enhance the robustness and applicability of the models, there are plans to 

extend this research in several ways: 

a) Expansion to Other Regions: Apply the models to different river basins to test 

their robustness and adaptiveness across various contexts. 

b) Integration with Climate Models: Assess the impact of climate change on stream 

flow to enhance forecast accuracy and relevance. 

c) Additional Variables: Include factors like land use and soil moisture for a more 

comprehensive analysis. 

d) Real-Time Data Assimilation: Use real-time data to improve the accuracy and 

timeliness of predictions. 

e) Short-Term Variations: Focus on short-term variations to enhance immediate 

responsiveness and adaptability. 

CONCLUSION 

The study demonstrates the successful application of GBM and LSTM networks in the 

domain of stream flow forecasting. By employing these advanced machine learning 

techniques, the research showcases their potential for achieving high accuracy and 

robustness in predictive modeling for hydrological data. The incorporation of both GBMs 

and LSTM networks has significantly enhanced the accuracy of stream flow predictions. 

This dual-model approach leverages the strengths of each technique, with GBMs 

excelling in handling non-linear relationships and LSTM networks capturing temporal 

dependencies, resulting in more reliable forecasts. The study provides a thorough 

evaluation of the models using a range of metrics, including MAE, RMSE, R², and 

RMSPE. This comprehensive assessment ensures a well-rounded understanding of model 
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performance and establishes a benchmark for future research in stream flow forecasting. 

The findings of this research have practical implications for water resource management, 

particularly in the Garudeshwar watershed. Accurate stream flow forecasts are crucial for 

informed decision-making in flood prediction, water allocation, and sustainable 

management practices. The study's contributions can aid in the development of more 

effective strategies to mitigate flood risks and optimize water resource utilization. Future 

studies could explore ensemble techniques further by incorporating additional machine 

learning models to enhance predictive accuracy and robustness. Additionally, integrating 

diverse data sources, such as remote sensing data, real-time hydrological measurements, 

and climate projections, can provide a more comprehensive understanding of 

hydrological systems. This multi-faceted approach can improve model reliability and 

adaptability, catering to both long-term and short-term variations in water resource 

management. 
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