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ABSTRACT

Accurate prediction of reservoir surface water temperature (Tw) is vital for effective
water resource planning, environmental management, and maintaining water quality, as
Tw impacts numerous physical, chemical, and biological processes. However, in many
developing countries, Tw data and related meteorological variables are often scarce. This
study assesses the predictive performance of generalized artificial neural networks (ANN)
and adaptive neuro-fuzzy inference systems (ANFIS) in predicting Tw using a minimal
set of climatic inputs and a site-specific cross-validation approach. The dataset was split
into two parts: a pooled dataset from six reservoirs in different climatic regions for
training, and data from the Beni Bahdel reservoir for testing. Eight input combinations,
including air temperatures (mean, maximum, and minimum), relative humidity, and day
of the year (DOY), were explored. Both ANN and ANFIS outperformed traditional multi-
linear regression (MLR). Among the tested models, those using air temperatures and
DOY as inputs, ANN-M2 and ANFIS-M7, showed the best performance, with ANN-M2
achieving an R value of 0.97, RMSE of 1.52°C, and MAPE of 7.43%, and ANFIS-M7
achieving an R value of 0.97, RMSE of 1.54°C, and MAPE of 7.68% during testing. The
results highlight that incorporating DOY improves prediction accuracy, and sensitivity
analysis identified DOY and mean air temperature as the most important predictors.
Overall, ANN and ANFIS offer reliable, user-friendly methods for accurately predicting
reservoir Tw, supporting efforts to manage water quality and ecological health in
reservoir ecosystems.
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INTRODUCTION

Water resources are characterized by two key aspects: quantity and quality (Ouis, 2012;
Laghzal and Salmoun, 2014; Bouchemal and Achour, 2015; Mohamad et al., 2024).
While the water quantity can be easily measured using metrics such as mass, volume,
flow rate, or other modern tools (El-Moukhayar et al., 2015; Chibane and Ali-Rahmani,
2015; Bemmoussat et al., 2017; Qureshi et al., 2024), determining water quality is more
complex, required sometimes the use of Al, integrated approach, and monitoring system
(Abbasi and Abbasi, 2012; El-Kharmouz et al., 2013; Belhadj et al., 2017; Singh et al.,
2022; Pandey et al., 2022). Water quality is determined by statistical approach (Lachache
et al., 2024), various physical, chemical, and biological factors, with surface water
temperature being one of them. Several methods, available in the literature, can be used
to improve water quality, hence public health (Faye, 2017; Baba Hamed, 2021; Thsan and
Derosya, 2024; Chadee et al., 2024).

Surface water temperature (Tw) is of great importance physical parameter used in water
resource planning and management, as Tw affects physical and biogeochemical processes
that occur within the water bodies (rivers, lakes and reservoirs) (Boutoutaou et al., 2020;
Sourogou et al., 2021; Mezenner et al., 2022; Chow and Teo, 2023; Mehta et al., 2023;
Verma et al., 2023; Trivedi and Suryanarayana, 2023; Shaikh et al., 2024; Panchal and
Suryanarayana, 2025). Indeed, Tw influences water quality and biological distribution
(Moreno-Ostos et al., 2008), reaeration process at the water-air interface (Nguyen et al.,
2014), dissolved oxygen levels, chemical reaction, and growth rates and mortality of
aquatic plants and animals (Gooseff et al., 2005). The role of water temperature in
eutrophication is both physical and biological. Water temperature strongly influences
algal growth rates, nutrient recycling kinetics and biological decomposition (Jergenson
et al.,, 2013; Ji, 2017). For these reasons, accurate determination of surface water
temperature (Tw) is relevant given its importance to aquatic ecosystem health and water
quality, and even on the effectiveness of water treatment processes (Ghomri et al., 2013;
Khelili et al., 2024; Berafta et al., 2025; Thsan, 2025).

There are two ways to determine the surface water temperature (Tw). First, measure the
water temperature with a sensor. Second, water temperature is assessed using different
types of models. Measuring water temperature is the best way to get water temperature
data. Despite recent technological developments in measuring instrumentation have made
Tw monitoring practical and inexpensive (DeWeber and Wagner, 2014), it is still difficult
to obtain Tw data for shorter time step (Day, week) due to fact that water temperature
data are measured once a month in Algeria. In addition, the lack of Tw data for some
reservoirs due to logistical impediments and limited financial resources allocated for the
water quality monitoring program. This results in the loss of temporal variation of TW
data and the absence of Tw data for some reservoirs. Therefore, it is important to develop
a general model to predict surface water temperature for unsampled time periods or for
unsampled reservoirs is of paramount importance.

58



Modeling reservoir surface water temperature with neural networks and ANFIS insights
from sensitivity analysis

The dynamics of reservoir water temperature are highly complex and nonlinear,
influenced by a variety of factors. These factors include meteorological variables, such as
air temperature, relative humidity, wind speed, sunshine duration, and solar radiation, as
well as topographical characteristics like altitude, latitude, and longitude. Hydrological
conditions, including inflow and outflow, and human interventions such as reservoir
management and regulatory practices (Quan et al., 2020), also play significant roles.
Additionally, the water body's morphology, including its size and depth (Xenopoulos and
Schindler, 2001), further complicates the process. The interaction of these diverse factors
poses considerable challenges to developing models capable of accurately predicting
water temperature (Tw) in reservoirs. Recently, researchers have developed and applied
different types of models to predict water temperature (Tw) in reservoirs (Quan et al.,
2020; Wang et al., 2022). In general, these models fall into two main categories: process-
based models and data-driven models (Wang et al., 2022). Process-based or deterministic
models rely on physical principles and fundamental equations that describe changes in
water temperature over time based on appropriate assumptions and boundary conditions
(Quan et al., 2020). They require large amounts of accurate data to calibrate model
parameters (Mulia et al., 2015), such as lake water depth, inflow and outflow conditions,
and meteorological variables (Zhu et al., 2020), which limit their application. In fact,
collecting these inputs is time-consuming and sometimes difficult to obtain (Razavi et al.,
2012). Common process-based models are CE-QUAL-W2 (Shaw et al., 2017), The
Delft3D (Wang et al., 2022), and Environmental Fluid Dynamics Code (Ji, 2017).

In contrast, data-driven models are able to represent linear and non-linear relationships
incorporated into the dataset and learn these relationships directly from the data they are
modeling rather than using complicated equations (Mulia et al., 2015; Zaidi et al., 2023).
Data-driven models include ANN, ANFIS (Ansari et al.,, 2024), Support Vector
Machines, Regression trees, Random Forest, etc. (Fellous et al., 2023). Various authors
have used ANN for predicting Tw for rivers (DeWeber and Wagner, 2014; Zhu et al.,
2019), lakes (Liu and Chen, 2012; Heddam et al., 2020) and reservoirs (Kimura et al.,
2021).

Quan et al. (2020) utilized measured reservoir water temperature data to train a support
vector regression (SVR) model and an improved support vector machine (M-GASVR)
optimized with a genetic algorithm (GA). Their results indicated that the GA-SVR model
outperformed both the SVR and ANN models based on performance metrics in the
Longyangxia Reservoir, China. While Wang et al. (2022) proposed a Long Short-Term
Memory (LSTM) model trained with data generated by a Delft3D hydrodynamic model
and tested it with measured data to solve the problem of missing data at the spatial and
temporal levels. The findings revealed that the LSTM model was highly effective in
predicting the Tw simulated by Delft3D, achieving an R? value of 0.99. Additionally, the
R? between the LSTM predictions and observed measurements exceeded 0.9.

Many machines learning studies modeling water temperature in lakes and reservoirs have
relied on locally trained (site-specific) models (Heddam et al., 2020; Quan et al. 2020;
Wang et al., 2022). While effective within limited areas, these models have reduced
accuracy when applied to locations outside the original development site. This is a key
drawback of small-scale models, they are highly site-specific, meaning their applicability
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is restricted to the location where they were trained, limiting their generalization to new,
untested areas (Ferreira et al., 2019). A more generalized model can be developed by
training on data from multiple locations, covering a larger area, to better capture and map
the water temperature (Tw) process.

Algeria is a vast country (2,381,741 km?) with a wide variety of climatic zones,
microclimates, and soils. The water sector includes 82 reservoirs located in different
regions such as humid, sub-humid, arid, and semi-arid zones.

Various studies have examined different aspects of reservoirs in Algeria, including
sedimentation, often called siltation (Remini and Remini, 2003; Larfi and Remini, 2006;
Remini and Bensafia, 2016; Remini et al., 2019; Jha et al., 2024), specific erosion in
reservoir watershed (Bougamouza et al., 2020; Toumi and Remini, 2020; Femmam et al.,
2025), reservoir evaporation (Marouane et al., 2024), and water quality (Achour et al.,
2019; Madene et al., 2023), and solid transport using ANNs (Bougamouza et al., 2022).
However, to the best of our knowledge, no study in the existing literature has investigated
water temperature modeling using ANN and ANFIS in Algeria. Therefore, developing a
general model trained on nationwide data using limited meteorological parameters would
be crucial, useful, and beneficial for predicting surface water temperature (Tw) in
reservoirs across Algeria.

Due to the complexity, non-linearity of Tw process, and the shortcomings of process-
based models in terms of input data required, artificial neural networks (ANNs) and
ANFIS were selected as good candidates to solve the above problems.

Regarding the nature of the dataset used in this work, which is scattered in time (sampling
procedure problem) and space (data from seven reservoir), we chose to use feed-forward
neural networks, because we seek to map the static relationship among meteorological
variables and the corresponding water temperature (Tw). This allows predicting water
temperature from meteorological variable, filling the gaps in historical records resulting
from sampling program, simulating Tw data for unsampled reservoirs and forecasting the
future values of Tw from the national weather forecasts.

This paper aims to: (1) develop generalized machine learning models for predicting
reservoir surface water temperature across the country using a limited set of
meteorological variables, (2) demonstrate the effectiveness of ANN and ANFIS
techniques in practical issues for assessing surface water temperature in reservoirs, and
(3) identify the main important predictors through sensitivity analysis.

STUDY AREA AND DATA COLLECTION

This study assessed the performance of the proposed machine learning models using
monthly surface water temperature data from eight reservoirs located in various regions
of Algeria, provided by the Algerian National Water Resources Agency (ANRH).These
reservoirs, characterized by diverse hydrological, morphological, and climatological
conditions, were used to ensure the generalizability of the models to new reservoirs in
Algeria through a site-based cross-validation approach.
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The data was divided into two sets: the first included six reservoirs from various climatic
regions, used for model training; the second comprised the Beni Bahdel reservoir with
five years of data for model testing. A detailed summary, including periods of data
availability and repartition of reservoirs, is provided in Table 1 and Fig. 1.

Table 1: Morphometric parameters of the studied reservoirs (tr: training; tst: test;
m.a.s.l: meters above sea level)

ij‘:ﬁi‘ Crest ~ Dam  Crest  initial . .~ Dataset

Reservoirs length  height level capacity - period

area I Ho® region df
(Km?) (m) (m) (m.a.s.l) m (used for)

Harbil 180 360 57 208.5 40 Sub 2008-
humid 2011 (tr)

Keddara 93 468 106 145 145.6 Sub 2008-
humid 2011 (tr)

Ouizert 2100 950 60 448 100 Semi- 2008-
arid 2011 (tr)

Bouhanifia 7854 496 54 295 73 Semi- 2008-
arid 2011 (tr)

Tichy-Haf 3980 275 83.5 294.5 80 Humid 2011-
2012 (tr)

Lakehal 189 630 45 684.4 30 Semi- 2008-
arid 2011 (1)

Beni- 1.016 315 55 664 63 Semi- 2008-
Bahdel arid 2012(tst)

The meteorological datasets were collected from the weather stations closest to each
reservoir. These datasets include daily climatic variables such as air temperatures (mean,
maximum, and minimum); wind speed at 2 meters height (U2); relative humidity (RH);
and rainfall. In total, 341 samples were gathered. Additionally, the day of the year (DOY)
was used as an auxiliary input, following the approach of Qiu et al. (2020) and Yousefi
and Toffolon (2022). The DOY, which ranges from 1 to 365, corresponds to the specific
day of sampling, with one value recorded per month for each reservoir. It’s important to
mention that the daily meteorological data coincide the days of measurement of reservoirs
surface water temperature.
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Figure 1: Location of the eight studied reservoir considered in this study

METHODOLOGY AND MODEL DEVELOPMENT

In this study, the modeling of reservoir surface water temperature (Tw) was conducted
using MATLAB R2020a, where three scripts were developed to implement and evaluate
Multi-Linear Regression (MLR), Artificial Neural Networks (ANN), and Adaptive
Neuro-Fuzzy Inference System (ANFIS) models. The dataset was divided into two
subsets: a pooled training dataset combining observations from six Algerian reservoirs
located in distinct climatic regions, and an independent testing dataset from the Beni
Bahdel reservoir. This design allowed for evaluating the generalization ability of the
models in a cross-site testing framework. Model performance was assessed using three
statistical metrics: the correlation coefficient (CC), root mean square error (RMSE), and
mean absolute percentage error (MAPE). Additionally, sensitivity analysis was
performed to identify the most influential input variables, using a leave-one-out approach
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in which each input was systematically removed to evaluate its impact on model accuracy.
The following sections present a concise overview of the ANN and ANFIS models, the
performance metrics used for evaluation, and the sensitivity analysis conducted to assess
input variable importance.

Artificial neural networks (ANNs)

ANNSs are complex computational frameworks that take inspiration from the structure and
function of biological neural systems (Kordon, 2009; Kouloughli and Telli, 2023). These
networks consist of elements called neurons, linked through adjustable connections
known as synaptic weights. These weights control the intensity of the connections
between neurons, adapting during the learning phase to enable the network to identify
patterns in the data. This adaptive capability is a key advantage of ANNS, allowing them
to model and interpret the behavior of intricate systems. One of the most commonly used
ANN structures is the Multilayer Perceptron (MLP), which features an input layer, one
or more hidden layers, and an output layer. In this architecture, neurons in each layer are
fully connected to the neurons in the subsequent layer, facilitating signal transmission
from the input to the output (Landeras et al., 2008).

In this study, MLP-ANN models comprising an input layer, a single hidden layer, and an
output layer were implemented. The optimal number of neurons in the hidden layer
(ranging from 1 to 30) was determined by trial and error (Heddam, 2019). The networks
were trained using the Levenberg-Marquardt optimization technique, with a sigmoid
activation function, and the training continued for 1000 epochs (Tabari et al., 2011).

Adaptative neuro-fuzzy inference system

The Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993),
integrates the learning strengths of neural networks with the transparent reasoning of
fuzzy logic into a single framework. ANFIS functions as a five-layer network grounded
in the Sugeno fuzzy inference model, employing fuzzy if-then rules to approximate
nonlinear relationships (Araghinejad, 2014). The system's operation involves two main
phases: estimating parameters and identifying structure. The rule parameters -both those
related to the premises and the consequences- are fine-tuned using a hybrid approach.
This approach involves backpropagation for adjusting premise parameters and the least
squares method for refining the consequent parameters (Jang, 1993).

Rather than using traditional grid partitioning, ANFIS structure identification is achieved
through subtractive clustering (SC), which offers greater efficiency (Heddam et al., 2012).
The key variable in SC is the radius of influence (r), which directly impacts the rules
number generated, larger values of r lead to fewer rules. The optimal value of r was
determined through trial-and-error, testing values between 0.1 and 1 in increments of
0.01. More details are presented in Zhu et al. (2019) and Kantharia et al. (2024).
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Model performance indicators

The performance of three models -MLR, ANN, and ANFIS- in predicting reservoir
surface water temperature was evaluated using three key metrics: the root mean square
error (RMSE), the correlation coefficient (R), and the mean absolute percentage error
(MAPE). These metrics were calculated by comparing the observed surface water
temperatures with the predicted values. They were calculated using the following
equations:

2 2(0i=0m)(Pi—Pm)

o 1)
\/111iil(Oi—Om)z\/I}]iil(Pi—Pm)z
N
RMSE = \/ﬁigl(Oi—Pi)z @
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MAPE =— %" | ———11 <100 ©)
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Where N is the number of samples, O; is the observed value and P; is the predicted value,

Oy, and Py, are the means of O; and P;.
Sensitivity analysis

Sensitivity analysis offers a comprehensive evaluation of how changes in input variables
affect the output (water temperature), providing essential insights for further analysis and
decision-making. It helps classify input variables according to their relative contribution
to the output. Various methods are used for sensitivity analysis, and in this paper, the
"leave-one-out" approach was applied. In this method we first trained a full artificial
neural network (ANN) model using all available input variables. Then, we systematically
removed one input at a time and trained a pruned model. The sensitivity of each input
was quantified by calculating the ratio of the RMSE of the pruned model to the RMSE of
the complete model. This method allowed us to assess the relative influence of each input
variable on model performance. A higher RMSE ratio indicates greater importance of the
removed input. The ratio is calculated as follows:

RMSE
RMSE

Ratio =

Pruned model
“4)
Complete model

The variables are then ranked based on their ratios, with the highest ratio receiving the
top rank (Olszewski et al., 2008).
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RESULTS AND DISCUSSION
Seasonal dynamics of water temperature

Fig. 2 represents the 3D surface plot of water temperature (Tw) versus mean air
temperature (Tmean) and day of the year (DOY) for 7 Algerian reservoirs. It highlights a
clear seasonality, with both temperatures rising from DOY 0 to 300 and falling from DOY
300 to 365. This pattern reflects the Mediterranean climate's hot, dry summers and mild,
wet winters. The close correlation between Tw and Tmean indicates that air temperature
significantly influences water temperature. Variations among humid, sub-humid, and
semi-arid bioclimatic stages affect the amplitude and timing of these temperature
changes. These seasonal dynamics are critical for reservoir management, predicting water
quality, and understanding ecological impacts in these regions.

35

0 0 9 Tmean (°C)

Figure 2: Surface plot of Tw versus Tmean and DOY for 7 reservoirs
Inputs selection

In this study, linear correlation analysis was employed to identify the meteorological
variables that influence water temperature, offering a straightforward method for
selecting relevant inputs. Table 2 shows the correlation between surface water
temperature and various meteorological factors, including air temperatures (mean,
minimum, and maximum), relative humidity, rainfall (P), and wind speed. The day of the
year (DOY) was also used as an additional input. As indicated in Table 2, air temperatures
(mean, maximum, and minimum) exhibit the strongest correlation with surface water
temperature, highlighting air temperature as the key influencing variable. These findings
align with those of Yang and Luo (2020), who also reported a high correlation between
air and surface water temperatures. Additionally, we observed moderate, negative
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correlations between relative humidity and surface water temperature, likely due to the
heat loss from the water surface through the evaporation process. This finding aligns with
those of Yousefi and Toffolon (2022) who find that correlation between Tw and relative
humidity (RH) is -0.27.

The DOY (day of the year) shows a moderate correlation with surface water temperature,
with a correlation coefficient of 0.3678. This indicates that seasonality plays a role in
influencing surface water temperature. In fact various authors have used DOY as an
additional input for modeling surface water temperature in river (Zhu et al., 2019) and
lake (Yousefi and Toffolon, 2022). In contrast, rainfall and wind speed exhibit very weak
correlations with surface water temperature and were therefore excluded from the input
dataset.

Table 2: Correlation between meteorological variables and water temperature
(DOY; Day of the year)

Tmax Tmin Tmean RH P U2
0 (W) 0 (%) (mm) (Km/h)

Tw(°C) 0.8365 0.8045 0.8673 -0.4960 -0.1450 -0.041 0.3678

DOY

Correlation analysis revealed that air temperature variables (Tmean, Tmax, Tmin),
relative humidity (RH), and the day of the year (DOY) are important input factors for
modeling reservoir surface water temperature. Several combinations of these inputs were
then tested to find the optimal configuration. Table 3 presents different input variable
combinations used for developing the models.

Table 3: Inputs combinations

Combinations Inputs
M, [Tmean ]
\Y 63 [Tmean. DOY]]
M3 [Tmean. RH ]
M [Tmean. Tmax and Tmin ]
Ms [Tmean. RH and DOY]
Me [Tmean. Tmax. Tmin. and RH]
M7 [Tmean. Tmax. Tmin. and DOY]
Mg [Tmean. Tmax. Tmin. RH and DOY]
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Models’ performance for predicting surface water temperature

The MLR, ANN, and ANFIS models were developed using eight different input
combinations to predict surface water temperatures (Tw) in reservoirs. Table 4 provides
a summary of the models' performance, displaying key metrics such as the correlation
coefficient (R), RMSE, and MAPE. The training phase utilized combined data from six
reservoirs, while the testing phase used data from the Beni Bahdel reservoir. The best-
performing results are highlighted in bold.

To ensure the generatability of the models to new reservoirs in Algeria, we have used the
site-based cross-validation approach. The data was split into two datasets, the first
involving the data of six reservoirs located in different climatic regions and used to create
data-driven models. The second involves the data of the Beni Bahdel reservoir, which
have a length five years and used to test the models.

Table 4 shows that the MLR models yield unsatisfactory results during training and
testing. In the testing phase, the correlation coefficient (R) ranges from 0.92 to 0.94, while
the root mean square error (RMSE) varies between 2.29 and 2.60°C. The mean absolute
percentage error (MAPE) falls between 12.46% and 13.53%. There is minimal variation
in accuracy across the different MLR models. Notably, incorporating the time component
(DOY) in models M2 and M5 does not enhance their performance. This indicates that
MLR models are inadequate for accurately predicting surface water temperatures.

Training results for the ANN models (Table 4) revealed variations: correlation
coefficients (R) fluctuated between 0.86 (ANN-M1) and 0.91 (ANN-M5), RMSE values
varied from 2.58 °C (ANN-M5) to 3.18 °C (ANN-M1), and MAPE percentages ranged
from 7.43% (ANN-M2) to 11.59% (ANN-M6).

During the test phase, for the ANN models (Table 4), the correlation coefficient (R)
ranged from 0.93 for ANN-M6 to 0.97 for ANN-M2. The RMSE values varied between
1.52 °C for ANN-M2 and 2.35 °C for ANN-M6, while the MAPE ranged from 7.43% in
ANN-M2 to 11.59% in ANN-M6. Consequently, ANN-M2, which uses Tmean and DOY
as inputs, delivered the best performance, while ANN-M6, incorporating Tmean, Tmax,
Tmin, and RH, showed the weakest results.

Comparable findings were reported by Hadzima-Nyarko et al. (2014), where the authors
successfully predicted daily river water temperatures in Croatia using a multilayer
perceptron neural network. The root mean square error (RMSE) during the testing period
ranged from 1.57°C to 2.74°C.

Table 4 demonstrates that ANN models using only air temperature inputs (M1 and M4)
exhibit moderate performance during the test period. This is due to the fact that Tmean,
Tmin, and Tmax alone are insufficient to capture the full variability in surface water
temperature when using the ANN technique. The ANN-M3 model results show that
including relative humidity (RH) alongside Tmean leads to only a slight improvement in
accuracy over the ANN-M1 model, indicating that RH has a limited impact on predicting
surface water temperature (Tw).
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Additionally, the table shows that including RH alongside Tmean, Tmin, and Tmax in
ANN-M6 does not enhance the model’s accuracy. This is due to the relatively weak and
negative correlation between RH and Tw. However, when DOY is added to the air
temperature dataset (Tmean, Tmax, and Tmin), the models show significant
improvements. Specifically, the RMSE of ANN-M2 shows a 27% improvement
compared to ANN-M1 during the test period, while MAPE improves by 32.88%.
Similarly, the RMSE of the ANN-M7 model records a 15.9% improvement compared to
ANN-M4, with MAPE improving by 13.62%. These results align with the findings of
Zhu et al. (2019) and Qui et al. (2020), who showed that including DOY in the input data
notably enhanced the accuracy of ANN models.

Table 4: Performance metrics of the developed models for different input

combinations
Training Testing
Models cc RMSE MAPE cc RMSE MAPE
O (%) O ()
MLR
Ml 0.8514 3.2779 15.7752 0.9451 2.2931 12.4618
M2 0.8622 3.1653 14.4843 0.9246 2.4789 12.7009
M3 0.8548 3.2433 15.5145 0.9430 2.3414 12.7312
M4 0.8548 3.2433 15.5145 0.9430 2.3414 12.7312
M5 0.8688 3.0948 14.1122 0.9277 2.5666 12.9596
M6 0.8635 3.1516 14.8769 0.9464 2.4958 13.5310
M7 0.8636 3.1506 14.4443 0.9261 2.4877 12.8531
M 8 0.8708 3.0726 13.9097 0.9298 2.6069 13.4195
MLPNN
M1 0.8605 3.1848 15.3467 0.9517 2.0804 11.0824
M2 0.8999 2.7418 12.4627 0.9745 1.5200 7.43810
M3 0.8719 3.0760 14.3629 0.9564 2.0012 10.1233
M4 0.8774 3.0220 13.9632 0.9402 2.1293 10.3244
M5 0.9128 2.5866 11.6373 0.9502 2.0014 9.38763
M 6 0.8808 2.9961 13.5794 0.9372 2.3532 11.5924
M7 0.9026 2.8719 12.5369 0.9629 1.7904 8.91750
M 8 0.9112 2.7639 12.3074 0.9588 1.7188 7.74420
ANFIS
Ml 0.8612 3.1764 15.3975 0.9501 2.1243 11.3775
M2 0.9012 2.7077 12.4696 0.9720 1.5914 8.14780
M3 0.8752 3.0231 14.5552 0.9526 2.2363 11.8463
M 4 0.8686 3.0961 15.0500 0.9441 2.1923 11.1610
M5 0.9126 2.5545 12.1237 0.9668 1.7268 8.24725
M6 0.8815 2.9508 14.2273 0.9442 2.3629 12.1820
M7 0.9087 2.6079 12.2417 0.9719 1.5415 7.68039
M 8 0.9361 2.1983 10.6913 0.9300 2.3648 10.6860

During the training phase, the ANFIS models produced correlation coefficients ranging
from 0.86 (ANFIS-M1) to 0.93 (ANFIS-MS). The RMSE values varied between 2.19 °C
(ANFIS-MS) and 3.17 °C (ANFIS-M1), while the MAPE ranged from 10.69% (ANFIS-
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M8) to 15.39% (ANFIS-M1), indicating that some models achieved strong predictive
performance whereas others yielded comparatively lower accuracy.

Table 4 shows also the performance of the ANFIS models. The correlation coefficient (R)
during testing ranged from 0.93 to 0.97, while MAPE values were between 7.68% and
12.18%, and RMSE varied from 1.54°C to 2.36°C. The ANFIS-M7 model, using Tmean,
Tmax, Tmin, and DOY, performed best. It achieved an R value of 0.9719, an RMSE of
1.54°C, and a MAPE of 7.67%. The next best models were ANFIS-M2 (using Tmean and
DOY), followed byANFIS-M5, and ANFIS-M8 (using all inputs) respectively.

Similar results were reported by Zhu et al. (2019), where the authors used ANFIS-SC to
predict river water temperature (Tw) using mean air temperature (Tmean), river flow
discharge (Q), and the Gregorian calendar as input variables. For the Botovo station in
Croatia, the RMSE ranged from 1.429°C to 2.35°C in test period.

Like the ANN models, the ANFIS models that use air temperature as inputs (M1 and M4)
did not produce satisfactory results. This is because air temperature alone cannot account
for all the variability involved in the water temperature (Tw) process. Similarly, the
ANFIS models incorporating both air temperature and relative humidity (M3 and M6)
also did not perform well. The combination of these two variables was insufficient to fully
explain the variations in water temperature.

As observed in ANN models, incorporating DOY (Day of Year) in different combinations
substantially improves the performance of ANFIS models. Specifically, the ANFIS-M2
model achieves a 25.08% reduction in RMSE, alongside a 28.38% improvement in
MAPE. Similarly, the ANFIS-M7 model demonstrates a 29.69% reduction in RMSE
when compared to ANFIS-M4, with a corresponding 29.38% enhancement in MAPE.

Incorporating the Day of Year (DOY) alongside with air temperature into ANN and
ANFIS models significantly enhances the prediction of reservoir surface water
temperatures. DOY captures seasonal patterns of reservoirs thermal dynamic which
influenced by factors such as solar radiation and sunshine duration, enabling models to
account for natural fluctuations throughout the year. This temporal variable serves as a
proxy for climatic influences, reflecting the time of year and aiding in generalizing
predictions across various climatic conditions. Additionally, DOY improves the models'
generalization capabilities during cross-validation by introducing the temporal context,
complementing meteorological variables like air temperature, and helping models capture
long-term trends and cycles that air temperature data alone may not fully capture. Overall,
integrating DOY enables ANN and ANFIS models to effectively capture both short-term
and long-term variations in reservoir surface water temperature, leading to improved
predictive accuracy, especially when applied to unseen data from specific reservoir (Beni
Bahdel). Jiang et al. (2022) found DOY to be the dominant factor influencing river water
temperature predictions downstream of cascaded dams across diverse machine learning
techniques. Similarly, Qiu et al. (2020) revealed that incorporating DOY offered greater
predictive improvement compared to adding river flow discharge (Q) alongside air
temperature (Tmean).
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The performance comparison between ANN and ANFIS models across the eight input
combinations revealed no consistent dominance of one approach over the other. In some
configurations, ANN models slightly outperformed their corresponding ANFIS
counterparts, while in other configurations, ANFIS achieved marginally better results
than ANN. Two models were particularly noteworthy: ANN-M2, which uses only Tmean
and DOY as inputs, delivered high predictive accuracy while requiring fewer inputs, and
ANFIS-M7, which incorporates Tmean, Tmax, Tmin, and DOY, also produced strong
predictive accuracy. These results highlight that the selection of the most appropriate
modeling mechanism should be guided by the specific application context and the
availability of input variables. Moreover, as both ANN and ANFIS are data-driven
approaches, their relative performance may differ when applied to datasets from other
IeServoirs.

In terms of simplicity and parsimony (model requiring fewer inputs), the ANN-M2 model
stands out as the most straightforward, efficient, and accurate. It only requires Tmean and
DOY as inputs while delivering the best performance among all the models tested.

ANN-M?2 and ANFIS-M7 models can also be employed to produce real-time predictions
of reservoir surface water temperature (TS) in the northern of Algeria. These predictions
rely on air temperature forecasts (Tmean, Tmin, and Tmax) provided by the national
weather service, combined with the DOY as input variables.

Accurate surface water temperature predictions using ANN and ANFIS models offer
various advantages for lake and reservoir managers, equipping them with the ability to
take targeted actions to improve both ecological and operational outcomes. By predicting
water temperature fluctuations, managers can enhance water quality monitoring and
control, addressing issues related to dissolved oxygen levels, nutrient dynamics, and
harmful algal blooms. For example, if predictions suggest increasing water temperatures
that may result in oxygen depletion, managers can respond by initiating water circulation
systems or aeration measures to preserve sufficient oxygen levels for aquatic organisms.
Moreover, these predictions allow for the optimization of water resource allocation by
helping managers adjust water withdrawals and releases based on temperature forecasts,
balancing the needs of aquatic ecosystems and human consumption. This predictive
capability is especially crucial for fish and aquatic life management, where water
temperature changes can cause significant stress on sensitive species. With water
temperature forecasts in hand, managers can implement preemptive measures like timing
water releases or restricting fishing to protect vulnerable populations.

In addition, accurate temperature predictions are critical for controlling algal blooms and
eutrophication, two issues that often arise when water temperatures rise. With advance
warning, managers can reduce nutrient inflows from agriculture or urban runoff to prevent
blooms before conditions worsen. These predictions also contribute to long-term planning
and climate change adaptation, helping managers formulate strategies to cope with
increasing temperatures. This could include upgrading infrastructure and optimizing
reservoir management practices to lessen the impact of extreme temperatures on aquatic
ecosystems. Finally, this comprehensive application of temperature forecasts
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demonstrates their importance in water resource management, from short-term
interventions to long-term sustainability planning.

To validate the numerical results (Table 4), Fig. 3 illustrates the observed and predicted
surface water temperature (Tw) as time series, and Fig. 4 displays the corresponding
scatter plots for the MLR-M1, ANN-M2, and ANFIS-M7 models during the testing phase
at the Beni Bahdel reservoir. From both the time series (Fig. 3) and scatter plots (Fig. 4),
it is evident that the predictions from the ANN-M2 and ANFIS-M7 models align more
closely with the observed Tw compared to the MLR-M1 model.

® Measured MLR-M1

30 4

Tw (°C)

12 24 Months 36 48 60

® Measured

Tw (°C)

12 24 Months 36 48 60

® Measured —— ANFIS-M7

12 24 Months3e 48 60

Figure 3: Time series of the observed and predicted water temperature (Tw) in Beni
Bahdel reservoir for MLR-M1, ANN-M2 and ANFIS-M7 models
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Figure 4: Scatter plots between the observed and predicted water temperature (Tw)
in Beni Bahdel reservoir for MLR-M1, ANN-M2 and ANFIS-M7 models

In addition to time series and scatter plots, the performance of all models is assessed using
the Taylor diagram (Fig. 5), which combines key metrics such as correlation coefficients
(R), standard deviations, and root mean square difference (RMSD) to evaluate accuracy.
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This information is presented in a single diagram and compared to observed data (Obs).
The closer a model's point is to the red-filled reference point (Obs), the more accurate the
model is. The Taylor diagram shows that ANN-M2, with the fewest inputs, yields the
highest accuracy, followed by ANFIS-M7 and ANFIS-M2.

+ MLR-M1 ANN-M5
MLR-M2 ANN-M6
* MLR-M3 ANN-M7

Standard Deviation

o MLR-M4 ANN-M8
¢ MLR-M5 ANFIS-M1
+ MLR-M6 ANFIS-M2
o MLR-M7 ANFIS-M3
* MLR-M8 ANFIS-M4
o ANN-M1 + ANFIS-M5
¢ ANN-M2 o ANFIS-M6
ANN-M3 = ANFIS-M7
ANN-M4 = ANFIS-M8

6Obs

Figure 5: Taylor diagram of all tested models
Sensitivity analysis results

To assess the individual contributions of each input variable to the predicted surface water
temperature, a sensitivity analysis was performed on the Artificial Neural Network
(ANN) model using ‘leave-one-out’ method (excluding a specific input each time). The
results of this analysis, including the ratios and ranks, are displayed in Table 5.

Table 5: Sensitivity analysis results for ANN models

Models Ratio Rank
Without DOY 1.150 1
Without Tmean 0.980 2
Without RH 0.973 3
Without Tmax 0.968 4
Without Tmin 0.940 5
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For reservoir surface water temperature, it is evident that the sensitivity analysis of inputs
highlights the substantial impact of DOY, followed by mean air temperature (Tmean),
relative humidity (RH), maximum air temperature (Tmax) and minimum air temperature
(Tmin), respectively.

The sensitivity analysis of reservoir surface water temperature reveals that the day of the
year (DOY) has the greatest impact (ratio: 1.150). Since the reservoirs are located in a
Mediterranean climate, the seasonal variation in solar radiation, temperature shifts and
the length of daylight vary significantly across the year. This makes DOY a crucial factor,
reflecting the overall energy input the reservoirs receive over time. Mean air temperature
(Tmean, ratio: 0.980) follows, indicating the role of overall atmospheric warmth in heat
exchange with the water. Relative humidity (RH ratio: 0.973) also has a substantial effect,
highlighting its influence on evaporation and heat retention. Maximum and minimum air
temperatures (Tmax; 0.968, Tmin; 0.940) contribute to short-term heating and cooling
processes, but are less influential compared to DOY and Tmean.

CONCLUSION

The knowledge of surface water temperature is critical for reservoir management,
predicting water quality, and understanding ecological health. In this paper, MLR, ANN,
and ANFIS model were evaluated for the estimation of reservoir surface water
temperature (Tw) in the northern of Algeria using site based cross-validation approach.
The findings of this study lead to the following conclusions:

Both the ANN and ANFIS models outperformed the MLR model across various
performance metrics, providing reliable predictions of surface water temperature in the
study area. However, the ANN model (M2) stood out for its simplicity, accuracy,

parsimony, robustness, stability, and overall effectiveness in predicting water temperature
(Tw).

Training the models with combined data from six different reservoirs across Algeria
improves their generalization capacity. The inclusion of varied data allows the models to
adapt to a broader spectrum of conditions, enhancing their applicability to regions
throughout northern Algeria.

The sensitivity analysis results reveal that seasonal variations represented by DOY, have
the most significant influence on reservoir surface water temperature. After DOY, the
variables Tmean (mean temperature), RH (relative humidity), Tmax (maximum
temperature), and Tmin (minimum temperature) exhibit progressively lower levels of
impact.

This research underscores the importance of incorporating the DOY as an input variable
in surface water temperature prediction for reservoirs, as it can substantially enhance the
accuracy of the predictions.
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The results of this study offer valuable insights for predicting surface water temperature
in reservoirs across northern Algeria. Notably, they highlight the potential of using only
mean air temperatures and the day of the year (DOY) as key inputs, simplifying the
modeling process while maintaining accuracy.

Accurate temperature predictions provide managers with a vital tool to anticipate and
address issues related to water quality, aquatic life health, and ecosystem stability. With
this foresight, they can implement timely and effective interventions, improving the
overall condition and sustainability of lakes and reservoirs.

While the ANN and ANFIS models need to be tested against other machine learning
techniques using large datasets that, alongside air temperature, include variables such as
solar radiation, sunshine duration, evaporation, and water inflows and outflows. These
machine learning techniques show great potential for unraveling the complex
relationships between these inputs and the resulting output (surface water temperature).
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