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ABSTRACT 

Accurate prediction of reservoir surface water temperature (Tw) is vital for effective 

water resource planning, environmental management, and maintaining water quality, as 

Tw impacts numerous physical, chemical, and biological processes. However, in many 

developing countries, Tw data and related meteorological variables are often scarce. This 

study assesses the predictive performance of generalized artificial neural networks (ANN) 

and adaptive neuro-fuzzy inference systems (ANFIS) in predicting Tw using a minimal 

set of climatic inputs and a site-specific cross-validation approach. The dataset was split 

into two parts: a pooled dataset from six reservoirs in different climatic regions for 

training, and data from the Beni Bahdel reservoir for testing. Eight input combinations, 

including air temperatures (mean, maximum, and minimum), relative humidity, and day 

of the year (DOY), were explored. Both ANN and ANFIS outperformed traditional multi-

linear regression (MLR). Among the tested models, those using air temperatures and 

DOY as inputs, ANN-M2 and ANFIS-M7, showed the best performance, with ANN-M2 

achieving an R value of 0.97, RMSE of 1.52°C, and MAPE of 7.43%, and ANFIS-M7 

achieving an R value of 0.97, RMSE of 1.54°C, and MAPE of 7.68% during testing. The 

results highlight that incorporating DOY improves prediction accuracy, and sensitivity 

analysis identified DOY and mean air temperature as the most important predictors. 

Overall, ANN and ANFIS offer reliable, user-friendly methods for accurately predicting 

reservoir Tw, supporting efforts to manage water quality and ecological health in 

reservoir ecosystems. 

Keywords: Surface water temperature, Artificial neural networks, ANFIS, Multi linear 

regression, Reservoirs. 
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INTRODUCTION 

Water resources are characterized by two key aspects: quantity and quality (Ouis, 2012; 

Laghzal and Salmoun, 2014; Bouchemal and Achour, 2015; Mohamad et al., 2024). 

While the water quantity can be easily measured using metrics such as mass, volume, 

flow rate, or other modern tools (El-Moukhayar et al., 2015; Chibane and Ali-Rahmani, 

2015; Bemmoussat et al., 2017; Qureshi et al., 2024), determining water quality is more 

complex, required sometimes the use of AI, integrated approach, and monitoring system 

(Abbasi and Abbasi, 2012; El-Kharmouz et al., 2013; Belhadj et al., 2017; Singh et al., 

2022; Pandey et al., 2022). Water quality is determined by statistical approach (Lachache 

et al., 2024), various physical, chemical, and biological factors, with surface water 

temperature being one of them. Several methods, available in the literature, can be used 

to improve water quality, hence public health (Faye, 2017; Baba Hamed, 2021; Ihsan and 

Derosya, 2024; Chadee et al., 2024). 

Surface water temperature (Tw) is of great importance physical parameter used in water 

resource planning and management, as Tw affects physical and biogeochemical processes 

that occur within the water bodies (rivers, lakes and reservoirs) (Boutoutaou et al., 2020; 

Sourogou et al., 2021; Mezenner et al., 2022; Chow and Teo, 2023; Mehta et al., 2023; 

Verma et al., 2023; Trivedi and Suryanarayana, 2023; Shaikh et al., 2024; Panchal and 

Suryanarayana, 2025). Indeed, Tw influences water quality and biological distribution 

(Moreno-Ostos et al., 2008), reaeration process at the water-air interface (Nguyen et al., 

2014), dissolved oxygen levels, chemical reaction, and growth rates and mortality of 

aquatic plants and animals (Gooseff et al., 2005). The role of water temperature in 

eutrophication is both physical and biological. Water temperature strongly influences 

algal growth rates, nutrient recycling kinetics and biological decomposition (Jørgenson 

et al., 2013; Ji, 2017). For these reasons, accurate determination of surface water 

temperature (Tw) is relevant given its importance to aquatic ecosystem health and water 

quality, and even on the effectiveness of water treatment processes (Ghomri et al., 2013; 

Khelili et al., 2024; Berafta et al., 2025; Ihsan, 2025). 

There are two ways to determine the surface water temperature (Tw). First, measure the 

water temperature with a sensor. Second, water temperature is assessed using different 

types of models. Measuring water temperature is the best way to get water temperature 

data. Despite recent technological developments in measuring instrumentation have made 

Tw monitoring practical and inexpensive (DeWeber and Wagner, 2014), it is still difficult 

to obtain Tw data for shorter time step (Day, week) due to fact that water temperature 

data are measured once a month in Algeria. In addition, the lack of Tw data for some 

reservoirs due to logistical impediments and limited financial resources allocated for the 

water quality monitoring program. This results in the loss of temporal variation of TW 

data and the absence of Tw data for some reservoirs. Therefore, it is important to develop 

a general model to predict surface water temperature for unsampled time periods or for 

unsampled reservoirs is of paramount importance.  
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The dynamics of reservoir water temperature are highly complex and nonlinear, 

influenced by a variety of factors. These factors include meteorological variables, such as 

air temperature, relative humidity, wind speed, sunshine duration, and solar radiation, as 

well as topographical characteristics like altitude, latitude, and longitude. Hydrological 

conditions, including inflow and outflow, and human interventions such as reservoir 

management and regulatory practices (Quan et al., 2020), also play significant roles. 

Additionally, the water body's morphology, including its size and depth (Xenopoulos and 

Schindler, 2001), further complicates the process. The interaction of these diverse factors 

poses considerable challenges to developing models capable of accurately predicting 

water temperature (Tw) in reservoirs. Recently, researchers have developed and applied 

different types of models to predict water temperature (Tw) in reservoirs (Quan et al., 

2020; Wang et al., 2022). In general, these models fall into two main categories: process-

based models and data-driven models (Wang et al., 2022). Process-based or deterministic 

models rely on physical principles and fundamental equations that describe changes in 

water temperature over time based on appropriate assumptions and boundary conditions 

(Quan et al., 2020). They require large amounts of accurate data to calibrate model 

parameters (Mulia et al., 2015), such as lake water depth, inflow and outflow conditions, 

and meteorological variables (Zhu et al., 2020), which limit their application. In fact, 

collecting these inputs is time-consuming and sometimes difficult to obtain (Razavi et al., 

2012). Common process-based models are CE-QUAL-W2 (Shaw et al., 2017), The 

Delft3D (Wang et al., 2022), and Environmental Fluid Dynamics Code (Ji, 2017). 

In contrast, data-driven models are able to represent linear and non-linear relationships 

incorporated into the dataset and learn these relationships directly from the data they are 

modeling rather than using complicated equations (Mulia et al., 2015; Zaidi et al., 2023). 

Data-driven models include ANN, ANFIS (Ansari et al., 2024), Support Vector 

Machines, Regression trees, Random Forest, etc. (Fellous et al., 2023). Various authors 

have used ANN for predicting Tw for rivers (DeWeber and Wagner, 2014; Zhu et al., 

2019), lakes (Liu and Chen, 2012; Heddam et al., 2020) and reservoirs (Kimura et al., 

2021). 

Quan et al. (2020) utilized measured reservoir water temperature data to train a support 

vector regression (SVR) model and an improved support vector machine (M-GASVR) 

optimized with a genetic algorithm (GA). Their results indicated that the GA-SVR model 

outperformed both the SVR and ANN models based on performance metrics in the 

Longyangxia Reservoir, China. While Wang et al. (2022) proposed a Long Short-Term 

Memory (LSTM) model trained with data generated by a Delft3D hydrodynamic model 

and tested it with measured data to solve the problem of missing data at the spatial and 

temporal levels. The findings revealed that the LSTM model was highly effective in 

predicting the Tw simulated by Delft3D, achieving an R² value of 0.99. Additionally, the 

R² between the LSTM predictions and observed measurements exceeded 0.9. 

Many machines learning studies modeling water temperature in lakes and reservoirs have 

relied on locally trained (site-specific) models (Heddam et al., 2020; Quan et al. 2020; 

Wang et al., 2022). While effective within limited areas, these models have reduced 

accuracy when applied to locations outside the original development site. This is a key 

drawback of small-scale models, they are highly site-specific, meaning their applicability 
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is restricted to the location where they were trained, limiting their generalization to new, 

untested areas (Ferreira et al., 2019). A more generalized model can be developed by 

training on data from multiple locations, covering a larger area, to better capture and map 

the water temperature (Tw) process. 

Algeria is a vast country (2,381,741 km²) with a wide variety of climatic zones, 

microclimates, and soils. The water sector includes 82 reservoirs located in different 

regions such as humid, sub-humid, arid, and semi-arid zones. 

Various studies have examined different aspects of reservoirs in Algeria, including 

sedimentation, often called siltation (Remini and Remini, 2003; Larfi and Remini, 2006; 

Remini and Bensafia, 2016; Remini et al., 2019; Jha et al., 2024), specific erosion in 

reservoir watershed (Bougamouza et al., 2020; Toumi and Remini, 2020; Femmam et al., 

2025), reservoir evaporation (Marouane et al., 2024), and water quality (Achour et al., 

2019; Madene et al., 2023), and solid transport using ANNs (Bougamouza et al., 2022). 

However, to the best of our knowledge, no study in the existing literature has investigated 

water temperature modeling using ANN and ANFIS in Algeria. Therefore, developing a 

general model trained on nationwide data using limited meteorological parameters would 

be crucial, useful, and beneficial for predicting surface water temperature (Tw) in 

reservoirs across Algeria. 

Due to the complexity, non-linearity of Tw process, and the shortcomings of process-

based models in terms of input data required, artificial neural networks (ANNs) and 

ANFIS were selected as good candidates to solve the above problems. 

Regarding the nature of the dataset used in this work, which is scattered in time (sampling 

procedure problem) and space (data from seven reservoir), we chose to use feed-forward 

neural networks, because we seek to map the static relationship among meteorological 

variables and the corresponding water temperature (Tw). This allows predicting water 

temperature from meteorological variable, filling the gaps in historical records resulting 

from sampling program, simulating Tw data for unsampled reservoirs and forecasting the 

future values of Tw from the national weather forecasts. 

This paper aims to: (1) develop generalized machine learning models for predicting 

reservoir surface water temperature across the country using a limited set of 

meteorological variables, (2) demonstrate the effectiveness of ANN and ANFIS 

techniques in practical issues for assessing surface water temperature in reservoirs, and 

(3) identify the main important predictors through sensitivity analysis. 

STUDY AREA AND DATA COLLECTION 

This study assessed the performance of the proposed machine learning models using 

monthly surface water temperature data from eight reservoirs located in various regions 

of Algeria, provided by the Algerian National Water Resources Agency (ANRH).These 

reservoirs, characterized by diverse hydrological, morphological, and climatological 

conditions, were used to ensure the generalizability of the models to new reservoirs in 

Algeria through a site-based cross-validation approach.  



Modeling reservoir surface water temperature with neural networks and ANFIS insights 

from sensitivity analysis  

61 

The data was divided into two sets: the first included six reservoirs from various climatic 

regions, used for model training; the second comprised the Beni Bahdel reservoir with 

five years of data for model testing. A detailed summary, including periods of data 

availability and repartition of reservoirs, is provided in Table 1 and Fig. 1. 

Table 1: Morphometric parameters of the studied reservoirs (tr: training; tst: test; 

m.a.s.l: meters above sea level) 

Reservoirs 

Catch

ment 

area 

(Km2) 

Crest 

length 

(m) 

Dam 

height 

(m) 

Crest 

level 

(m.a.s.l) 

initial 

capacity 

Hm3 

Climate 

region 

Dataset 

period 

(used for) 

Harbil 180 360 57 208.5 40 Sub 

humid 

2008-

2011 (tr) 

Keddara 93 468 106 145 145.6 Sub 

humid 

2008-

2011 (tr) 

Ouizert 2100 950 60 448 100 Semi-

arid 

2008-

2011 (tr) 

Bouhanifia 7854 496 54 295 73 Semi-

arid 

2008-

2011 (tr) 

Tichy-Haf 3980 275 83.5 294.5 80 Humid 2011-

2012 (tr) 

Lakehal 189 630 45 684.4 30 Semi-

arid 

2008-

2011 (tr) 

Beni-

Bahdel 

1.016 315 55 664 63 Semi-

arid 

2008-

2012(tst) 

 

The meteorological datasets were collected from the weather stations closest to each 

reservoir. These datasets include daily climatic variables such as air temperatures (mean, 

maximum, and minimum); wind speed at 2 meters height (U2); relative humidity (RH); 

and rainfall. In total, 341 samples were gathered. Additionally, the day of the year (DOY) 

was used as an auxiliary input, following the approach of Qiu et al. (2020) and Yousefi 

and Toffolon (2022). The DOY, which ranges from 1 to 365, corresponds to the specific 

day of sampling, with one value recorded per month for each reservoir. It’s important to 

mention that the daily meteorological data coincide the days of measurement of reservoirs 

surface water temperature. 
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Figure 1: Location of the eight studied reservoir considered in this study 

METHODOLOGY AND MODEL DEVELOPMENT  

In this study, the modeling of reservoir surface water temperature (Tw) was conducted 

using MATLAB R2020a, where three scripts were developed to implement and evaluate 

Multi-Linear Regression (MLR), Artificial Neural Networks (ANN), and Adaptive 

Neuro-Fuzzy Inference System (ANFIS) models. The dataset was divided into two 

subsets: a pooled training dataset combining observations from six Algerian reservoirs 

located in distinct climatic regions, and an independent testing dataset from the Beni 

Bahdel reservoir. This design allowed for evaluating the generalization ability of the 

models in a cross-site testing framework. Model performance was assessed using three 

statistical metrics: the correlation coefficient (CC), root mean square error (RMSE), and 

mean absolute percentage error (MAPE). Additionally, sensitivity analysis was 

performed to identify the most influential input variables, using a leave-one-out approach 
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in which each input was systematically removed to evaluate its impact on model accuracy.  

The following sections present a concise overview of the ANN and ANFIS models, the 

performance metrics used for evaluation, and the sensitivity analysis conducted to assess 

input variable importance. 

Artificial neural networks (ANNs) 

ANNs are complex computational frameworks that take inspiration from the structure and 

function of biological neural systems (Kordon, 2009; Kouloughli and Telli, 2023). These 

networks consist of elements called neurons, linked through adjustable connections 

known as synaptic weights. These weights control the intensity of the connections 

between neurons, adapting during the learning phase to enable the network to identify 

patterns in the data. This adaptive capability is a key advantage of ANNs, allowing them 

to model and interpret the behavior of intricate systems. One of the most commonly used 

ANN structures is the Multilayer Perceptron (MLP), which features an input layer, one 

or more hidden layers, and an output layer. In this architecture, neurons in each layer are 

fully connected to the neurons in the subsequent layer, facilitating signal transmission 

from the input to the output (Landeras et al., 2008). 

In this study, MLP-ANN models comprising an input layer, a single hidden layer, and an 

output layer were implemented. The optimal number of neurons in the hidden layer 

(ranging from 1 to 30) was determined by trial and error (Heddam, 2019). The networks 

were trained using the Levenberg-Marquardt optimization technique, with a sigmoid 

activation function, and the training continued for 1000 epochs (Tabari et al., 2011). 

Adaptative neuro-fuzzy inference system 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993), 

integrates the learning strengths of neural networks with the transparent reasoning of 

fuzzy logic into a single framework. ANFIS functions as a five-layer network grounded 

in the Sugeno fuzzy inference model, employing fuzzy if-then rules to approximate 

nonlinear relationships (Araghinejad, 2014). The system's operation involves two main 

phases: estimating parameters and identifying structure. The rule parameters -both those 

related to the premises and the consequences- are fine-tuned using a hybrid approach. 

This approach involves backpropagation for adjusting premise parameters and the least 

squares method for refining the consequent parameters (Jang, 1993). 

Rather than using traditional grid partitioning, ANFIS structure identification is achieved 

through subtractive clustering (SC), which offers greater efficiency (Heddam et al., 2012). 

The key variable in SC is the radius of influence (r), which directly impacts the rules 

number generated, larger values of r lead to fewer rules. The optimal value of r was 

determined through trial-and-error, testing values between 0.1 and 1 in increments of 

0.01. More details are presented in Zhu et al. (2019) and Kantharia et al. (2024). 
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Model performance indicators 

The performance of three models -MLR, ANN, and ANFIS- in predicting reservoir 

surface water temperature was evaluated using three key metrics: the root mean square 

error (RMSE), the correlation coefficient (R), and the mean absolute percentage error 

(MAPE). These metrics were calculated by comparing the observed surface water 

temperatures with the predicted values. They were calculated using the following 

equations: 
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Where N is the number of samples, Oi is the observed value and Pi is the predicted value, 

Om and Pm are the means of Oi and Pi.  

Sensitivity analysis 

Sensitivity analysis offers a comprehensive evaluation of how changes in input variables 

affect the output (water temperature), providing essential insights for further analysis and 

decision-making. It helps classify input variables according to their relative contribution 

to the output. Various methods are used for sensitivity analysis, and in this paper, the 

"leave-one-out" approach was applied. In this method we first trained a full artificial 

neural network (ANN) model using all available input variables. Then, we systematically 

removed one input at a time and trained a pruned model. The sensitivity of each input 

was quantified by calculating the ratio of the RMSE of the pruned model to the RMSE of 

the complete model. This method allowed us to assess the relative influence of each input 

variable on model performance. A higher RMSE ratio indicates greater importance of the 

removed input. The ratio is calculated as follows: 

Pruned model

Complete model

Ratio =
RMSE

RMSE
          (4) 

The variables are then ranked based on their ratios, with the highest ratio receiving the 

top rank (Olszewski et al., 2008). 
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RESULTS AND DISCUSSION  

Seasonal dynamics of water temperature 

Fig. 2 represents the 3D surface plot of water temperature (Tw) versus mean air 

temperature (Tmean) and day of the year (DOY) for 7 Algerian reservoirs. It highlights a 

clear seasonality, with both temperatures rising from DOY 0 to 300 and falling from DOY 

300 to 365. This pattern reflects the Mediterranean climate's hot, dry summers and mild, 

wet winters. The close correlation between Tw and Tmean indicates that air temperature 

significantly influences water temperature. Variations among humid, sub-humid, and 

semi-arid bioclimatic stages affect the amplitude and timing of these temperature 

changes. These seasonal dynamics are critical for reservoir management, predicting water 

quality, and understanding ecological impacts in these regions. 

 

 

Figure 2: Surface plot of Tw versus Tmean and DOY for 7 reservoirs 

Inputs selection 

In this study, linear correlation analysis was employed to identify the meteorological 

variables that influence water temperature, offering a straightforward method for 

selecting relevant inputs. Table 2 shows the correlation between surface water 

temperature and various meteorological factors, including air temperatures (mean, 

minimum, and maximum), relative humidity, rainfall (P), and wind speed. The day of the 

year (DOY) was also used as an additional input. As indicated in Table 2, air temperatures 

(mean, maximum, and minimum) exhibit the strongest correlation with surface water 

temperature, highlighting air temperature as the key influencing variable. These findings 

align with those of Yang and Luo (2020), who also reported a high correlation between 

air and surface water temperatures. Additionally, we observed moderate, negative 
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correlations between relative humidity and surface water temperature, likely due to the 

heat loss from the water surface through the evaporation process. This finding aligns with 

those of Yousefi and Toffolon (2022) who find that correlation between Tw and relative 

humidity (RH) is -0.27. 

The DOY (day of the year) shows a moderate correlation with surface water temperature, 

with a correlation coefficient of 0.3678. This indicates that seasonality plays a role in 

influencing surface water temperature. In fact various authors have used DOY as an 

additional input for modeling surface water temperature in river (Zhu et al., 2019)  and 

lake (Yousefi and Toffolon, 2022). In contrast, rainfall and wind speed exhibit very weak 

correlations with surface water temperature and were therefore excluded from the input 

dataset. 

Table 2: Correlation between meteorological variables and water temperature 

(DOY; Day of the year) 

 
Tmax 

(°C) 

Tmin 

(°C) 

Tmean 

(°C) 

RH 

(%) 

P 

(mm) 

U2 

(Km/h) 
DOY 

Tw(°C) 0.8365 0.8045 0.8673 -0.4960 -0.1450 -0.041 0.3678 

 

Correlation analysis revealed that air temperature variables (Tmean, Tmax, Tmin), 

relative humidity (RH), and the day of the year (DOY) are important input factors for 

modeling reservoir surface water temperature. Several combinations of these inputs were 

then tested to find the optimal configuration. Table 3 presents different input variable 

combinations used for developing the models. 

Table 3: Inputs combinations 

 Combinations Inputs 

M1 [Tmean ] 

M2 [Tmean. DOY] 

M3 [Tmean. RH ] 

M4 [Tmean. Tmax and Tmin ] 

M5 [Tmean.  RH and DOY] 

M6 [Tmean. Tmax. Tmin. and RH] 

M7 [Tmean. Tmax. Tmin. and DOY] 

M8 [Tmean. Tmax. Tmin. RH and DOY] 
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Models’ performance for predicting surface water temperature  

The MLR, ANN, and ANFIS models were developed using eight different input 

combinations to predict surface water temperatures (Tw) in reservoirs. Table 4 provides 

a summary of the models' performance, displaying key metrics such as the correlation 

coefficient (R), RMSE, and MAPE. The training phase utilized combined data from six 

reservoirs, while the testing phase used data from the Beni Bahdel reservoir. The best-

performing results are highlighted in bold. 

To ensure the generatability of the models to new reservoirs in Algeria, we have used the 

site-based cross-validation approach. The data was split into two datasets, the first 

involving the data of six reservoirs located in different climatic regions and used to create 

data-driven models. The second involves the data of the Beni Bahdel reservoir, which 

have a length five years and used to test the models. 

Table 4 shows that the MLR models yield unsatisfactory results during training and 

testing. In the testing phase, the correlation coefficient (R) ranges from 0.92 to 0.94, while 

the root mean square error (RMSE) varies between 2.29 and 2.60°C. The mean absolute 

percentage error (MAPE) falls between 12.46% and 13.53%. There is minimal variation 

in accuracy across the different MLR models. Notably, incorporating the time component 

(DOY) in models M2 and M5 does not enhance their performance. This indicates that 

MLR models are inadequate for accurately predicting surface water temperatures. 

Training results for the ANN models (Table 4) revealed variations: correlation 

coefficients (R) fluctuated between 0.86 (ANN-M1) and 0.91 (ANN-M5), RMSE values 

varied from 2.58 °C (ANN-M5) to 3.18 °C (ANN-M1), and MAPE percentages ranged 

from 7.43% (ANN-M2) to 11.59% (ANN-M6). 

During the test phase, for the ANN models (Table 4), the correlation coefficient (R) 

ranged from 0.93 for ANN-M6 to 0.97 for ANN-M2. The RMSE values varied between 

1.52 °C for ANN-M2 and 2.35 °C for ANN-M6, while the MAPE ranged from 7.43% in 

ANN-M2 to 11.59% in ANN-M6. Consequently, ANN-M2, which uses Tmean and DOY 

as inputs, delivered the best performance, while ANN-M6, incorporating Tmean, Tmax, 

Tmin, and RH, showed the weakest results. 

Comparable findings were reported by Hadzima-Nyarko et al. (2014), where the authors 

successfully predicted daily river water temperatures in Croatia using a multilayer 

perceptron neural network. The root mean square error (RMSE) during the testing period 

ranged from 1.57°C to 2.74°C.  

Table 4 demonstrates that ANN models using only air temperature inputs (M1 and M4) 

exhibit moderate performance during the test period. This is due to the fact that Tmean, 

Tmin, and Tmax alone are insufficient to capture the full variability in surface water 

temperature when using the ANN technique. The ANN-M3 model results show that 

including relative humidity (RH) alongside Tmean leads to only a slight improvement in 

accuracy over the ANN-M1 model, indicating that RH has a limited impact on predicting 

surface water temperature (Tw). 
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Additionally, the table shows that including RH alongside Tmean, Tmin, and Tmax in 

ANN-M6 does not enhance the model’s accuracy. This is due to the relatively weak and 

negative correlation between RH and Tw. However, when DOY is added to the air 

temperature dataset (Tmean, Tmax, and Tmin), the models show significant 

improvements. Specifically, the RMSE of ANN-M2 shows a 27% improvement 

compared to ANN-M1 during the test period, while MAPE improves by 32.88%. 

Similarly, the RMSE of the ANN-M7 model records a 15.9% improvement compared to 

ANN-M4, with MAPE improving by 13.62%. These results align with the findings of 

Zhu et al. (2019) and Qui et al. (2020), who showed that including DOY in the input data 

notably enhanced the accuracy of ANN models. 

Table 4: Performance metrics of the developed models for different input 

combinations 

Models 

Training Testing 

CC 
RMSE 

(°C) 

MAPE 

(%) 
CC 

RMSE 

(°C) 

MAPE 

(%) 

MLR 

M1 

M2 

M 3 

M 4 

M 5 

M 6 

M 7 

M 8 

 

0.8514 

0.8622 

0.8548 

0.8548 

0.8688 

0.8635 

0.8636 

0.8708 

 

3.2779 

3.1653 

3.2433 

3.2433 

3.0948 

3.1516 

3.1506 

3.0726 

 

15.7752 

14.4843 

15.5145 

15.5145 

14.1122 

14.8769 

14.4443 

13.9097 

 

0.9451 

0.9246 

0.9430 

0.9430 

0.9277 

0.9464 

0.9261 

0.9298 

 

2.2931 

2.4789 

2.3414 

2.3414 

2.5666 

2.4958 

2.4877 

2.6069 

 

12.4618 

12.7009 

12.7312 

12.7312 

12.9596 

13.5310 

12.8531 

13.4195 

MLPNN 

M1 

M2 

M 3 

M 4 

M 5 

M 6 

M 7 

M 8 

 

0.8605 

0.8999 

0.8719 

0.8774 

0.9128 

0.8808 

0.9026 

0.9112 

 

3.1848 

2.7418 

3.0760 

3.0220 

2.5866 

2.9961 

2.8719 

2.7639 

 

15.3467 

12.4627 

14.3629 

13.9632 

11.6373 

13.5794 

12.5369 

12.3074 

 

0.9517 

0.9745 

0.9564 

0.9402 

0.9502 

0.9372 

0.9629 

0.9588 

 

2.0804 

1.5200 

2.0012 

2.1293 

2.0014 

2.3532 

1.7904 

1.7188 

 

11.0824 

7.43810 

10.1233 

10.3244 

9.38763 

11.5924 

8.91750 

7.74420 

ANFIS 

M1 

M2 

M 3 

M 4 

M 5 

M 6 

M 7 

M 8 

 

0.8612 

0.9012 

0.8752 

0.8686 

0.9126 

0.8815 

0.9087 

0.9361 

 

3.1764 

2.7077 

3.0231 

3.0961 

2.5545 

2.9508 

2.6079 

2.1983 

 

15.3975 

12.4696 

14.5552 

15.0500 

12.1237 

14.2273 

12.2417 

10.6913 

 

0.9501 

0.9720 

0.9526 

0.9441 

0.9668 

0.9442 

0.9719 

0.9300 

 

2.1243 

1.5914 

2.2363 

2.1923 

1.7268 

2.3629 

1.5415 

2.3648 

 

11.3775 

8.14780 

11.8463 

11.1610 

8.24725 

12.1820 

7.68039 

10.6860 

 

During the training phase, the ANFIS models produced correlation coefficients ranging 

from 0.86 (ANFIS-M1) to 0.93 (ANFIS-M8). The RMSE values varied between 2.19 °C 

(ANFIS-M8) and 3.17 °C (ANFIS-M1), while the MAPE ranged from 10.69% (ANFIS-
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M8) to 15.39% (ANFIS-M1), indicating that some models achieved strong predictive 

performance whereas others yielded comparatively lower accuracy. 

Table 4 shows also the performance of the ANFIS models. The correlation coefficient (R) 

during testing ranged from 0.93 to 0.97, while MAPE values were between 7.68% and 

12.18%, and RMSE varied from 1.54°C to 2.36°C. The ANFIS-M7 model, using Tmean, 

Tmax, Tmin, and DOY, performed best. It achieved an R value of 0.9719, an RMSE of 

1.54°C, and a MAPE of 7.67%. The next best models were ANFIS-M2 (using Tmean and 

DOY), followed byANFIS-M5, and ANFIS-M8 (using all inputs) respectively. 

Similar results were reported by Zhu et al. (2019), where the authors used ANFIS-SC to 

predict river water temperature (Tw) using mean air temperature (Tmean), river flow 

discharge (Q), and the Gregorian calendar as input variables. For the Botovo station in 

Croatia, the RMSE ranged from 1.429°C to 2.35°C in test period. 

Like the ANN models, the ANFIS models that use air temperature as inputs (M1 and M4) 

did not produce satisfactory results. This is because air temperature alone cannot account 

for all the variability involved in the water temperature (Tw) process. Similarly, the 

ANFIS models incorporating both air temperature and relative humidity (M3 and M6) 

also did not perform well. The combination of these two variables was insufficient to fully 

explain the variations in water temperature. 

As observed in ANN models, incorporating DOY (Day of Year) in different combinations 

substantially improves the performance of ANFIS models. Specifically, the ANFIS-M2 

model achieves a 25.08% reduction in RMSE, alongside a 28.38% improvement in 

MAPE. Similarly, the ANFIS-M7 model demonstrates a 29.69% reduction in RMSE 

when compared to ANFIS-M4, with a corresponding 29.38% enhancement in MAPE. 

Incorporating the Day of Year (DOY) alongside with air temperature into ANN and 

ANFIS models significantly enhances the prediction of reservoir surface water 

temperatures. DOY captures seasonal patterns of reservoirs thermal dynamic which 

influenced by factors such as solar radiation and sunshine duration, enabling models to 

account for natural fluctuations throughout the year. This temporal variable serves as a 

proxy for climatic influences, reflecting the time of year and aiding in generalizing 

predictions across various climatic conditions. Additionally, DOY improves the models' 

generalization capabilities during cross-validation by introducing the temporal context, 

complementing meteorological variables like air temperature, and helping models capture 

long-term trends and cycles that air temperature data alone may not fully capture. Overall, 

integrating DOY enables ANN and ANFIS models to effectively capture both short-term 

and long-term variations in reservoir surface water temperature, leading to improved 

predictive accuracy, especially when applied to unseen data from specific reservoir (Beni 

Bahdel).  Jiang et al. (2022) found DOY to be the dominant factor influencing river water 

temperature predictions downstream of cascaded dams across diverse machine learning 

techniques. Similarly, Qiu et al. (2020) revealed that incorporating DOY offered greater 

predictive improvement compared to adding river flow discharge (Q) alongside air 

temperature (Tmean). 
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The performance comparison between ANN and ANFIS models across the eight input 

combinations revealed no consistent dominance of one approach over the other. In some 

configurations, ANN models slightly outperformed their corresponding ANFIS 

counterparts, while in other configurations, ANFIS achieved marginally better results 

than ANN. Two models were particularly noteworthy: ANN-M2, which uses only Tmean 

and DOY as inputs, delivered high predictive accuracy while requiring fewer inputs, and 

ANFIS-M7, which incorporates Tmean, Tmax, Tmin, and DOY, also produced strong 

predictive accuracy. These results highlight that the selection of the most appropriate 

modeling mechanism should be guided by the specific application context and the 

availability of input variables. Moreover, as both ANN and ANFIS are data-driven 

approaches, their relative performance may differ when applied to datasets from other 

reservoirs. 

In terms of simplicity and parsimony (model requiring fewer inputs), the ANN-M2 model 

stands out as the most straightforward, efficient, and accurate. It only requires Tmean and 

DOY as inputs while delivering the best performance among all the models tested. 

ANN-M2 and ANFIS-M7 models can also be employed to produce real-time predictions 

of reservoir surface water temperature (TS) in the northern of Algeria. These predictions 

rely on air temperature forecasts (Tmean, Tmin, and Tmax) provided by the national 

weather service, combined with the DOY as input variables.  

Accurate surface water temperature predictions using ANN and ANFIS models offer 

various advantages for lake and reservoir managers, equipping them with the ability to 

take targeted actions to improve both ecological and operational outcomes. By predicting 

water temperature fluctuations, managers can enhance water quality monitoring and 

control, addressing issues related to dissolved oxygen levels, nutrient dynamics, and 

harmful algal blooms. For example, if predictions suggest increasing water temperatures 

that may result in oxygen depletion, managers can respond by initiating water circulation 

systems or aeration measures to preserve sufficient oxygen levels for aquatic organisms. 

Moreover, these predictions allow for the optimization of water resource allocation by 

helping managers adjust water withdrawals and releases based on temperature forecasts, 

balancing the needs of aquatic ecosystems and human consumption. This predictive 

capability is especially crucial for fish and aquatic life management, where water 

temperature changes can cause significant stress on sensitive species. With water 

temperature forecasts in hand, managers can implement preemptive measures like timing 

water releases or restricting fishing to protect vulnerable populations. 

In addition, accurate temperature predictions are critical for controlling algal blooms and 

eutrophication, two issues that often arise when water temperatures rise. With advance 

warning, managers can reduce nutrient inflows from agriculture or urban runoff to prevent 

blooms before conditions worsen. These predictions also contribute to long-term planning 

and climate change adaptation, helping managers formulate strategies to cope with 

increasing temperatures. This could include upgrading infrastructure and optimizing 

reservoir management practices to lessen the impact of extreme temperatures on aquatic 

ecosystems. Finally, this comprehensive application of temperature forecasts 
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demonstrates their importance in water resource management, from short-term 

interventions to long-term sustainability planning. 

To validate the numerical results (Table 4), Fig. 3 illustrates the observed and predicted 

surface water temperature (Tw) as time series, and Fig. 4 displays the corresponding 

scatter plots for the MLR-M1, ANN-M2, and ANFIS-M7 models during the testing phase 

at the Beni Bahdel reservoir. From both the time series (Fig. 3) and scatter plots (Fig. 4), 

it is evident that the predictions from the ANN-M2 and ANFIS-M7 models align more 

closely with the observed Tw compared to the MLR-M1 model. 

 

 

 

 

Figure 3:  Time series of the observed and predicted water temperature (Tw) in Beni 

Bahdel reservoir for MLR-M1, ANN-M2 and ANFIS-M7 models 
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Figure 4:  Scatter plots between the observed and predicted water temperature (Tw) 

in Beni Bahdel reservoir for MLR-M1, ANN-M2 and ANFIS-M7 models 

In addition to time series and scatter plots, the performance of all models is assessed using 

the Taylor diagram (Fig. 5), which combines key metrics such as correlation coefficients 

(R), standard deviations, and root mean square difference (RMSD) to evaluate accuracy. 
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This information is presented in a single diagram and compared to observed data (Obs). 

The closer a model's point is to the red-filled reference point (Obs), the more accurate the 

model is. The Taylor diagram shows that ANN-M2, with the fewest inputs, yields the 

highest accuracy, followed by ANFIS-M7 and ANFIS-M2. 

 
Figure 5: Taylor diagram of all tested models 

Sensitivity analysis results 

To assess the individual contributions of each input variable to the predicted surface water 

temperature, a sensitivity analysis was performed on the Artificial Neural Network 

(ANN) model using ‘leave-one-out’ method (excluding a specific input each time). The 

results of this analysis, including the ratios and ranks, are displayed in Table 5. 

Table 5:  Sensitivity analysis results for ANN models 

Models Ratio Rank 

Without DOY 1.150 1 

Without Tmean 0.980 2 

Without RH 0.973 3 

Without  Tmax 0.968 4 

Without Tmin 0.940 5 
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For reservoir surface water temperature, it is evident that the sensitivity analysis of inputs 

highlights the substantial impact of DOY, followed by mean air temperature (Tmean), 

relative humidity (RH), maximum air temperature (Tmax) and minimum air temperature 

(Tmin), respectively.  

The sensitivity analysis of reservoir surface water temperature reveals that the day of the 

year (DOY) has the greatest impact (ratio: 1.150). Since the reservoirs are located in a 

Mediterranean climate, the seasonal variation in solar radiation, temperature shifts and 

the length of daylight vary significantly across the year. This makes DOY a crucial factor, 

reflecting the overall energy input the reservoirs receive over time. Mean air temperature 

(Tmean, ratio: 0.980) follows, indicating the role of overall atmospheric warmth in heat 

exchange with the water. Relative humidity (RH ratio: 0.973) also has a substantial effect, 

highlighting its influence on evaporation and heat retention. Maximum and minimum air 

temperatures (Tmax; 0.968, Tmin; 0.940) contribute to short-term heating and cooling 

processes, but are less influential compared to DOY and Tmean. 

CONCLUSION 

The knowledge of surface water temperature is critical for reservoir management, 

predicting water quality, and understanding ecological health. In this paper, MLR, ANN, 

and ANFIS model were evaluated for the estimation of reservoir surface water 

temperature (Tw) in the northern of Algeria using site based cross-validation approach.  

The findings of this study lead to the following conclusions: 

Both the ANN and ANFIS models outperformed the MLR model across various 

performance metrics, providing reliable predictions of surface water temperature in the 

study area. However, the ANN model (M2) stood out for its simplicity, accuracy, 

parsimony, robustness, stability, and overall effectiveness in predicting water temperature 

(Tw). 

Training the models with combined data from six different reservoirs across Algeria 

improves their generalization capacity. The inclusion of varied data allows the models to 

adapt to a broader spectrum of conditions, enhancing their applicability to regions 

throughout northern Algeria. 

The sensitivity analysis results reveal that seasonal variations represented by DOY, have 

the most significant influence on reservoir surface water temperature. After DOY, the 

variables Tmean (mean temperature), RH (relative humidity), Tmax (maximum 

temperature), and Tmin (minimum temperature) exhibit progressively lower levels of 

impact. 

This research underscores the importance of incorporating the DOY as an input variable 

in surface water temperature prediction for reservoirs, as it can substantially enhance the 

accuracy of the predictions. 
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The results of this study offer valuable insights for predicting surface water temperature 

in reservoirs across northern Algeria. Notably, they highlight the potential of using only 

mean air temperatures and the day of the year (DOY) as key inputs, simplifying the 

modeling process while maintaining accuracy.  

Accurate temperature predictions provide managers with a vital tool to anticipate and 

address issues related to water quality, aquatic life health, and ecosystem stability. With 

this foresight, they can implement timely and effective interventions, improving the 

overall condition and sustainability of lakes and reservoirs. 

While the ANN and ANFIS models need to be tested against other machine learning 

techniques using large datasets that, alongside air temperature, include variables such as 

solar radiation, sunshine duration, evaporation, and water inflows and outflows. These 

machine learning techniques show great potential for unraveling the complex 

relationships between these inputs and the resulting output (surface water temperature). 
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