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ABSTRACT 

Accurate estimation of maximum discharge (Qmax) is essential for hydraulic 

infrastructure design and flood management in semi-arid regions, particularly where 

hydrometric data are scarce. This study presents a physically meaningful and regionally 

calibrated empirical model to estimate Qmax in Algerian wadis, combining approach of 

dimensional analysis and statistical modeling. Based on data from 60 watersheds 

provided by the Algerian National Agency for Hydraulic Resources (NAHR), the model 

integrates three key watershed descriptors: catchment area (A), rainfall intensity (Ptc), 

and average slope (S). The proposed model demonstrates strong predictive accuracy, with 

a correlation coefficient of R = 0.97 and a mean normalized error of 15% in the validation 

phase. Comparative tests against widely used formulas (Giandotti, Mallet-Gauthier, 

Sokolovsky, Turazza) reveals that the proposed model yields significantly lower errors 

and better prediction stability. Additionally, 66.6% of the estimates fall within ±10% of 

observed values, compared to just 3-13% for conventional methods. These results 

underscore the model’s utility as a reliable, simple, and transferable tool for peak 

discharge estimation in data-scarce, semi-arid environments such as Algeria. 

Keywords: Maximum discharge, Statistical modeling, Dimensional analysis, Algerian 

wadis, Flood management. 
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INTRODUCTION 

Accurately estimating the maximum discharge (Qmax) of wadis and rivers remains a 

major challenge, particularly in arid and semi-arid regions such as Algeria. This 

parameter is essential for designing effective flood protection structures (Boulghobra, 

2013; Aroua, 2020; Baudhanwala et al., 2023; Zegait and Pizzo, 2023; Ben Said et al., 

2024; Ezz, 2025), including bridges, culverts, spillways (Mezenner et al., 2022; Shaikh 

et al., 2024; Achour and Houichi, 2019; 2025), and levees (Hamlat et al., 2021). The task 

is further complicated by the limited availability of field measurements, which often 

forces engineers to rely on empirical or semi-empirical formulas (Abdeddaim and 

Benkhaled, 2016; Hachemi and Benkhaled, 2016; Faregh and Benkhaled, 2016). 

However, many of these methods are poorly adapted to the hydrological conditions of 

Algerian basins, leading to significant inaccuracies and uncertainty in flood predictions 

(Ayari et al., 2016; Cherki, 2019; Bekhira et al., 2019; Benslimane et al., 2020; Hafnaoui 

et al., 2023; Athmani et al., 2025).  

The inconsistent and often arbitrary application of Qmax estimation methods in wadi 

hydrology has created a lack of clear criteria for selecting appropriate models. Most 

existing equations are derived from watershed outside the local context, resulting in 

considerable variability in outputs (Kouadio et al., 2018). This undermines their reliability 

and hinders the effective design of flood protection infrastructure. As Beven (2012) 

emphasized, practical experience, hydrological expertise, and engineering judgment 

continue to play a central role in decision-making processes. 

Infrastructure planning must balance two key considerations: the financial cost of 

designing for a specific discharge and the potential damage resulting from design 

underestimations (Zhou et al., 2004; Pappenberger et al., 2012; Mehta et al., 2023; Verma 

et al., 2024). In Algeria, climate change, urban expansion, and land encroachment into 

natural floodplains have amplified flood risks (Falter et al., 2014), reinforcing the need 

for reliable predictive models. 

Several studies have demonstrated that catchment surface area strongly influences both 

flood volume and peak discharge (Benkhaled et al., 2013; Abdeddaim and Benkhaled, 

2016; Natarajan and Radhakrishnan, 2019; Zhang et al., 2014). Additionally, the slope of 

the natural terrain is a key driver of flow dynamics in open-channel conditions (Riahi et 

al., 2020; Oberauer and Lehmann, 2023), with numerous investigations (Ferro, 2018; 

Recking, 2006) showing a positive correlation between terrain slope and discharge rates. 

Other researchers (Golubstov, 1969; Bjerklie et al., 2003, 2005) have formulated 

discharge equations using parameters such as flow velocity (U), slope (S), and hydraulic 

radius (Rh), often employing the Chezy equation or multiple regression methods (Riggs, 

1976; Dingman and Sharma, 1997). The physical properties of water, such as viscosity 

and density, also play a role in determining maximum flow (Mavis et al., 1937). 

In the absence of field data, rainfall-runoff models and empirical formulas are commonly 

used to estimate flood discharges (Abdi and Meddi, 2015; Mehta and Yadav, 2024; 

Atallah et al., 2024). These models often rely on climatic or rainfall information, which 

is typically more accessible but may be incomplete or inconsistent (Mehta et al., 2023; 
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McMillan et al., 2011). Empirical methods for estimating Qmax can be broadly categorized 

into three main groups (Morlat, 1951): 

1. Historical flood-based methods, which rely on past flood records and apply safety 

factors. These methods are effective in regions with long hydrological records, sometimes 

spanning centuries (Neal et al., 2012; Diederen et al., 2019). 

2. Empirical formulas based on watershed characteristics, such as area, rainfall, and return 

period. These formulas are widely used in data-scarce regions (Sahli et al., 2024) and are 

often calibrated on specific regional datasets (Sari Ahmed, 2002; Keef et al., 2012). 

Subcategories within this group include formulas that: rely solely on catchment area 

(Feyera et al., 2010), incorporate rainfall intensity or mean annual rainfall (Kherde et al., 

2024; Aqnouy et al., 2018; Jin et al., 2015) and account for flood frequency, expressed as 

1/Tr, where Tr is the return period (Raiford et al., 2007). 

3. Envelope curve methods, which use graphical analysis of historical peak discharges 

from multiple basins to establish upper bounds on flow magnitudes (Castellarin, 2007; 

Pramanik et al., 2010). 

One of the earliest statistical methods was introduced by Fuller (1913), who related Qmax 

to return period Tr, laying the foundation for modern frequency analysis (Réméniéras, 

1986). 

While each of these approaches offers valuable insights, most require careful regional 

calibration and are not easily transferable to areas with different topographic or climatic 

conditions (McCuen, 1998; Addor et al., 2020). 

This study introduces a new model for estimating peak discharge Qmax in Algerian wadis, 

combining dimensional analysis with statistical modeling. By integrating key physical 

variables catchment area, rainfall intensity, and slope. The model offers a simple yet 

robust tool tailored to semi-arid and data-scarce environments. It improves local flood 

prediction accuracy and supports hydraulic infrastructure planning through a regionally 

calibrated and physically consistent approach. 

MATERIAL AND METHODS 

Study area 

Algeria, located in North Africa, covers a vast area of approximately 2,380,000 km2, with 

more than 80% of its territory classified as desert. The country stretches over 2,000 km 

from north to south and nearly 1,800 km from east to west, encompassing a wide range 

of climatic conditions from Mediterranean in the north to arid and hyper-arid in the south. 

Algeria is considered one of the most vulnerable regions to climate change in the 

mediterranean basin (Mrad et al., 2018). Understanding the spatial distribution of 

precipitation (Fig. 1) over the past four decades is crucial for planning and managing 

infrastructure, assessing flood and drought risks, supporting agriculture, and ensuring 

sustainable water resource management. Studies indicate a consistent spatial pattern of 
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extreme rainfall across Algeria: the northern regions receive the highest rainfall, followed 

by gradually decreasing intensities in the northeast, northwest, and central areas. In 

contrast, the southern part of the country typically experiences lower levels of extreme 

rainfall, with a few exceptions in regions such as Adrar (Salhi et al., 2024). This 

distribution is influenced by a combination of topography, hydrological networks, 

prevailing winds, and ongoing climatic shifts. 

 

 
Figure 1: Precipitation distribution across Algeria 

Dimensional analysis for maximum discharge modeling 

Dimensional analysis was employed to formulate a model for predicting maximum 

discharge Qmax in Algerian wadis, following the methodology proposed by Barenblatt 

(1987). The selection of variables is guided by a qualitative understanding of hydrological 

processes and prior research (Fox et al., 2003). For open-channel flow, especially under 

flood conditions, Qmax is influenced by several key parameters, including: 

 



Predicting maximum discharge in Algeria wadis using dimensional analysis and 

statistical modeling. A case study of semi-arid watersheds 

87 

ρ: fluid density (kg/m3); 

A: catchment area (km2); 

L: length of the main wadi (km); 

S: average slope of the main wadi (m/m); 

Tr: return period (years); 

Ptc (P%): rainfall intensity corresponding to a specified return period (mm). 

Thus, the general functional form of the model can be expressed as follows: 

𝑄𝑚𝑎𝑥 = 𝑓(𝜌, 𝐴, 𝐿, 𝑆, 𝑇𝑟 , 𝑃𝑡𝑐,(𝑃%))                                                              (1) 

Applying the Buckingham theorem and simplifying the dimensional relationship yields 

the following reduced empirical form: 

𝑄max 𝑃% = 𝑓(𝐴, 𝑆, 𝑃𝑡𝑐,(𝑃%))                                                                     (2) 

This formulation forms the basis for statistical modeling in the next step. 

Estimation of rainfall intensity (Ptc) 

Rainfall intensity Ptc, is a key parameter in estimating the maximum discharge Qmax. It is 

calculated based on the daily maximum precipitation corresponding to a specific non-

exceedance probability (Pj max (P%)) and the concentration time (Tc), using the empirical 

formula proposed by Montana [Eq. (3)], which is widely adopted in the Algerian context 

(Raiford et al., 2007): 

max (%) 24j p

b
c

tc
T

P P
 

=  
 

        (3) 

where: 

P j max (P%): daily maximum precipitation (in mm) for a given non-exceedance frequency; 

Tc: concentration time (in hours); 

𝑏: climatic coefficient, typically set to 0.32 in Algeria (Houichi, 2017). 

In this study, a return period of 100 years is adopted, in accordance with standard practices 

for flood protection infrastructure design (McCuen, 1998). The extreme precipitation 

values (Pj max) are estimated using the Gumbel distribution, which is particularly well 

suited for modeling hydrological extremes (Heffernan and Tawn, 2004). 

The concentration time Tc, represents the time required for runoff from the most distant 

point of the watershed to reach the outlet. Various methods have been proposed in the 

literature to estimate it. In this study, the Giandotti formula, Eq. (4), is used due to its 

simplicity and reliability in Mediterranean environments (Sari Ahmed, 2002): 
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
       (4) 

Where A is the catchment area (km2), L is the main channel length (km), and Δh is the 

elevation difference (m). 

This approach provides a consistent evaluation of rainfall intensity, considering both 

extreme precipitation conditions and the morphological characteristics of the basin, thus 

supporting a more accurate estimation of Qmax in the modeling framework. 

Data and statistical modeling approach 

When analytical models are unavailable or too complex, statistical modeling offers a 

practical means to estimate values based on observed data (Yamazaki et al., 2011). The 

modeling process involves the following key stages: data collection, model selection, 

parameter estimation, predictive equation derivation, and performance evaluation using 

statistical metrics (Winsemius et al., 2013). 

In hydrology, statistical modeling is commonly used to explore relationships between 

variables such as catchment area, rainfall intensity, slope, and discharge. Correlation 

analyses and scatter plots such as (Qmax, A), (Qmax, Ptc) and (Qmax, S) are used to reveal 

dependencies. The correlation coefficient (R) is calculated to assess the strength of these 

relationships. In this study, Qmax is treated as the dependent variable, while A, Ptc, and S 

are independent predictors. 

Data used in this research were obtained from the Algeria’s National Agency for 

Hydraulic Resources (NAHR) and include 60 gauged wadis (N) distributed across various 

Algerian regions. Table 1 presents the statistical properties of the dataset, including the 

range, average, standard deviation (σ), and coefficient of variation (Cv) for each 

parameter. 

Table 1: Statistical summary of variables used in modeling 

Variable N Average σ CV Range 

Qmax (m3/s) 60 1827 2829 1.55 10-12700 

A (km2) 60 1101 1865 1.69 1.02-8735 

L (km) 60 51 55 1.09 0.85-236 

Hmax (m) 60 1469 441 0.30 520-2350 

Hmin (m) 60 897 336 0.37 167-1980 

Ptc (mm) 60 60 20.1 0.33 25-116 

S (m/m) 60 0.021 0.015 0.74 0.001-0.068 
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Discharge data was obtained from hydrometric stations installed along the wadis, which 

measured water levels and discharge over a period ranging from 1976 to 2018. Each Qmax 

value corresponds to the peak discharge recorded at a given station during the observation 

period. Fig. 2 illustrates the spatial distribution of these stations across the study area. 

 
Figure 2: Spatial distribution of hydrometric stations 

RESULTATS AND DISCUSSION 

The purpose of this study is to investigate how physical watershed characteristics 

influence the maximum discharge Qmax in Algerian wadis. The results reveal strong 

statistical correlations between Qmax and three key variables: catchment area A, rainfall 

intensity Ptc, and average slope S. 

Influence of catchment area on maximum discharge 

Fig. 3 highlights the relationship between catchment area A and maximum discharge Qmax, 

with a segmentation between small (1-300 km2) and large basins (301-9,000 km2). In both 

cases, a clear positive trend is observed: Qmax increases with A, with high correlation 

coefficients (R = 0.87 for small basins and R = 0.97 for large ones), confirming the well-

established relationship between drainage area and flood magnitude (Diederen et al., 

2019; Harman et al., 2009; Feyera et al., 2010). 

This high correlation, particularly pronounced in large basins, underscores the relevance 

of integrating A as a primary predictor in peak discharge models. The methodological 
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choice to distinguish between basin size classes enhances the clarity of results and 

highlights distinct hydrological behaviors. 

However, for smaller basins, the slightly greater dispersion suggests a stronger influence 

of local factors such as land use, slope, or geology, which make these systems more 

sensitive to the spatial variability of rainfall (Blöschl et al., 2013; Norbiato et al., 2009). 

Furthermore, although the relationship between A and Qmax is robust, it may become 

nonlinear in semi-arid environments, where precipitation irregularity and specific 

hydrogeological conditions can significantly affect hydrological response (Merz and 

Blöschl, 2009). Therefore, while catchment area is a reliable predictor of maximum 

discharge particularly in large basins its use alone in small basins may require the 

integration of additional variables to improve prediction accuracy. 

 

 
Figure 3: Relationship between catchment area (A) and maximum discharge (Qmax). 

(a) small basins (1-300 km2), (b) large basins (301-9,000 km2) 
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Rainfall intensity as a predictor of Qmax 

Rainfall intensity Ptc, calculated from daily maximum precipitation values Pj max (P%) and 

concentration time Tc using the Montana formula recognized for its suitability in Algerian 

climatic conditions (Raiford et al., 2007) represents a key hydrological factor in flood 

estimation. 

Numerous studies have confirmed the relevance of this variable for modeling peak 

discharge, including those by Heffernan and Tawn (2004), Falcone et al. (2010), and 

McMillan et al. (2011), and Baudhanwala et al. (2024), all of which incorporate rainfall 

intensity in empirical or semi-distributed hydrological models. In this context, the present 

study follows a scientifically established approach by using Ptc as one of the main 

explanatory variables. 

Fig. 4 illustrates the relationship between Ptc and Qmax for the 60 analyzed catchments. 

Although the data exhibit more dispersion than the area Qmax relationship, the correlation 

remains high (R = 0.85), indicating a clear positive trend. This variability may be 

attributed to local factors such as land cover, surface roughness, slope, or soil saturation, 

all of which influence runoff response even under similar rainfall intensities (Blöschl et 

al., 2013; Norbiato et al., 2009). 

Therefore, while Ptc is generally a reliable predictor, its explanatory capacity may be 

partially limited in heterogeneous environments due to its sensitivity to local hydrological 

conditions. Nonetheless, its integration into empirical Qmax models is justified, 

particularly in semi-arid regions where rainfall data are more readily available than 

discharge measurements.  

These findings are consistent with those of Aziz et al., (2020) and Sampath et al., (2015), 

who demonstrated that models incorporating rainfall intensity as a central input 

significantly enhance flood prediction accuracy, especially for extreme events. 

 
Figure 4: Relationship between rainfall intensity (Ptc) and maximum discharge 

(Qmax) 
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Role of slope in flow dynamics 

The average slope S of the main channel plays a fundamental role in the analysis of flood 

dynamics under open-channel flow conditions, as it represents the primary driving force 

behind gravitational runoff (Recking et al., 2008). 

Fig. 5 illustrates the relationship between the slope of the main wadi and Qmax, showing a 

correlation coefficient of R = 0.71. This indicates a significant and physically consistent 

link between increasing slope and intensified flood peaks. Steeper slopes promote faster 

surface runoff, reduce concentration time, and enhance sediment mobilization, leading to 

a more rapid and pronounced hydrological response. 

These findings are consistent with previous studies by Ferro (2018), Ferro and Porto 

(2018, 2019), and Recking et al., (2008), who highlighted the crucial role of slope in flood 

generation and sediment transport in small watersheds. However, the observed 

relationship between S and Qmax also exhibits a certain degree of dispersion, which may 

be attributed to the variability of local conditions such as land use, infiltration capacity, 

and temporary water storage. Moreover, relying on a single average slope value for the 

entire basin may oversimplify the complex internal morphology, neglecting the impact of 

secondary slopes or sub-catchment heterogeneity on flow response. 

In anthropized or regulated environments, the influence of slope may be diminished or 

masked by other factors such as hydraulic infrastructure or soil sealing (Fletcher et al., 

2013; Brath et al., 2006). Therefore, while slope may not be the dominant factor in all 

contexts, its inclusion alongside other variables such as A and Ptc provides a more 

comprehensive understanding of flood generation mechanisms, particularly in steep or 

topographically complex basins. 

 
Figure 5: Relationship between channel slope (S) and maximum discharge (Qmax) 

The joint analysis of the three variables A, Ptc, and S confirms their key role in estimating 

the maximum discharge Qmax of Algerian wadis. 
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Catchment area emerges as the most influential factor, reflecting the watershed’s water 

collection capacity, followed by rainfall intensity, which captures the magnitude of 

precipitation events, and finally slope, which governs runoff velocity. While each variable 

has limitations Ptc being sensitive to local variability and S affected by morphological 

complexity their combined use offers a more accurate and physically meaningful 

representation of runoff dynamics in semi-arid regions. Integrating these three parameters 

into a dimensionally derived empirical model strengthens both the robustness and 

transferability of the approach for application in similar hydrological settings. 

Model calibration and equation development 

The dataset from Table 1 was randomly divided into two equal parts: one for model 

calibration (Table 2) and the other for validation (Table 3). Using watershed parameters 

derived through dimensional analysis (Appendix 2) and statistical modeling of the 

calibration data, we developed an empirical model tailored to Algerian wadis, it is 

expressed by the following relationship: 

max (%) (%)
1.6 1.6 4590 263

p tc p
Q A P S= − − +

 
       (5) 

The resulting Eq. (5) demonstrates that Qmax is most sensitive to catchment area A, 

moderately influenced by rainfall intensity Ptc, and less affected by average slope S, 

although the latter becomes more significant in steep basins. This sensitivity ranking 

aligns with established hydrological understanding and supports findings from previous 

studies (Harman et al., 2009; McMillan et al., 2011). 

Table 2: Statistical summary of variables used in model calibration 

Variable N Average σ CV Range 

Qmax (m3/s) 30 538 733.4 1.36 10-3589 

A (km2) 30 291 429.2 1.47 1.02-2080 

L (km) 30 24.7 24.8 1.00 0.85-112 

Hmax (m) 30 1298 470 0.36 520-2326 

Hmin (m) 30 862 367 0.43 167-1980 

Ptc (mm) 30 50.3 15.2 0.30 25-83.30 

S (m/m) 30 0.025 0.016 0.65 0.004-0.068 

 

A key strength of the model lies in its calibration based on data specific to Algerian 

hydrological and climatic conditions, unlike many existing empirical formulas developed 

in non-arid contexts. The model is also dimensionally consistent and grounded in 

physically interpretable variables, enhancing its robustness and transferability within the 

region. However, it does not account for anthropogenic factors or land cover variability, 

which may affect runoff in certain basins. Furthermore, the use of average slope may 

overlook intra-basin morphological complexity. Despite these limitations, the model 
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offers a reliable and regionally adapted tool for estimating maximum discharge in semi-

arid north African environments. 

Model validation and error analysis 

The validation dataset (Table 3), comprising 30 watersheds not used during calibration, 

was employed to assess the predictive performance of Eq. (5) for estimating maximum 

discharge Qmax in Algerian wadis.  

Table 3: Statistical summary of variables used in model validation 

Variable N Average σ CV Range 

Qmax (m3/s) 30 3119 3483.5 1.36 10-3589 

A (km2) 30 1911 2337 1.47 1.02-2080 

L (km) 30 76.4 63.9 1.00 0.85-112 

Hmax (m) 30 1639 331 0.36 520-2326 

Hmin (m) 30 932 298 0.43 167-1980 

Ptc (mm) 30 69.9 19.9 0.30 25-83.30 

S (m/m) 30 0.014 0.82 0.65 0.004-0.068 

 

As illustrated in Fig. 6, the comparison between observed discharges Qm and model 

estimates Qc reveals a strong agreement, with a high correlation coefficient (R = 0.97), 

indicating excellent model performance and consistency with real measurements. 

 

 
Figure 6: Comparison of observed (Qm) and calculated (Qc) maximum discharge 

values 
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To quantify relative discrepancies, the normalized error (NE) was calculated for each 

watershed using the following relationship: 

100
c m

m

Q Q

Q
NE

−
=          (6) 

The analysis shows that catchment area significantly influences both Qmax and NE values 

(Figs. 3 and 7), with larger basins showing lower errors and more accurate predictions 

supporting previous findings by Natarajan and Radhakrishnan (2019) and Zhang et al., 

(2014), who demonstrated the dominant role of watershed size in flood volume 

generation. 
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Figure 7: Normalized error (NE) in relation to A, Ptc and S 

In contrast, rainfall intensity Ptc appears to have a lesser impact on prediction errors (Fig. 

7), possibly due to its variable influence under semi-arid conditions. Meanwhile, the 

average slope S of the main channel (Fig. 7) emerges as a critical parameter, especially in 

steep catchments, where it strongly affects runoff dynamics consistent with studies by Di 

Stefano et al., (2019) and Recking et al., (2008). The use of a simple average slope value, 

however, may limit precision in morphologically complex basins, and the model does not 

explicitly incorporate land use or soil infiltration effects, which can be influential in 

smaller or anthropized catchments. Nevertheless, the high correlation, reduced prediction 

errors, and alignment with established hydrological behavior confirm the validity and 

relevance of the proposed model for estimating Qmax in semi-arid Algerian environments. 

Model comparison with existing formulas 

To assess the predictive performance of the proposed model, a comparative analysis was 

conducted using four widely applied empirical formulas in Algeria: Giandotti, Mallet-

Gauthier, Sokolovsky, and Turazza. Using the validation dataset from Table 3, the mean 

normalized error (MNE) was computed for each model, as summarized in Table 4. 
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Table 4: Comparison of mean normalized error (MNE) between Models 

Model Formula σ 
MNE 

(%) 

Proposed model 
max (%) (%)

1.6 1.6 4590 263
p tc pQ A P S= − − +  0.22 15.0 

Giandotti ( )
0.5

max 0.5
170

4 1.5

mean min
Q A Ptc

H H

A L
=

+

−  
0.56 57.7 

Mallet-Gauthier 
( )max 2 log 1 1 4log log

A
L

A
Q k P T A= + + −  0.68 70.9 

Sokolovsky ( )0
max 0.28

tc

c

P H
Q f A

T


−
=  

0.24 61.4 

Turazza 
max

3.6T

tc

c

P
Q

A
=  

0.24 60.5 

 

Where: 

K: a constant that depends on the characteristics of the watershed and is set to 1.2; 

β: a regional coefficient set to 20; 

PA: represents the average annual rainfall of the watershed (m); 

T: is a period of no return (year); 

H0: is the initial loss of water, which is 7 mm in Algeria; 

α: the runoff coefficient for a major flood, set to 0.9; 

f: is the flood shape coefficient, set to 1.04; 

σ: the standard deviation for the thirty errors. 

The results demonstrate the superior accuracy and stability of the proposed model, which 

achieved an MNE of 15%, significantly lower than those obtained with the traditional 

formulas Giandotti (57.7%), Mallet-Gauthier (70.9%), Sokolovsky (61.4%), and Turazza 

(60.5%). In addition, the proposed model also showed the lowest standard deviation of 

error (σ = 0.22), indicating more consistent predictive behavior across a wide variety of 

watershed conditions.  

In contrast, formulas such as Mallet-Gauthier exhibited not only the highest error (MNE 

= 70.9%) but also a tendency to systematically overestimate peak discharge, which could 

pose significant design and safety concerns for flood protection infrastructure. 

The Sokolovsky and Turazza models, although slightly more stable (σ = 0.24), still 

underperformed in terms of overall accuracy. These results reinforce the importance of 

using region-specific models tailored to local hydrological behavior rather than relying 
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on generalized equations developed under different climatic and geomorphological 

conditions (McCuen, 1998; Bouchard et al., 2004).  

The consistent performance of the proposed model confirms its reliability, reduced 

uncertainty, and improved suitability for practical flood forecasting and infrastructure 

planning in Algerian wadis. 

To further highlight the superiority of the proposed model, the percentage of predictions 

falling within specific error margins (±10%, ±20%, and ±30%) was calculated for each 

model, as shown in Table 5.  

Table 5: Percentage of predictions within error margins 

Model ±10% ±20% ±30% 

Proposed model 66.6 % 76.6 % 83.3 % 

Giandotti 13.3 % 40 % 40 % 

Mallet-Gauthier 6.7 % 13.3 % 26.7 % 

Sokolovsky 3.3 % 10 % 13.3 % 

Turazza 3.3 % 6.7 % 16.7 % 

 

The results reveal that the proposed model achieved exceptionally high accuracy, with 

66.6% of the predictions falling within ±10% of the observed values, and up to 83.3% 

within ±30%. In stark contrast, the performance of the traditional models was 

significantly lower, with the Giandotti and Mallet-Gauthier formulas showing only 13.3% 

and 6.67% of predictions within ±10%, respectively, and the Sokolovsky and Turazza 

models performing even worse each with only 3.3% of predictions within this narrow 

range. 

Notably, the Sokolovsky model showed poor precision overall, with more than 80% of 

its predictions exceeding the ±30% error threshold, indicating a lack of robustness and 

calibration for Algerian hydrological conditions. These results underscore not only the 

accuracy but also the consistency of the proposed equation across diverse catchment 

types. Such stability is critical for operational hydrology, particularly in semi-arid regions 

where flood events are often abrupt and highly variable. Compared to generalist formulas 

developed in temperate climates, the performance of the proposed model reflects the 

benefit of regional calibration and the inclusion of physically relevant parameters (A, Ptc 

and S) tailored to the Algerian context. As emphasized in previous studies (McMillan et 

al., 2011; Beven, 1984), model reliability and predictive precision are essential for 

supporting effective water resource planning and flood mitigation. 

The study could be extended by incorporating remote sensing data, land use 

classifications, and soil properties into the model. Future work may also integrate climate 

change projections and perform seasonal analysis to improve temporal applicability. 

Limitations include the reliance on daily rainfall data and the assumption of spatial 

uniformity in precipitation and slope. 
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CONCLUSION 

This study presents a robust and regionally calibrated model for estimating the maximum 

discharge Qmax in Algerian wadis, addressing the critical challenge of flood prediction in 

data-scarce environments. By applying dimensional analysis, we identified the most 

influential watershed parameters catchment area, rainfall intensity, and main channel 

slope and integrated them into a compact empirical formulation. 

The resulting model, expressed in Eq. (5), demonstrated excellent predictive capability, 

achieving a correlation coefficient of R = 0.97 and a mean normalized error of 15% on 

the validation data set. Compared to widely used empirical formulas (Giandotti, Mallet-

Gauthier, Sokolovsky, Turazza), the proposed model showed superior accuracy, 

particularly for medium to large catchments, where over 66.6% of predictions fell within 

a ±10% error margin. 

This performance highlights the strength of combining physically meaningful variables 

through dimensional analysis with statistical calibration using local data. The model’s 

simplicity and effectiveness make it a practical tool for hydrologists and engineers 

involved in flood risk management and infrastructure design in Algeria and other semi-

arid regions with similar physiographic conditions. 

Future work could involve: (a) incorporating additional variables such as land use, soil 

type, and rainfall duration; (b) applying the model to other North African basins; (c) 

testing its adaptability under climate change scenarios. 

Ultimately, the proposed approach contributes to bridging the gap between theoretical 

hydrology and practical flood estimation in regions where conventional methods fall short 

due to data limitations. 
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