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ABSTRACT 

Auto-correlated simulation is one of the effective methods for predicting river flows in 

basins that do not have information and statistics on various climatic factors. In this study, 

the flow of Doostbighlou and Samiyan Rivers located in Ardabil province, Iran, was 

predicted with intelligent meta-exploration models of artificial neural networks, support 

vector machines, and their combination with wavelet transform, considering acceptable 

runoff delay times. The evaluation results showed that considering the wavelet transform 

in the individual methods of artificial neural networks and support vector machines can 

be an effective help in improving the performance of the above models. The t-test analysis 

indicated that at a 5% significance level, the null hypothesis (H0: µ1 = µ2) was accepted 

only for the hybrid Wavelet-ANN and Wavelet-SVM models, while the alternative 

hypothesis (H1: µ1 ≠ µ2) was accepted for the standalone ANN and SVM models. Thus, 

at Samiyan station, hybridizing the individual artificial neural network model with the 

wavelet model has increased and decreased the R and RMSE parameters from 0.48 and 

1.96 m3s-1 to 0.82 and 1.02 m3s-1, respectively. Also, at Doostbighlou station, integrating 

artificial neural network and support vector machine models with wavelet transform 

analysis significantly improved their correlation coefficients, increasing them from 0.39 

and 0.45 to 0.77 and 0.72, respectively. 

Keywords: Hybrid wavelet, Hydrological variables, Time-delayed, Stream flow.  

INTRODUCTION  

Since the runoff series exhibits nonlinear characteristics, capturing the periodicity and 

regularity in the runoff series using a single model is challenging (Kalteh, 2013; Chibane 

and Ali-Rahmani, 2015; Atallah et al., 2024). The use of machine learning tools in 
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hydrological predictions and simulations has made significant progress, especially in 

watersheds with little information and data (Mushtaq et al., 2024). Several models and 

methods are used in river flow simulation, and their performance and applications vary 

depending on the basin structure, the necessary and available data, and the purpose of the 

simulation. In order to simulate runoff in basins that do not have sufficient statistics and 

information, it will not be possible to use physical models that require more 

meteorological and hydrological variables. The autocorrelated stream flow simulation 

method, in which the only input data are the delayed stream flow discharges to the model, 

is a pioneering approach in such basins. In recent years, various meta-heuristic models 

such as support vector machines, artificial neural networks, combined wavelet-support 

vector machine models, and hybrid wavelet-artificial neural network models have found 

wide application in hydrological research and phenomena for which there is no specific 

algorithm. 

Adamowski (2013) used support vector machine and artificial neural networks models to 

simulate rainfall-runoff in a mountainous basin with limited data in Uttaranchal, India. 

His study results showed the ability of the support vector machine model to predict direct 

runoff, base flow, and total flow in this mountainous and hilly region. Farajzadeh et al., 

(2014) used time series and artificial neural networks models to predict monthly flow and 

precipitation in the Urmia Lake basin in Iran. The results of flow prediction indicate that 

both models have good accuracy in estimating monthly flow. However, according to this 

study, there is not much difference between the two models compared in flow estimation. 

Cannas et al., (2006) investigated the effectiveness of preprocessing data in the 

application of artificial neural network models using continuous and discontinuous 

wavelet transforms. Their results showed that training the network with preprocessing 

data performed better than training the indecomposable network on chaotic immature 

signals. Andalib et al., (2020) simulated runoff at several stations using wavelet 

transform, self-organizing artificial neural network, and artificial intelligence methods in 

the Little River Watershed (LRW). The results showed that AI (Artificial Intelligence) 

models combined with wavelet transform, self-organizing artificial neural network, and 

shared information improve the ability to predict multi-station runoff by up to 23% 

compared to AI models that use the Markov Property. Kiani Asl et al., (2023) prepared 

the flood potential map of the Maroon Basin using the random forest and support vector 

machine learning methods. In this study, the required parameters were prepared and then 

converted into a readable format for the R software environment to run the random vector 

machine and random forest model. The results showed that the RF and SVM methods 

simulated the flood potential map of the Maroon Basin with an accuracy of 0.997, 

0.947%, respectively. Dehghani et al., (2022) studied the performance of the hybrid 

wavelet-support vector machine model to estimate the river discharge of the Dez basin 

based on daily hydrometric statistics of stations located upstream of the dam and 

compared its results with the support vector model. The results of the study indicated the 

acceptability of hybrid structures in runoff modeling and the hybrid wavelet-support 

vector machine model had better performance in flow prediction. Samantaray et al., 

(2022) studied the hybrid SVM-SSA (Support Vector Machine with Salp Swarm 

Algorithm) model and conventional SVM and artificial neural network (ANN) models 

for runoff prediction in the Baitarani River Basin, Odisha, India. The test results showed 
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that the hybrid models had better prediction accuracy compared to conventional methods 

and could be recommended in modeling for the precipitation-runoff process and runoff 

prediction. Mehta et al., (2023) employed GIS, remote sensing, and the Curve Number 

method to assess the effects of land use/land cover (LULC) changes on runoff dynamics 

in the Ambica River Basin from 1990 to 2010. Their findings revealed substantial LULC 

alterations, elevating runoff potential and flood vulnerability, underscoring the need for 

sustainable land use policies. The study emphasizes LULC management as a key strategy 

for reducing hydrological risks. Verma et al., (2023) performed a comparative evaluation 

of CMIP5 and CMIP6 models to examine their efficacy in simulating hydrological 

processes within a reservoir catchment located in Chhattisgarh, India. The study 

identified notable discrepancies in climate projections between the two model ensembles, 

emphasizing their critical implications for water resource management strategies. The 

findings highlight the necessity of meticulous model selection in regional hydrological 

assessments under evolving climatic conditions. Mehta et al., (2023) employed 

hierarchical clustering and Thiessen polygons to optimize rain gauge networks for flood 

forecasting in the Narmada River Basin, using data from 2010–2018. The study 

categorized stations into two clusters and applied the HEC-HMS model for rainfall-runoff 

analysis, validating results with observed dam inflows. Regression analysis confirmed 

strong correlations between observed and simulated runoff, demonstrating the model’s 

reliability. The findings emphasize the adequacy of existing rain gauge networks and the 

effectiveness of the proposed approach for accurate flood prediction in similar basins. 

Kumar et al., (2023) evaluated multiple ML models, including CatBoost, XGBoost, and 

LGBM, for forecasting river inflow in the Garudeshwar watershed, integrating temporal 

lag and seasonal data. Their findings demonstrated CatBoost's superior performance in 

minimizing prediction errors (MAE, RMSE) and achieving high R² values, outperforming 

other models, particularly in handling categorical and continuous variables. The study 

underscores ML's effectiveness in hydrological modeling, providing valuable insights for 

flood control and water supply planning. Kantharia and Mehta (2024) developed an 

integrated rainfall-runoff model based on fuzzy logic, incorporating soil moisture 

dynamics to enhance hydrological simulations. Their study, conducted in the 

Damanganga Basin, demonstrated that fuzzy logic effectively addresses uncertainties 

inherent in rainfall-runoff processes. The proposed model exhibited improved predictive 

accuracy in runoff estimation by explicitly accounting for soil moisture variability. This 

research underscores the efficacy of fuzzy logic-based approaches in hydrological 

modeling, particularly in regions with limited data availability. Mehta and Yadav (2024) 

investigated rainfall-runoff modeling in the Purna River Basin utilizing the HEC-HMS 

hydrological model. The study adopted the Green-Ampt method for infiltration loss 

estimation and evaluated the performance of the SCS and Snyder unit hydrograph 

methods for runoff transformation. Comparative analysis revealed that the SCS unit 

hydrograph method exhibited superior predictive accuracy, with a coefficient of 

determination of 0.9680 and a Nash-Sutcliffe efficiency (NSE) of 0.928, outperforming 

the Snyder method. The findings suggest that the SCS-based approach offers greater 

reliability for runoff simulation in the Purna River Basin. Kantharia et al., (2024) utilized 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) integrated with soil moisture data 

to improve rainfall–runoff modeling in the Damanganga River basin. Their results 



Molavi A. / Larhyss Journal, 64 (2025), 7-32 

10 

demonstrated enhanced predictive performance, emphasizing the critical role of soil 

moisture dynamics in hydrological simulations for effective water resource management. 

The study reinforces the applicability of ANFIS as a robust computational tool for 

capturing complex nonlinear relationships in catchment-scale hydrological processes. 

Panda et al., (2025) studied WE (Wavelet Ensemble) models for several estimation cases 

under various ground and flow conditions and data and compared them with individual 

ML models. The results indicated that WE models had better acceptability than individual 

and ensemble ML models. Given the demonstrated efficacy of Support Vector Machine 

(SVM) and Artificial Neural Network (ANN) methods, as well as their hybrid models 

incorporating wavelet transforms, in hydrological modeling, there remains a significant 

research gap regarding the application of autocorrelation analysis in runoff prediction. 

Specifically, a comprehensive evaluation of these models using both direct and lagged 

runoff data has yet to be conducted for the Doostbighlou and Samiyan Rivers in Ardabil 

Province, Iran. These rivers serve as critical water sources, supplying drinking water and 

supporting agricultural activities in the region, which is a key agricultural hub. To address 

this gap, the present study aims to assess the predictive performance of four modeling 

approaches:  standalone Artificial Neural Network (ANN), standalone Support Vector 

Machine (SVM), Wavelet-Artificial Neural Network (W-ANN) hybrid model, and 

Wavelet-Support Vector Machine (W-SVM) hybrid model, in the autocorrelation-based 

simulation of monthly runoff in the aforementioned rivers. 

The relevant study by Koua et al. (2019), investigates the relationship between rainfall 

and runoff in the Buyo Lake watershed in southwestern Côte d’Ivoire, particularly in the 

context of climate change. Through hydrological analysis and modeling, the authors 

assess how variations in precipitation patterns, driven by climate variability, affect surface 

runoff dynamics in the region. The research highlights increasing irregularities in rainfall 

distribution, leading to both flood risks and water resource challenges. Their findings 

underscore the importance of integrated watershed management strategies to adapt to 

evolving climatic conditions and ensure sustainable water resource use in the basin. 

In their pertinent 2016 study, Faregh and Benkhaled apply a GIS-based implementation 

of the SCS-CN (Soil Conservation Service - Curve Number) method to estimate surface 

runoff in the Sigus watershed, located in northeastern Algeria. The research integrates 

geographic information systems (GIS) with hydrological modeling to analyze land use, 

soil types, and rainfall data for accurate runoff prediction. The study demonstrates the 

efficiency of combining spatial analysis tools with empirical hydrological methods to 

support watershed management, flood mitigation, and water resource planning, 

particularly in semi-arid regions sensitive to climatic variability (Argaz, 2018; Assemian 

et al., 2021; Chadee et al., 2023).  

In their significant 2015 publication, Abdi and Meddi present a distributed rainfall–runoff 

modeling study applied to two watersheds in eastern Algeria. Their research focuses on 

evaluating hydrological responses under varying climatic and topographic conditions 

using a distributed modeling approach. By incorporating spatial heterogeneity in rainfall 

distribution, land use, and soil characteristics, the study aims to improve the accuracy of 

runoff simulations. The findings contribute to a better understanding of catchment-scale 

hydrological behavior, offering valuable insights for flood risk management, hydraulic 
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infrastructure design, and sustainable water resource planning in semi-arid and 

mountainous environments (Benslimane et al., 2020; Rouissat and Smail, 2022; 

Baudhanwala et al., 2023; Ben Said et al., 2024; Ezz, 2025; Do et al., 2025). 

On the other hand, in their important 2020 article, Riahi et al. examine runoff and soil 

erosion processes within homogeneous hydrological units of gentle slope located in a 

watershed in the middle valley of the Medjerda River in Tunisia. The study emphasizes 

the influence of land topography, soil structure, and rainfall characteristics on erosion 

dynamics in low-gradient terrains (Mfoutou and Diabangouaya, 2019; Chabokpour and 

Azamathulla, 2025). By analyzing field data and applying erosion modeling techniques, 

the authors assess sediment transport risks and quantify the runoff potential. Their 

contribution is particularly relevant for developing conservation strategies, land use 

planning, and watershed management policies in Mediterranean environments prone to 

soil degradation and water resource challenges (Niang et al., 2015; Zerkaoui et al., 2016; 

Morsli et al., 2017; Jelisavka and Goran, 2018; Pang and Tan, 2023). 

In light of the demonstrated potential of intelligent and hybrid machine learning models 

for hydrological forecasting, the present study aims to rigorously evaluate and compare 

the performance of four modeling approaches, namely, standalone Artificial Neural 

Networks (ANN), standalone Support Vector Machines (SVM), Wavelet-ANN (W-

ANN), and Wavelet-SVM (W-SVM), in the autocorrelation-based simulation of monthly 

runoff. Focusing on the Doostbighlou and Samiyan Rivers in Iran's Qarasu watershed, the 

research seeks to determine the extent to which wavelet-based hybridization enhances the 

predictive accuracy of machine learning models in data-scarce, agriculturally significant 

regions. This study addresses a critical methodological gap and contributes to the 

advancement of runoff simulation techniques under limited data conditions. 

MATERIAL AND METHODS 

Location of the Study Site 

The study site was the hydrometric stations of Doostbighlou and Samiyan rivers located 

in the Qarasu watershed of Iran. The Qarasu basin is a sub-basin of the Aras basin, located 

in the central part of Ardabil province, and a small part of it is located in East Azerbaijan 

Province. This basin is located at the geographical coordinates of 47° 32′ to 48°41′ east 

longitude and 37° 47′ to 38° 52′ north latitude, and its area is 7706 km2. The difference 

in altitude between the lowest point of the basin (774 m) and its highest point at the peak 

of Mount Sabalan (4786 m) is 4012 meters. The climate of the basin is in the 

Mediterranean and semi-arid range. About 42% of the basin's precipitation occurs in the 

spring. The lowest seasonal precipitation occurs in the summer with 10%. The flow 

regime, depending on the amount and type of rainfall, increases in frequency from the 

middle of the water year, i.e., late March to mid-spring, and then decreases until late 

summer. The reason for this is due to the melting of winter snow and heavy spring rainfall 

compared to low summer rainfall, as well as human exploitation of river water. The 

extensive network of surface and groundwater in the basin has made this basin an 
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important place in terms of providing water resources for Ardabil province (Esfandiari 

and Qarachoorloo, 2023). In this study, monthly runoff data from Doostbighlou and 

Samiyan hydrometric stations during the statistical years 2000 to 2023 were used to 

simulate monthly runoff in an autocorrelated manner using intelligent and intelligent-

hybrid models. The locations of the aforementioned stations in the Qarasu basin are 

presented in Fig. 1. 

 

Figure 1: Location of study stations in the Qarasu watershed 

Models used in the study 

Support Vector Machine 

In this model, the optimal separating plane in the nonlinear case will be in the form of Eq. 

(1). 
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T

f x x w w= +                                                   (1) 

The dual Lagrange function is also in the form of the following Eq. (2). 
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In the above equations, ( )x is the kernel function. Radial Basis Function (RBF), 

polynomial function of degree d and sigmoid function (perceptron) are three kernel 

functions that are commonly used in SVM (Kavzoglu and Colkesen 2009). In order to 

estimate the flow using the support vector machine model, various types of kernel 

functions can be examined, in fact, choosing the appropriate function in using this model 

is very important and will bring different results. In runoff and rainfall-runoff simulation 

studies, the RBF kernel function model is mainly used (Eskandari and Nouri, 2010). The 

calculation process of this model has been done by coding in the MATLAB environment. 

The formulas of the radial basis function, the polynomial function of degree d, and the 
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sigmoid function (perceptron) are presented in Eqs. (3) to (5), respectively. RBF 

parameters were logged for each station to ensure reproducibility. 

( )2 2exp /( , ) x xiK x xi − −=
      

                      (3) 

( , )( , )
d

t x xiK x xi
 + =                                       (4) 

1 2anh( , ) t ( ( , )iK x x k x x ki = +                                                      (5) 

Artificial Neural Network 

Since normalized data should be used to increase the efficiency and speed of 

implementation of artificial neural networks (Zare Abyaneh et al., 2010), first the runoff 

data was placed in the range [-1,1] using Eq. (6), and normalized. 

min

max min

n

x x
x

x x

−
=

−
                                                                               (6) 

To simulate the flow, an artificial neural network model of the type of multilayer 

perceptron network with one hidden layer with a large number of neurons was used, and 

the sigmoid tangent function was used to map information from the input layer to the 

hidden layer and the linear stimulus function was used to map information from the 

hidden layer to the output layer. The calibration of the multilayer perceptron networks 

was performed with the Levenberg-Marquardt error backpropagation training algorithm 

(fast and accurate convergence) and the maximum number of iterations in the network 

learning process was considered to be 1,000. The number of neurons in the hidden layer 

was determined by trial and error. The process started with a small number of neurons 

and continued by adding neurons up to a maximum of 20 neurons. Data split into 70% 

training, 15% validation, and 15% testing, repeated 5 times to assess stability. 

Wavelet Analysis 

A wave is defined as an oscillating function. A sinusoidal function is a wave. For these 

functions, Fourier analysis is used. In fact, Fourier analysis is a wave analysis in which 

functions or signals are expanded in terms of sine and cosine functions (Misiti, et al., 

1996). The analyzed function is considered a wavelet function if the following dual 

conditions hold. 

The wavelet has finite energy as follows: 

2
( )E t dt

+ 


= 
−

                                                                                         (7) 

If ( )f is the Fourier transform of )(t , then Eq. (8) must hold. 
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Hybrid Wavelet - Support Vector Machine 

In the hybrid wavelet and support vector machine model, after converting the data series 

into several subseries using wavelet analysis and selecting the Daubechies type 4 mother 

wavelet as the most widely used mother wavelet, the obtained subseries were considered 

as input to the support vector machine (Taie Semiromi et al., 2024). Considering the 

number of data, the series was analyzed at two levels and the operation continued with 

radial, polynomial and linear basis kernel functions. 

Hybrid Wavelet - Artificial Neural Network 

In this method, the input time series of training and testing data were analyzed into 

subseries using wavelet analysis. The first step of the series analysis is the selection of 

the mother wavelet, which was used due to the widespread use of the Daubechies type 4 

wavelet. The number of analysis levels is usually considered to be an integer part of the 

logarithm of the series length (Mushtaq et al., 2024). After determining the subseries 

created by wavelet analysis as the input of the artificial neural network, data 

normalization was performed. To determine the optimal number of neurons in the hidden 

layer of the artificial neural network, the efficiency of 1 to 20 neurons in the hidden layer 

was evaluated. In this method, multilayer perceptron networks were trained using the 

Levenberg–Marquardt error backpropagation training algorithm with a maximum number 

of iterations in the network learning operation of 1,000. All calculations in this research 

were performed through coding and in the MATLAB software environment. 

Time delay of inflow discharges 

For runoff modeling, the main variable of discharge and its time delays were used as input 

to the model. To determine the acceptable delay, the correlation coefficient assumption 

test was used as follows. 

The correlation is not significant: 
0 0:H  =  

The correlation is significant:       
1

: 0H    

Which  is the correlation coefficient for the population. In this regard, the coefficient k 

according to Eq. (9) was used. 

1/2
2
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n
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−
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=
−
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                                                                         (9) 

https://www.researchgate.net/profile/Majid-Taie-Semiromi?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0
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In this equation, r is the correlation coefficient for the sample and n is the amount of data. 

If the absolute value of k calculated is greater than the value of k in the table related to 

the 95% confidence level with n-2 degrees of freedom, then the correlation coefficient 

will be significant. The value of k related to the 95% confidence level in the probability 

table is +1.98 and -1.98, so if Eq. (10) is established in each series, the correlation will be 

significant. 

1.98
cal

k                                                                       (10) 

Therefore, the correlation coefficient between runoff at time t and runoff with time lags 

of one month, two months, three months, etc. is calculated. The corresponding k value of 

each is compared with Eq. (10) to determine its significance. If the r of runoff with each 

of the considered lags is greater than 0.2 or smaller than -0.2, it indicates that the 

correlation is significant and can be used as an input variable. 

Model Performance Evaluation Criteria 

The runoff values obtained from four models of support vector machine, artificial neural 

network, combination of wavelet with artificial neural network, and combination of 

wavelet with support vector machine were evaluated under the statistical indices RMSE 

(root mean square error), MAE (mean absolute error), R (correlation coefficient), and also 

the t-test with observed values (Erich et. Al., 2022). 
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In these relations, Qxi and Qyi are the observed and calculated values of discharge at i-th 

time step, n is the number of data, 
xQ and 

yQ are the average of the observed and 

calculated values of discharge, respectively. The smallness of the RMSE and MAE 

indices will indicate the high accuracy of the model.   

 

 

Flowchart: Hybrid Modeling Workflow for Runoff Simulation 

The modeling workflow is summarized in the flowchart below. 
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 START 

  │ 

  ▼ 

[Data Preparation] 

  ├─ Normalize data (Eq. 6: [-1,1] scaling) 

  └─ Select time lags (Eq. 9-10: 1–3 months via correlation test) 

  │ 

  ▼ 

[Wavelet Decomposition] 

  ├─ Mother wavelet: Daubechies-4 (db4) 

  ├─ Decompose into subseries: 

  │   ├─ Approximation (low-frequency) 

  │   └─ Detail (high-frequency) 

  └─ 2-level decomposition 

  │ 

  ▼ 

[Hybrid Model Construction]─────────────────────┐ 

  │                                            │ 

  ├─ [Wavelet-ANN]                             ├─ [Wavelet-SVM] 

  │   ├─ Input: Wavelet subseries              │   ├─ Input: Wavelet subseries 

  │   ├─ Architecture: MLP (1 hidden layer)     │   ├─ Kernel: RBF/Polynomial/Sigmoid 

  │   ├─ Activation: Tangent sigmoid           │   └─ Optimize kernel parameters 

  │   ├─ Training: Levenberg-Marquardt         │ 

  │   └─ Optimize neurons (1–20)               │ 

  │                                            │ 

  ▼                                            ▼ 

[Model Training & Validation]              [Model Training & Validation] 

  ├─ 70% training, 30% testing               ├─ 70% training, 30% testing 

  └─ Iterations: 1000                        └─ MATLAB implementation 

  │ 

  ▼ 

[Evaluation Metrics] 

  ├─ Statistical indices: 

  │   ├─ RMSE (Eq. 11) 

  │   ├─ MAE (Eq. 12) 

  │   └─ R (Eq. 13) 

  └─ Hypothesis testing: 

      ├─ t-test (H₀: μ₁=μ₂ at α=0.05) 

      └─ Compare with standalone ANN/SVM 

  │ 

  ▼ 

[Calibration] 

  ├─ Apply calibration coefficients 

  └─ Recalculate RMSE/MAE (Figs. 10–11) 

  ▼  

END 
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RESULTS AND DISCUSSION 

Determining acceptable runoff delays 

The input combination of artificial neural network, support vector machine, hybrid 

wavelet- artificial neural network and hybrid wavelet-support vector machine models was 

performed by considering the number of delays studied in the discharge at both stations. 

The results obtained are presented in Figs. 1 and 2. 

 

 

 

Figure 2: Comparison of current runoff with one-to-three-month lag times at 

Doostbighlou hydrometric station. (a) Runoff with a one-month delay, (b) 

Runoff with a two-month delay, (c) Runoff with a three-month delay. 
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Figure 3: Comparison of current runoff with one-to-three-month lag times at 

Samiyan hydrometric station. (a) Runoff with a one-month delay, (b) Runoff 

with a two-month delay, (c) Runoff with a three-month delay 
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Review of the performance and efficiency of the models 

After modeling, runoff prediction was performed with all four methods of artificial neural 

network and combination of wavelet transform - artificial neural network, support vector 

machine and combination of wavelet - support vector machine and the results were 

evaluated with observational data. In Table 1, the R and RMSE values of the artificial 

neural network and hybrid wavelet transform - artificial neural network models are 

presented for each of the neurons in the validation stage. 

Table 1: Values of statistical indices R and RMSE of ANN and WAV - ANN models 

 Doostbighlou Samiyan 

neuron 
WAV - ANN ANN WAV - ANN ANN 

R RMSE R RMSE R RMSE R RMSE 

1 0.73 1.60 0.42 1.72 0.83 1.90 0.45 2.09 

2 0.73 1.59 0.38 1.54 0.81 1.29 0.50 2.08 

3 0.62 1.07 0.35 1.48 0.84 1.14 0.46 2.49 

4 0.66 1.09 0.42 1.68 0.82 0.97 0.47 2.02 

5 0.71 1.13 0.43 1.45 0.81 1.34 0.44 1.88 

6 0.69 1.47 0.40 4.77 0.81 1.77 0.46 2.16 

7 0.62 1.22 0.41 1.73 0.80 0.98 0.49 2.38 

8 0.77 0.97 0.32 1.69 0.76 1.27 0.38 2.52 

9 0.74 1.57 0.34 1.70 0.80 1.18 0.48 1.93 

10 0.77 1.26 0.41 2.07 0.77 1.28 0.50 2.04 

11 0.71 1.32 0.39 1.18 0.74 1.09 0.36 2.08 

12 0.70 2.59 0.35 1.70 0.78 1.20 0.45 3.42 

13 0.61 1.09 0.34 1.58 0.81 1.06 0.37 1.97 

14 0.63 1.49 0.33 1.98 0.71 1.58 0.49 1.97 

15 0.69 1.29 0.36 5.36 0.65 1.45 0.35 2.43 

16 0.69 1.13 0.40 2.02 0.77 0.99 0.43 2.25 

17 0.67 1.30 0.42 1.90 0.81 0.94 0.44 2.37 

18 0.71 1.27 0.21 5.15 0.74 1.23 0.42 2.25 

19 0.69 0.96 0.39 1.40 0.78 1.40 0.48 1.89 

20 0.65 1.08 0.40 1.97 0.78 1.19 0.44 2.60 

 

According to Table 1, the following results can be expressed: 

Doostbighlou Hydrometric Station 

In using the artificial neural network model, the optimal state is in using 11 neurons; 

because in this case, the minimum RMSE and maximum R are obtained. In using the 

hybrid wavelet-artificial neural network model, the minimum RMSE and maximum R are 

obtained in using 8 neurons, therefore, the corresponding state was considered in the 

calculations. The hybrid wavelet-artificial neural network model had higher accuracy in 
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simulating the runoff of Doostbighlou Station compared to the single artificial neural 

network model. 

Samiyan Hydrometric Station 

Considering that in the artificial neural network model in the Samiyan Hydrometric 

Station, the minimum RMSE and maximum R are obtained in using 19 neurons; the 

corresponding values were used in the calculations. In using the hybrid wavelet-artificial 

neural network model, the optimal state is in using 4 neurons. In using the support vector 

machine and hybrid wavelet-support vector machine models, considering that in both 

Doostbighlou and Samiyan hydrometric stations, runoff with one and two months of delay 

shows a significant correlation, accordingly, runoff modeling with the above methods 

with two months of delay was considered as the input of the models and the optimal 

modeling process was carried out. After obtaining the results, the comparison between 

the observed and simulated runoff values is presented in Figs. 4 to 7 for Doostbighlou 

and Samiyan stations, respectively. 

 

 

 

Figure 4: Comparison of observed and simulated runoff using Artificial Neural 

Network (ANN) and Support Vector Machine (SVM) models at the 

Doostbighlou Hydrometric Station, incorporating a two-month time lag. 

(a) ANN, (b) SVM     
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Figure 5: Comparison of Observed and Simulated Runoff Using Wavelet-Artificial 

Neural Network (WAV-ANN) and Wavelet-Support Vector Machine 

(WAV-SVM) Models at Doostbighlou Hydrometric Station, Considering 

a Two-Month Time Lag.". (a) WAV-ANN, (b) WAV-SVM 

 

As can be seen from the graphs in Figs. 4 and 5 for the Doostbighlou hydrometric Station, 

the agreement between the observed runoff values and the simulated runoff values using 

the hybrid wavelet-artificial neural network and wavelet-support vector machine is very 

high compared to single models of artificial neural networks and support vector machines. 

This indicates the effectiveness of considering the wavelet transform in runoff prediction. 

Also, at this station, the agreement and consistency between the observed and simulated 

runoff obtained from the hybrid wavelet-artificial neural network model was better than 

the hybrid-support vector machine model. 
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Figure 6: Comparison of observed and simulated runoff using ANN and SVM 

models at the Samiyan Hydrometric Station, incorporating a two-month 

time lag. (a) ANN, (b) SVM    
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Figure 7: Comparison of Observed and Simulated Runoff Using WAV-ANN and 

WAV-SVM Models at Samiyan Hydrometric Station, Considering a Two-

Month Time Lag. (a) WAV-ANN, (b) WAV-SVM  

After simulating the runoff of both stations with the four studied methods, the models 

were calibrated and the results were evaluated using statistical indicators and t-test. The 

evaluation results for all models are presented in Table 2. 

Table 2: Index values and statistical tests of the models used in Doostbighlou and 

Samiyan hydrometric stations 

t statistic Mean difference Variance R 
MAE 

m3s-1 

RMSE 

m3s-1 
Method  

ANN  

-2.72 0.41 1.28 0.39 0.95 1.18 Doostbighlou  

-5.05 -1.62 2.42 0.48 1.43 1.96 Samiyan  

 -0.605 1.85 0.435 1.19 1.57 Mean  

SVM  

-2.84 0.36 1.71 0.45 0.97 1.38 Doostbighlou  

-6.28 -1.45 2.15 0.45 1.71 2.15 Samiyan  

 -0.545 1.93 0.45 1.34 1.765 Mean  

WAV ANN  

-1.44* 0.26 1.32 0.77 0.70 0.97 Doostbighlou  

-1.56* -0.46 1.37 0.82 0.73 1.02 Samiyan  

 -0.1 1.345 0.785 0.715 0.995 Mean  

WAV SVM  

-1.93* 0.73 1.38 0.72 0.98 1.17 Doostbighlou  

-1.83* -0.47 1.97 0.78 0.70 1.12 Samiyan  

 0.13 1.675 0.75 0.84 1.145 Mean  
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In Table 2, the * sign above some numbers indicates that at a significance level of 5%, 

the null hypothesis (H0: µ1=µ2) is confirmed. For statistical comparison, the obtained t-

statistics were evaluated using the critical value of 1.97 (t-critical) from the reference 

Table. From the aforementioned table, which presents the results of comparing 

observational and simulated runoff data at the two stations of Doostbighlou and Samiyan 

with four models: artificial neural network, support vector machine, wavelet-artificial 

neural network combination, and wavelet-support vector machine combination under the 

statistical indices RMSE, MAE, and R, as well as the t-test, the following can be noted. 

The results of the t-test analysis at the two hydrometric stations of Samiyan and 

Doostbighlou showed that at a significance level of 5%, the first hypothesis (H1: µ1 ≠ µ2) 

was rejected only in the hybrid wavelet-artificial neural network and wavelet-support 

vector machine models and the null hypothesis (H0: µ1 = µ2) was valid. Also, at a 

significance level of 5%, the first hypothesis (H1: µ1 ≠ µ2) was valid in the artificial neural 

network and support vector machine models and the null hypothesis (H0: µ1 = µ2) was 

rejected. At Doostbighlou station, the combined wavelet-artificial neural network model 

had the highest R value (correlation coefficient) with a value equal to 0.77 among all the 

models used. At Samiyan station, the combined wavelet-artificial neural network model 

had the highest R value, with a value equal to about 0.82 among all the models used. 

Hybridizing the single artificial neural network model with the wavelet model at 

Doostbighlou station has increased and also decreased the R and RMSE parameters from 

0.39 and 1.18 m3s-1 to 0.77 and 0.97 m3s-1, respectively. Hybridizing the single artificial 

neural network model with the wavelet model at Samiyan station has increased and also 

decreased the R and RMSE parameters from 0.48 and 1.96 m3s-1 to 0.82 and 1.02 m3s-1, 

respectively. Hybridizing the single support vector machine model with the wavelet 

model at Doostbighlou station has increased and decreased the R and RMSE parameters 

from 0.45 and 1.38 m3s-1 to 0.72 and 1.17 m3s-1, respectively. Hybridizing the single 

support vector machine model with the wavelet model at Samiyan station has increased 

and decreased the R and RMSE parameters from 0.45 and 2.15 m3s-1 to 0.78 and 1.12 

m3s-1, respectively. Considering the acceptability of the wavelet-artificial neural network 

and wavelet-support vector machine models in the runoff simulation of both 

Doostbighlou and Samiyan stations compared to the single models, the calibration 

coefficients of the aforementioned models are presented in graphs in Figs. 8 and 9. 

The graphs in Fig. 8 show the high correlation and agreement between the observed runoff 

values and the values obtained from the WAV-ANN and WAV-SVM models at 

Doostdighlou Hydrometric Station. As in this station, the correlation coefficient in the 

WAV-ANN model (Graph a) is equal to 0.77. 
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Figure 8: Calibration coefficients of Doostbighlou hydrometric station. (a) WAV-

ANN, (b) WAV-SVM 
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Figure 9: Calibration coefficients of Samiyan hydrometric station. (a) WAV-ANN, 

(b) WAV-SVM 

 

The graphs (a) and (b) in Fig. 9 with correlation values of 0.82 and 0.78, which correspond 

to the WAV-ANN and WAV-SVM models, respectively, indicate the high agreement of 

these models in the runoff simulation of Samiyan station. Dehghani et al., (2022) also 

found similar results in their acceptance compared to the use of single intelligent models 

in their study of the performance of hybrid intelligent models with wavelet transforms 

that they used to estimate the runoff of the Dez River Basin in Iran. 



Application of intelligent autocorrelated models for runoff simulation. A case study of 

the Iranian Samiyan and Doostbighlou rivers  

27 

Error indicators of RMSE and MAE after calibration 

The indices RMSE and MAE were recalculated after applying the calibration coefficients 

to the values obtained from the model simulations. Figs. 10 and 11 present a comparison 

between the indices RMSE and MAE before and after applying the calibration 

coefficients. 

                

Figure 10: Comparison of statistical indices of RMSE and MAE at Samiyan 

Hydrometric Station before and after applying the fitting coefficients. 

(a) Before applying the fitting coefficients, (b) After applying the fitting 

coefficients.  

 

Figure 11: Comparison of statistical indices of RMSE and MAE at Doostbighlou 

Hydrometric Station before and after applying the fitting coefficients. (a) 

Before applying the fitting coefficients, (b) After applying the fitting 

coefficients 

 

As is clear from the graphs in Figs. 10 and 11, applying calibration coefficients to the 

simulated values has significantly reduced the error indicators.  
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CONCLUSION  

In this study, the performance and efficiency of intelligent models of artificial neural 

network, support vector machine and intelligent-hybrid models of wavelet-artificial 

neural network and wavelet-support vector machine were evaluated in the simulation of 

the next month's runoff of Doostbighlou and Samiyan hydrometric stations. In this regard, 

for each of the stations, the appropriate combination of model inputs (runoff with an 

acceptable number of delays) was determined and the flow was simulated in an 

autocorrelated manner, in which the following results can be expressed. 

After considering the wavelet model in the individual models of artificial neural network 

and support vector machine in the runoff simulation, the values of the error indices were 

significantly reduced, indicating its positive effect on improving and increasing the 

efficiency of the aforementioned models in both Doostbighlou and Samiyan hydrometric 

stations. The highest agreement in runoff simulation with a correlation coefficient of 0.82 

was related to Samiyan hydrometric station using the hybrid wavelet-artificial neural 

network model. In general, the RMSE error index of the support vector machine model 

in runoff simulation for both stations was high compared to the artificial neural network 

model. After the hybrid wavelet-artificial neural network model, the hybrid wavelet-

support vector machine model had better accuracy and efficiency than other models used 

in both stations and can be recommended for predicting runoff in the aforementioned 

rivers. This study demonstrates the effectiveness of hybrid wavelet-based machine 

learning models (WAV-ANN and WAV-SVM) for simulating autocorrelated runoff in 

data-poor basins. However, several promising research directions can further improve 

hydrological modeling in similar regions. Including the integration of meteorological and 

climate variables into meteorological inputs: Future studies could consider precipitation, 

temperature, evapotranspiration, and snowmelt data to assess their impact on runoff 

prediction accuracy. Transfer learning: Regional and inter-basin generalization, applying 

pre-trained models to neighboring basins with limited data. Comparative studies: 

Evaluate model performance in different climatic and topographic regions. Impact of land 

use and climate change on LULC dynamics: Evaluate how land cover changes affect 

runoff patterns using GIS and remote sensing. 
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