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ABSTRACT

The study derives an exact theoretical (loss-free) stage-discharge law for sharp-crested
elliptic and semi-elliptic weirs, with the circular weir obtained as a rigorous
specialization. The formulation cleanly separates universal hydraulic scaling from a
dimensionless geometry-flow depth kernel, which is make analytically explicit by
converting the defining integral into an exact Euler—Beta series valid on the full
admissible range.

The kernel is shown to satisfy the two endpoint constraints by construction, square-root
onset at small flow depth and the full-height anchor equal to 4/15, providing a transparent,
first-principles reference for analysis and calibration. Building on this foundation, the
study constructs a compact Padé-type surrogate with four-significant-figure coefficients
that preserves the governing physics and achieves uniform, sub-0.05% deviation from the
exact series; the worst case, = 0.04%, is near the upper range; even smaller at full height.

The result is a unified, practice-ready evaluator: differentiable for sensitivity, numerically
stable across the entire range, and straightforward to implement in design tools and real-
time control.

Because the theory isolates geometry from losses, discharge coefficients can be appended
multiplicatively without contaminating the kernel, preserving the correct ordering
between theoretical and actual discharge.

© 2025 Achour B. and al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http:/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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A table and error curve benchmark the Padé law against the exact series, confirming near-
reference accuracy with computational economy suitable for design charts, calibration
workflows, and embedded applications.

This work thus replaces empirical or fitted surrogates, with a shape-exact analytic kernel
and a compact Padé evaluator of the theoretical discharge. Multiply the theoretical flow-
rate relationship by the site-calibrated discharge coefficient C, to obtain the operational
stage-discharge relationship.

The in-depth sensitivity analysis section rigorously examines how variations in key
physical and geometric parameters affect the theoretical discharge over elliptic and
circular weirs.

In addition, the authors advance a suite of semi-empirical C; -models, eight models,
rigorously derived from canonical closed-form mathematical kernels, such as
Hill/Michaelis—Menten saturations and stretched-exponential Weibull forms, and
carefully tailored to the hydraulics of elliptic, semi-elliptic, and circular weirs. The in-
depth analysis of the elasticity of C; on each of the model parameters is also presented.

Keywords: Elliptic weirs, Circular weirs, Discharge law, Analytical modeling, Beta
function, Padé approximation, Sensitivity analysis.

INTRODUCTION

Over the last few years, Achour and collaborators have advanced a first-principles,
design-to-deployment program for flow metering: derive shape-exact relationships from
momentum and energy equations, express the dependence through compact,
implementable formulas, and validate against targeted laboratory datasets, thereby
delivering meters and weirs that are both traceable to theory and ready for practice
(Achour and Amara, 2021a; 2021b; 2021¢, 2021-d; 2022a; 2022b, 2022¢; 2022d; 2023a,
2023b; 2023c¢; 2024; Achour et al., 2025).

The line culminates in a modified H-flume that is developed and experimentally validated
for accurate discharge measurement in rectangular channels, extending the family of
standard flumes with a clear calibration pathway (Achour et al., 2025). In parallel, a new
trapezoidal flume is introduced with full treatment, design, theory, and experiment,
showcasing the same integration of analysis and metrology (Achour et al., 2024).
Together these contributions emphasize repeatable geometry, explicit rating
relationships, and laboratory-grade verification before field transfer (Achour et al., 2025;
Achour et al., 2024).

Innovations across meter families is the recent work spans specialized triangular devices
and flumes: the 2A triangular weir, including design, theory, and experiment, the SMBF
flume, a shaped modular concept, and a curved-wall triangular flume (CWTF), each
adding a distinct geometry with an explicit discharge relationship and supporting tests
(Achour and Amara, 2023a; 2023b; Achour and De Lapray, 2023). Complementary
studies refine jump control and stilling-basin compactness using strategically shaped sills,
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linking metering accuracy with downstream energy dissipation management (Achour, et
al.; 2022e; Achour et al., 2022f).

Standard geometries, re-examined. Achour and Amara have produced accurate, closed
discharge-coefficient relationship for widely used structures, the Crump weir, triangular
broad-crested weirs, and rectangular broad-crested meters with lateral contraction, all
framed to be directly usable in routine sizing and calibration (Achour and Amara, 2022a—
¢). In parallel, a sharp-edged width constriction meter was formulated and validated in
Flow Measurement and Instrumentation, emphasizing reproducible laboratory calibration
and compact prediction equations (Achour and Amara, 2022d). Earlier groundwork in
rectangular and triangular sharp-crested weirs and parabolic weirs rounds out the catalog
of thin-plate devices with transparent Cy relations (Achour and Amara, 2021a; 2022b;
2022c; 2022d).

A notable strand is the theoretical stage-discharge formulation for a circular sharp-crested
weir, derived from critical-flow considerations and used as a physics-exact reference for
rating and calibration (Amara and Achour, 2021). This work complements the broader
catalogue by showing how a loss-free theoretical law can anchor practical meters and
reveal where discharge coefficients and approach-velocity corrections matter most
(Amara and Achour, 2021).

Across devices, Achour’s group emphasizes (1) transparent derivations that isolate the
controlling dimensionless parameters, contraction ratio, approach-flow terms, geometric
proportions, (2) closed or compact relations for Cy or the rating curve that avoid black-
box regressions, and (3) meticulous experimental validation with very small residuals, on
the order of a few-tenths of a percent in representative campaigns (Achour et al., 2022f;
Achour and Amara, 2022a; 2022b; 2022c; 2022d; 2023a—c; Achour et al., 2024; 2025).
In one detailed study, more than a thousand measurements across multiple contraction
rates yielded a maximum deviation ~0.3% between theory and experiment, underscoring
the reliability of the proposed relationships (Achour et al., 2022f).

This recent wave builds on earlier contributions to critical-flow metering, including the
classic triangular-channel jump flowmeter, while generalizing to modern, compact
geometries and controller-friendly formulations (Achour, 1989; Achour, 2013). In sum,
the latest findings provide a coherent toolbox: shape-exact theory, short evaluators, and
bench-tested calibrations that extend from triangular and rectangular families to
trapezoidal and modified H-flumes, furnishing engineers with reliable, transferable rating
laws for design and field use (Achour, 1989; Achour, 2013; Achour and Amara, 2021a;
2021b; 2021¢; 2021d; 2022a; 2022b; 2022¢; 202d; 2023a; 2023b; 2023¢; Achour et al.,
2024; 2025a; 2025b; 2025c¢).

Elliptic and semi-elliptic sharp-crested weirs occupy a distinctive niche in flow metering:
their curved geometry concentrates discharge through a continuously varying width,
offering compact structures with smooth stage—discharge behavior under free-flow
conditions. Historically, the field has treated geometry largely through empirical
coefficients or numerical quadrature, despite a long record of theoretical developments
for nonrectilinear openings, including circular and elliptic forms (Greve, 1932; Stevens,
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1957; Sommerfeld and Stallybrass, 1996; Swamee, 1988; Bijankhan and Ferro, 2018;
Nicosia et al., 2023). What practitioners need is a formulation that is both traceable to
first principles and practical at the point of use. The energy-equation route provides
exactly that: it separates universal hydraulic scaling from a geometry- flow depth kernel

that can be derived once for a shape family and then deployed with minimal computation
(Vatankhah, 2010; 2011; 2016; 2018).

Within this framework, elliptic and semi-elliptic weirs admit a general, shape-exact
theoretical stage-discharge law obtained by integrating elemental strips across the true
aperture width. The resulting kernel can be expressed in closed analytic form, via elliptic
integrals, and, for everyday engineering use, compressed with the method of
undetermined coefficients into short, uniformly accurate surrogates whose errors are
demonstrably small relative to experimental uncertainty (Vatankhah, 2011; 2016; 2018).
Crucially, when the ellipse’s semi-axes coincide, the same derivation collapses
seamlessly to the circular case, reinforcing the unity of the approach and providing an
internal consistency check (Vatankhah, 2010; Bijankhan and Ferro, 2018).

This theoretical hierarchy clarifies the role of discharge coefficients in practice. The
theoretical (loss-free) relationship is the upper bound; actual discharges measured on site
are necessarily lower because of velocity nonuniformity, contraction, and viscous losses,
hence the need for a discharge coefficient C; < 1 that maps reality to theory (Vatankhah,
2010; 2018). Analyses that reverse this ordering or imply C; > 1 signal issues with data
quality, instrumentation, or model setup. Recent critiques of semi-elliptical weir datasets
illustrate precisely this point and argue against unnecessary reliance on brute-force
quadrature when compact, accurate analytic approximations are available (Parsaie et al.,
2025; Mohammed-Ali, 2012; Vatankhah, 2011; 2016).

For design and operations, the payoffs are concrete. A single, physics-exact kernel, paired
with a short surrogate calibrated to four significant figures, supports: (1) capacity checks
and diameter selection; (2) rapid generation of rating curves; (3) metrological traceability
when calibrating C, against laboratory or field data; and (4) transparent cross-comparison
of legacy fits across elliptic, semi-elliptic, and circular configurations. Framed this way,
the circular weir is not an isolated special case but a specialization of the same kernel
architecture, ensuring consistency across the curved-weir family and a clean path from
theory to practice (Vatankhah, 2010; Sommerfeld and Stallybrass, 1996; Bijankhan and
Ferro, 2018).

The present work develops a physics-exact theoretical stage-discharge law for sharp-
crested elliptic and semi-elliptic weirs, formulated so that universal hydraulic scaling is
cleanly separated from a geometry-flow depth kernel. The authors first render that kernel
analytically explicit by deriving an exact Euler—Beta series directly from the integral
definition, thereby turning a long-recognized but implicit factor into a rigorous, verifiable
object valid across the full admissible relative flow depth range. This exact representation
captures both end-point behaviours, the square-root onset at small flow depths and the
full-height anchor, by construction and without empirical tuning.
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On this analytic foundation, the authors compress the kernel into a uniformly accurate
Padé-type surrogate whose few coefficients are given to four significant figures. The
surrogate preserves the governing physics at both ends of the range and achieves sub-
0.05% deviations from the exact series, a level of accuracy that is negligible compared
with uncertainties from discharge coefficients and instrumentation, precisely the balance
needed for design charts, calibration workflows, and real-time implementation.

The formulation is intentionally unified across curved openings: the same kernel
architecture governs elliptic, semi-elliptic, and, by specialization, circular apertures, with
only the geometric scaling and admissible relative flow depth range changing by shape.
Inserting the exact Beta-series into the benchmark discharge law yields a closed, loss-free
evaluator for each geometry; the circular weir then appears naturally as a particular case
of this framework rather than the primary focus.

This work derives the exact theoretical stage-discharge relationship for sharp-crested
elliptic and semi-elliptic weirs, and, by rigorous specialization, for circular weirs as well,
within a single, closed analytical framework. Unlike earlier treatments, which typically
embed geometry within discharge coefficients, resort to numerical quadrature, or publish
tabulated and fitted ratings, the present analysis builds the geometry-flow depth kernel
analytically via Euler—Beta identities and integrates it into a physics-exact, loss-free law
valid across the full admissible range. This closes a persistent gap in the literature by
replacing surrogate calibrations with a transparent reference formulation that unifies
elliptic, semi-elliptic, and circular apertures under the same kernel architecture, with only
geometric scaling changing by shape, while no empirical tuning required.

Moreover, the analysis is situated within the classical and standards literature while
addressing a gap it leaves: previous fitted forms emphasize global accuracy but do not
enforce the exact end-point constraints. By contrast, the present normalization and Beta-
series make those constraints explicit and provable, providing a transparent reference
against which compact approximations can be judged.

GEOMETRIC AND ANALYTICAL METHODOLOGY

Elliptic weir geometry

Fig. 1 illustrates the geometry of an elliptic weir, which forms the foundation for deriving
the theoretical discharge law. The diagram depicts an ellipse with the following features:
(1) Elliptical profile:

The weir is described by an ellipse with vertical semi-axis a and horizontal semi-axis b.
The ellipse spans the vertical range 0 <y < 2a.

(2) Local width function 7(y):

At any height y, the local width of the opening is denoted by T (y). At the crest, y =0, the
opening vanishes 7'(0) = 0. At mid-height, i.e., y = a, the width is maximal, and 7' (a)=2b.
At the top of the ellipse, i.e., y = 2a, the opening again closes, corresponding to 7 (2a) =0
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This variation captures the elliptical shape of the weir’s aperture.

Water level

F = crest height

.

Figure 1: Geometry of the elliptic weir

In this frame, the following relationship expresses the local span 7(y) of an elliptic
opening at a vertical coordinate y (Chow, 1959; Novak and al., 2010; Munson et al.,

2013):
T(y)=2b /1(2—XJ (1
a a

(3) Reference frame and water depth:

The vertical coordinate y is measured upward from the weir crest. The upstream flow
depth of water above the crest height P is denoted by 4. Thus, the flow depth is measured
relative to the crest level P, with 0 </ <2a.

Theoretical stage—discharge law: Exact Euler—Beta kernel ¥(f) and loss-free rating

Fig. 1 sets up the mathematical framework by linking the elliptical geometry of the weir
to its theoretical discharge characteristics. It visualizes the parameters a, b, 4, and y, as
well as the local opening width 7(y), which all feed into the exact discharge integral later
derived in the paper.

With y from the crest and the upstream flow depth /. above the crest height P, the ideal
discharge, or the theoretical discharge, for both elliptical and semi-elliptical thin-crested
weirs, is governed by the following relationship (Henderson, 1966; French, 1985; Bos,

1989):
h

Oy, = [T 22(h-y)dy @
0
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where the subscript “7/” denotes “Theoretical. Thus, Eq. (2) integrates the local elliptical
width 7(y) against the Torricelli velocity Kernel.

By denoting z = y/h and { = h/(2a), and f = h/2a, one may write what follows:

0<z<l1,since0<y<2aand 0<h<2a 0<pB<1,anddy="h dz The infinitesimal
element dy, or the very small vertical thickness of the water nappe, as represented in Fig
1, refers to a differential vertical segment within the flow domain, specifically used for
the elemental discharge calculation through the elliptic weir.

Thus, Eq. (2) becomes as follows:

O =4b.[2g 1w (p) 3)

where the function W(p) is written as follows:

\P(,b’):j.\/ﬂz(l—ﬂz)(l—z)dz @

In Eq. (3), the factor V(2g) x 72 comes directly from Torricelli’s law and the
dimensional dependence of discharge on flow depth. This part has nothing to do with the
aperture shape; it would be the same for any thin-plate weir. The function W(f) is
dimensionless. It contains only the effect of the ellipse geometry and how the upstream
flow depth £ “fills” that geometry, through f.

Moreover, in Eq. (3), or Eq. (4), ¥(p) is known as the dimensionless geometry-flow depth
function that multiplies the Torricelli scale in the ideal, i.e., loss-free, rating law. It often

called the “discharge Kernel”. The prefactor 4b4/2g 1% carries the physical units and

the flow depth scaling, while W(f) collects all dependence on the aperture shape, i.e., the
ellipse, and the vertical distribution of the flow depth within the opening.

Eq. (4) formally defines the following:

lP(/}):j'f(z,ﬂ)dz (4a)

where f'(z, p) is the integrand that combines the elliptic width function with the velocity
distribution kernel.

Eq. (4) plays a pivotal role in the theoretical development because it explicitly isolates
the geometry-flow depth interaction from the universal hydrodynamic scaling. The
discharge law, expressed by Eq. (3), is structured so that all dimensional dependence and

gravitational scaling are carried by the prefactor +/2g n? , while the dimensionless

kernel ¥(f)) captures only the geometric effect of the elliptic aperture. Herein, the
parameter S = h/(2a) directly links the upstream flow depth 4 to the full vertical axis 2a,
so that §f represents the fraction of the ellipse’s height that is submerged; it represents the
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penetration flow depth index. This ratio tells us how deeply the available flow depth
“penetrates” the vertical extent of the aperture. Thus, this ‘penetration’ concept concerns
the flow depth-to-aperture-height ratio H/(2a), even if the gauge is located far upstream.

In this way, W(f) describes how the elliptical width distribution, when integrated against
the Torricelli velocity kernel, adjusts the discharge relative to a simple 7% law.

Thus, Eq. (4) defines the dimensionless discharge kernel W(f), which isolates the effect
of geometry from the universal hydrodynamic scaling. While its explicit evaluation is
deferred to later sections, two physical limits are already clear: (1) for small flow depths,
i.e. # — 0, incipient submergence dictates that W(8) must scale as (1/8) x V3, and (2) for
a fully wetted ellipse, i.e. f = 1, the kernel must reach the full-height condition ¥(1) =
4/15. These limits will be rigorously derived and verified in the sequel, but they serve
herein to illustrate the physical role played by Eq. (4).

Having defined the kernel W(p) in Eq. (4) and established its role as the geometry-flow
depth function in the discharge law, the next task is to obtain an explicit analytical
representation. Direct evaluation of the defining integral is not straightforward, but it
admits an elegant reformulation through Euler’s Beta function. By expanding the
integrand in a uniformly convergent binomial series and integrating term by term, the
kernel can be expressed as an exact infinite series involving Beta integrals. This approach
not only provides a mathematically rigorous representation of (/) valid for the full range
0 < <1, but also connects the discharge kernel to classical special functions, laying the
foundation for the asymptotic expansions and Padé-type approximations developed in the
subsequent sections.

Write the integrand as follows:

JB=\(1-2)(1-2) ©)

and expand the last factor with the binomial series, valid and uniformly convergent for 0
< B <1, yields what follows:

1=p2)" =5 iy 0

Term-by-term integration against what follows:

21/2(1_2)1/2 7)
yields the following Beta integrals:
1
1/2 33
J.Z”H/Z(l—z) dz=B|n+-,~ (8)
0 2 2
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Eq. (8) is precisely an instance, or an application, of the Euler Beta function. It evaluates
an integral of the following form, by identifying it with B (x, y):

1
Iza(l—z)ydz ©)
0

However, Eq. (8) is not the definition of the Beta function, but a direct invocation of
Euler’s Beta identity, which is exactly what legitimizes the following exact series in Eq.

(10).

Therefore, relationship (4) becomes as follows:
1
5 33
)=VF %[ |i-p)'B(n+2.2 o)
n 2 2

This is the exact representation of W(f) expressed by the relationship (4). It is valid for
both elliptic, semi-elliptic, and circular weirs. It evaluates the same geometry-driven
function W(f), with f = h/(2a) that comes from integrating the local elliptical width
against the Torricelli velocity kernel. The only difference between “elliptic”, “semi-
elliptic”, and circular weirs cases is the admissible relative flow depth range applying
them on, i.e. 0 < £ <1 for elliptic weirs, 0 < < 0.5 for semi-elliptic weirs, and f =& =
h/D for circular weirs of diameter D = 2a.

As an example, here’s the four-term series expansion that follows directly from Eq. (10)’s
Euler—Beta series, while taking n =0, 1, 2, 3:

\P(ﬂ)zﬁﬁ_lﬂs/z_5_7Tﬁ5/2_7_7fﬁ7/2+0(ﬁ9/2) (102)

8 32 1024 4096
Equivalently, factoring out the leading square-root onset yields the following:
¥ 1-—p—— +0 10b
(IB) 8\/E|: d 128'3 712ﬁ (ﬂ )} (10)

As an illustrative example, let us examine the case where = 0.5, which provides a clear
indication of the series’ convergence behavior and the rate at which the truncated form
approaches the exact value.

Because the Euler—Beta series in Eq. (10b) is a binomial/Beta expansion with general
term proportional to following, after factoring the onset Vf:

3 3
"Bln+=,= 10
po(ned

the terms decay essentially like
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05" x n 32 (10d)
At = 0.5, this geometric factor dominates, so the truncation error is governed by the first
neglected term.

A conservative bound using the alternating/binomial-term envelope and the following

3 3 )
Bln+2,2|~Cn3'? (10¢)
272

shows that keeping up to n = 10; i.e., the first 11 terms n = 0,...,10 in Eq. (10b)) makes
the remainder smaller than 10 relative, that is, < 0.001%, at f = 0.5. In practice, the
decay is faster than the bound suggests; numerically the first 8 terms, n = 0,...,7, already
satisfy the same 0.001% target at f = 0.5, but n = 10 is a safe recommendation if users
want a guaranteed margin.

As a practical recommendation for the users, truncate Eq. (10b) after n =10 at £ = 0.5 to
ensure a maximum deviation < 0.001 %; in many cases n = 7 suffices at this S.

Egs. (10) - (10b) is the exact Euler—Beta series for the kernel W(f); after extracting the
factor, the remainder is a smooth power series with coefficients built from binomial
factors and Beta integrals, giving the stated decay and fast convergence at = 0.5.

The table below presents, for f varying within the practical range [0, 0.75] with a step of
0.05, the smallest truncation order n ensuring that the deviation between the exact and
truncated forms of Eq. (10b) does not exceed 0.001%. The determination was based on a
conservative bound for the first neglected term, as follows:

Cﬁn-i-l

<107, ¢=05 (109)

3/2
( n+1 )

It is emphasized that the computed n-values are deliberately over-minimal, slightly above

the true minimal rank to ensure the 0.001% accuracy requirement under all practical f

values.

p Minimum truncation n (Deviation < 0.001 %)

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

[ —
fefiangi=GiV-J-CRC - VARV SIS
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0.65 18
0.70 21
0.75 25

In view of the previous table, three relevant remarks can be pointed out: (1) The truncation
order n increases sharply with f as the higher-order terms gain relative significance in the
series expansion of Eq. (10b); (2) Beyond S = 0.6, the growth of n becomes quasi-
exponential, indicating the series’ slow convergence in the near-limit domain of § — 1;
(3) The proposed n-values remain conservatively accurate, ensuring that ¥(f) can be
evaluated with negligible computational deviation, i.e., < 0.001 %.

The following derived relationship for n(f) provides a direct and reliable means of
determining the minimum safe truncation order required to ensure that the truncated series
representation of Eq. (10b) reproduces the exact function W(f) with a maximum deviation
not exceeding 0.001 % over the full validity range § € [0, 0.75].

g
1-p

n(p) =2.068 + 7.356 +1.152 (10g)

This analytical expression is of significant practical value because it allows the user to
compute, for any given f, the smallest integer n that guarantees the target precision,
without resorting to iterative convergence testing or empirical adjustment. The resulting
formulation is deliberately over-minimal, providing a built-in safety margin that ensures
the prescribed accuracy is met or not exceeded across the entire range of .

It should be emphasized that the expression is not valid for n = 0, since the truncation of
Eq. (10b) at zero order would fail to reproduce any of the functional behavior of ¥(/5).
Consequently, the practical domain of application begins at n > 3, or > 0.05 according
to the previous table, corresponding to the lowest truncation rank capable of achieving
meaningful accuracy even at very small £.

The introduction of this compact formula thus provides both efficiency and consistency
in analytical or computational applications. It enables users to determine the required
series depth directly from the parameter f, ensuring that the approximate form of W(f)
remains within the predefined tolerance limit of 0.001 % throughout the practical range
of interest.

On the other hand, Eq. (10) is constructed to honor the physics at the ends of the range,
matching the (7/8) x \/,8 onset as f — 0 and anchoring the full-height value at = 1. That
preserves the correct asymptotic while yielding a one-line formula that is easy to read,
differentiate, and propagate through metrological.

For selected small f, one may compute the following:

(1) Exact W(p) from the exact Beta-series, i.e., Eq. (10);
(2) The asymptotic A(f) — (2/8) x \B;
(3) The ratios ¥(exact)/A —1 as f — 0.
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The numerical examples below corroborate the overmentioned statement:
For =10, W(exact) = 3.92699x10 %, A = 3.92699x10™*; W(exact)/A = 1.

For § = 107, W(exact) = 3.9269x10 7>, A = 3.92699x10 >; P(exact)/A = 0.999975,
Y(Pade)/A = 0.999723; thus, the Padé relative error = 0.023%.

For =102, W(exact) = 3.9172x10 2, A = 3.9270x10 %; P(exact)/A = 0.99727.

Across all tested small g, varying from 10 to up to 0.10, ¥(exact)/A remain very close
to 1, confirming the (7/8) x B onset.

Across all tested small g, varying from 10 to up to 0.10, ¥(exact)/A remain very close
to 1, confirming the expected (n/8) x S onset.

It must be emphasized that in the classical hydraulics literature (e.g., Chow, 1959;
Henderson, 1966; French, 1985; Bos, 1989), the dimensionless discharge function, often
denoted F(z), corresponding to W(B)/Np, is introduced as the integral factor multiplying
the universal flow depth law. In those works, however, the function is not evaluated in
closed form; instead, its contribution is either tabulated from numerical quadrature or
embedded into an empirical discharge coefficient Cy. Chow (1959) presents graphical
solutions and tables of F(7), while Henderson (1966) and French (1985) treat it implicitly,
emphasizing experimental calibration of C; Bos (1989) systematically develops
discharge-measurement structures using regression-based fitting laws, where F(7) is
absorbed into polynomial or rational expressions adjusted to experimental data. These
procedures provided usable rating curves, but at the cost of relying on approximations or
empirical fitting, since the explicit evaluation of the kernel was considered analytically
intractable at the time.

Thus, in much of the hydraulics literature the dimensionless discharge function is
introduced as an integral factor in the rating law and then treated empirically rather than
evaluated in closed form. A prominent line of work by Vatankhah follows this curve-
fitting paradigm: the flow depth-discharge relationship, or an equivalent Kernel F(7), is
first computed from laboratory data and/or numerically evaluated integrals over the
admissible flow depth range, and then replaced by compact explicit formulas whose
coefficients are identified by nonlinear regression (Vatankhah, 2010; 2012; 2021). This
strategy yields practical, engineer-friendly expressions for circular and nonstandard
sharp-crested weirs, but it does not furnish an analytic expansion of the Kernel itself, the
dependence on # (or f) is ultimately parametric and data-calibrated.

This fitting philosophy extends to earlier and adjacent works, e.g., standard texts and
engineering papers, where the Kernel’s effect is absorbed into empirical discharge
relations or compact flow depth-discharge equations tuned to experiments. In all such
cases, the aim is practical accuracy with simple formulas, not an analytic expansion of
the kernel itself. Near-crest asymptotic is not encoded, since fitting-based kernels, like
those cited in the literature, are constructed to be O(1) and smooth at # (or f) — 0, by
design keeping the square-root behaviour outside the kernel. Consequently, they do not
encode the incipient-submergence law ¥(f)~(m/8) x \B within the kernel itself.
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Moreover, no enforced full-height anchor is provided, since the fitted forms are tuned for
small global error on 0 <# (or §) < 1 rather than to satisfy the exact end-point value ¥(1)
= 4/15. Hence the full-height condition is not guaranteed by construction.

The normalization used in the present study explains the difference. Indeed, the Kernel
Y(p) is defined so that all geometry-flow depth dependence stays inside ¥; this is why
the proper \/[)’ onset and the = 1 anchor can be imposed and proved for ', then realized
exactly via the Beta-series Eq. (10).

Eq. (10) advances beyond the traditional procedure, or the state of the art, by providing
an exact, closed Beta-series representation of the kernel W(f). This formulation is not a
reformulation of earlier results but a new development, and a new contribution: it recasts
the integral definition of Eq. (4) into a rigorous convergent series involving Euler-Beta
functions, valid uniformly on 0 < < 1. In so doing, Eq. (10) makes the kernel analytically
explicit, opening the way for systematic asymptotic analysis, convergence checks, and
direct numerical evaluation with guaranteed precision. Thus, while the existence of the
integral kernel is well established in classical references, the exact Beta-series expansion
of Eq. (10) appears herein for the first time. This distinction underscores the originality
of the present work: it transforms a long-recognized but implicit discharge factor into a
mathematically explicit, verifiable, and engineering-usable form. Eq. (10) provides a
mathematically transparent and verifiable framework that bridges the integral formulation
with precise analytical series, marking a genuine extension of classical weir theory.

Ultimately, Eq. (10) in this work provides an exact Euler—Beta series for the geometry-
flow depth kernel ¥(f), obtained directly from the integral definition, i.e. Eq. (4), without
recourse to empirical tuning, or any fitting procedure. The resulting representation is
uniformly valid on 0 < § < 1, encodes the W(f) ~ (n/8) x \/ﬂ onset and the W¥(1) = 4/15
anchor by construction, and serves as a mathematically transparent benchmark against
which any approximate, fitted, or reduced formulas may be assessed. In short, where prior
work supplies accurate fits, Eq. (10) supplies the analytic object those fits approximate.

In addition, in Eq. (10), B denotes the Euler Beta function, which express as follows:

33 0 1/2
B(n-ﬁ-z,gj:!/’”/z(l—z) dz (11)

In the Beta-function integral Eq. (11), the arguments x = n + 3/2 and y = 3/2 are positive,
ensuring the convergence of Eq. (10).

Insertion of Eq. (10) into Eq. (3) leads to the exact theoretical discharge relationship valid
for elliptic, semi-elliptic, and circular weirs. A detailed discussion of the circular
configuration follows in a subsequent section:

0 1
O =4b2g > | 2 (_ﬂ)nB£n+%,§] (3a)
n=0\ "
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After rearrangement, Eq. (3a) can be rewritten in the following final form:

1
_2J_ ngiﬁ [2J ,B)nB(n—l-z,gj (3b)
n 2 2
Eq. (3a), or (3b), turns the benchmark rating law of Eq. (3) into an analytic evaluator:
substituting the exact Beta-series of Eq. (10) for (/) yields a closed, loss-free discharge
formula that is uniformly valid on the full admissible range of flow depth for each
geometry, i.e., elliptic: 0 < £ < 1; semi-elliptic: 0 < f < 0.5; circular via the stated
specialization. This is the exact theoretical discharge law sought, valid for the three
overmentioned geometries. It preserves the core physics built into W¥: the incipient-
submergence onset () ~ (n/8) x \/,b’ and the full-height anchor W(1) = 4/15. As a result,
Eq. (32) is both shape-exact, i.e., geometry handled by ¥, and scale-exact, i.e., all
dimensions carried by the Torricelli prefactor. Because W(f) in Eq. (3a) is given by a
Euler—Beta series, the discharge becomes differentiable in closed form with respect to
stage 4 and geometric parameters a and b. This enables trustworthy sensitivity, curvature,

and uncertainty analyses, e.g., derivatives dQ/dh and d Q/dh2 used in error propagation
and sensitivity study. Practically, the Beta series converges rapidly over 0 < <1, so Eq.
(3a) is both analytically transparent and computationally efficient, no empirical tuning,
or fitting procedure, is required to achieve high precision. Unlike low-order fitted Kernels
that are smooth O(1) functions of 7 (or A used herein) and do not enforce the /8 onset or
the f = 1 anchor, Eq. (3a) inherits both limits by construction from the exact Kernel.
Hence it serves as a physics-exact reference against which approximate rational forms,
introduced later in the paper, or empirical relations can be objectively benchmarked
across the entire flow depth range.

Eq. (3b) can be rewritten in the flowing reduced form:

rh=2\/§i\/§h21’(ﬂ) 3c)
Ja

According to Egs. (3a) and (10), the following can be written:

P(p)= ¥(5) (3d)

N

Thus, according to Eq. (10), one may write the following:
; 33
P(p)- 3, |- )B(H_,_] o
n= n 2 2

P ( p ) could be called the dimensionless discharge kernel for the elliptic and semi-elliptic

weirs, or simply the elliptic kernel.

212



Exact theoretical rating law for sharp-crested elliptic, semi-elliptic, and circular weirs

Eq. (3e) introduces the dimensionless discharge kernel for elliptic and semi-elliptic weirs,
what the paper itself calls “the elliptic kernel.” In plain terms, Eq. (3e) gathers all of the
geometry—flow-depth coupling into a single, scale-free function of the nondimensional
depth # = h/(2a). All dimensional physics, \(2g) and the overall A-scaling, is left in the
outer Torricelli prefactor and the simple power of /4; geometry lives inside the kernel.

Because Eq. (3e) descends from the exact Euler—Beta representation given earlier by Eq.
(10), the kernel automatically enforces the two endpoint “anchors” of the theory, as
follows:

(1) the incipient-submergence onset ¥(f) ~ (1/8) x N as f—0, Torricelli square-root, and
(2) the full-height value ¥(1) = 4/15.

These are not fitted; they are consequences of the exact kernel.

Because the kernel in Eq. (3e) is given by a convergent Beta-series, the discharge law
becomes analytically differentiable with respect to 4 and geometric parameters, crucial
for sensitivity/elasticity analyses and error propagation.

The Beta series used to define the kernel converges rapidly on the full admissible S-range,
so Eq. (3e) is both uniformly valid and computationally efficient; no empirical tuning is
needed.

With the geometry isolated in the kernel, the flow-depth elasticity £, which will be
developed later, becomes a clean combination of the outer A-power and one dimensionless
derivative of the kernel. That structure lets the paper prove the correct endpoint limits
directly from “kernel physics”.

The exact kernel, underlying Eq. (3¢), is non-analytic in 4% and has a half-integer series
starting with (n/8) x Vg, followed by %2}, g52.... This is why successful global
approximations factor out VB and only approximate the smooth remainder. Eq. (3¢) makes
that structure explicit and preserves it exactly.

Eq. (3e) gives a shape-exact, scale-exact discharge law: geometry handled by the kernel;
dimensions by the prefactor. It’s a rigorous baseline against which compact fitted
surrogates or empirical Cy-laws can be compared.

Because the kernel is analytic from the Beta-series, one can differentiate once or twice
with respect to 4 or parameters, without leaving closed form; this is ideal for sensitivity,
curvature, and uncertainty analyses used later in the paper.

In short, Eq. (3e) is the organizing principle of the elliptic/semi-elliptic rating: it isolates
geometry in a dimensionless, physics-anchored kernel that is exact at both ends,
uniformly accurate across the range, and tailor-made for robust sensitivity work.

Derivation of the exact £ values
Leveraging the exact kernel in Eq. (10) together with the discharge law in Eq. (3a), the

authors tabulate exact values of f§ as a function of the relative discharge denoted O%,
which depends solely on O = O, a, b, and g, admitting a maximum value 4/15 as ¥(1)
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is. The Table is presented and discussed in the theoretical Appendix Al, and draws the
key inferences. Appendix A2, in turn, offers an analytic development of a practical
approximation for the discharge coefficient Cy of a sharp-crested circular weir

Exact small-# series for ()

To resolve the near-crest regime, where the upstream flow depth is small relative to the
ellipse height, we extract a local asymptotic expansion of the geometry-flow depth kernel
Y(p) directly from its exact formulation. This small-f series exposes the non-analytic,
half-integer structure of the Kernel, set by the Torricelli square-root, fixes the universal
leading coefficient (1/8) x V3, and determines the higher-order corrections that quantify
how the elliptical geometry modifies the onset of discharge. In practice, the terms of the
small-f expansion, namely the leading (1/8) x /3 contribution together with the higher-
order half-integer corrections « ,83/2, ﬂm. .. serve as benchmarks for numerics, certify the
error of global approximations, and impose sharp constraints on compact closed-form
laws at low flow depths.

Using the following:

One may obtain the following half-integer power series:

lI,(ﬁ)zzﬂuz_ﬁﬂa/z_ 157Tﬂ5/2_ r B2 (12)
8 32 3072 4096

This shows the correct near-origin behaviour:

v(8)~2\p (13)

which is non-analytic in ,6’2; hence any global rational approximation should factor, or
extracts, out \/,6, thus, writing ¥(f) = p G(f) with G smooth O(1) on 0 < g < 1. This is
precisely what many successful prior formulations implicitly do: they keep the square-
root outside the Kernel and approximate only the smooth remainder, either by defining a
finite Kernel, always denoted F(z), and placing Yy in the discharge prefactor, or
equivalently by fitting in the variable x = \. The present study’s small-4 analysis makes
this necessity explicit, i.e., non-analyticity and the (1/8) x V8 onset, while the fitted forms,
cited in the literature, exemplify the “keep F smooth, O(1) at # — 0” practice. The relevant
references on this important matter are Bender et al. (1999), Bleistein and Handelsman
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(1986), Olver et al. (2010), and Vatankhah (2010; 2012; 2022), ISO (2017), USBR
(2001).

Compact, uniform Padé-type approximation of the kernel ¥(f) on [0, 1]

The exact Euler-Beta representation in Eq. (10) and the small-f expansion in Egs. (12)
and (13) provide a rigorous description of the geometry-flow depth kernel ¥(5) across its
entire domain, including the square-root onset ¥(f)~(n/8) x \f as f# — 0 and the full-
height condition W(1) = 4/15. The authors therefore construct a Padé-type rational
approximation that is uniformly accurate on the full range [0, 1].

To capture the \j singular slope at the origin while remaining simple and highly accurate
on the whole interval, one may use the following Padé-type approximation:

2
Do+ P B+DPB
2
l+q,+q,p
The ratio of the two quadratic polynomials, whose Maclaurin/Taylor series matches the

target function as far as possible, represents the rational approximation known as Padé
[2/2] approximant.

Y(B)=B (14)

As Eq. (10), Eq. (14) was expressly designed to respect the physics at both ends of the
admissible range: it enforces the correct small-flow depth asymptotic W(8) ~ (n/8)x f
as § — 0, the /8 factor coming from the Euler-Beta value B(3/2, 3/2), and it anchors the
full-height limit W(1) = 4/15; as a result, the compact Eq. (14) Padé approximate form
remains faithful to the governing geometry across the full range 0 < < 1. Also, with the
chosen coefficients, Eq. (14) minimizes the global error against the exact integral. The
maximal deviation caused by the approximate Eq. (14), with the full range 0 < <1, is
only 0.04% reached at f = 0.96. All the deviations caused by Eq. (14) will be calculated
and tabulated (Table 1) in one of the next sections.

A numerically optimized set for 4 significant figures is as follows:

P, =0.3926 p =-04611 p,=0.1207 q, =-0.9267 g, =0.1225
Sanity checks:

As f—0, ‘P(ﬂ) ~ po\/ﬁ ~ 0.3926\/5, essentially 77 /8 = 0.392699

As =1, the exact value of ‘P(ﬂ) is ‘P(l) =4/15=0.266606..., the Padé-type

approximation, expressed by Eq. (14), gives 0.266599, i.e., a relative error = 0.026%.
Eq. (14) is a compact Padé-type law for the kernel (), and therefore it applies not only
to the elliptic weir, for which 0 < < 1, but also to the semi-elliptic case corresponding

to 0 < £ <0.50 and to the circular weir obtained by the specialization 2a = 2b = D with
— & = h/D, where D is the circular weir diameter. All three cases evaluate the same
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geometry-driven kernel W; only the geometric prefactor in Q7, changes when passing
from a general ellipse to the circle. The circular specialization is developed in the next
section, where Egs. (15) to (23) are introduced and analyzed.

Inserting Eq. (14) into Eq. (3) yields the following approximate theoretical stage-
discharge relationship, valid for elliptic, semi-elliptic, and circular weirs;

Pyt p B+ pzﬂz 3/2
=4p Jz h 3
Qapp.,Th IB 1+q1,3+q2,32 g ( D

where the subscript “app” denotes “Approximate”. After rearrangement, Eq. (3f) can be
written in the following final form:

b + ﬂ"‘P,B 2
0, \/_ Py T P 2 [> ah (Ge)
ppTh = \/_ 1+qlﬂ+‘bﬂ

Eq. (3g) is the practice-ready theoretical rating law obtained by inserting the compact
Padé kernel [Eq. (14)] into the benchmark discharge relationship [Eq. (3)] and
rearranging. It keeps the universal Torricelli scaling outside and packs all geometry—flow
depth coupling into a single dimensionless kernel, so the law is both shape-exact via the
kernel and scale-exact via the prefactor. In one line, it delivers a differentiable, closed-
form evaluator for elliptic, semi-elliptic, and, by specialization, circular weirs.

Moreover, in Eq. (3g), physics are preserved at the endpoints. Indeed, because Eq. (14)
is explicitly constrained to: (1) the small-flow depth onset W(8) ~ (n/8) x VB, and (2) the
full-height value ¥(1) = 4/15, thus, Eq. (3g) inherits those endpoint behaviors by
construction, critical for trustworthy extrapolation near crest and at full height of the
opening, i.e., # = 1. Considering, V(2g), local width och, and depth integration oA, it can
be written the following: (1) Near crest: Q.. « h% and (2) At full height: ¥(1) = 4/15
fixes the constant in Qqpp.mnat f=1.

It is worth noting that Eq. (3g) is valid for: elliptic weirs for which 0 < < 1, semi-elliptic
weirs for which 0 < £ < 0.5, circular weirs corresponding to case obtain by 2a =2b =D
and ¢ = h/D (or keep Eq. (3g) with a = b = D/2). This avoids off-range evaluation and
clarifies the geometry mapping.

Since Eq. (3g) isolates geometry in the kernel, log-sensitivities split cleanly: the outer /-
power dictates the baseline slope while a single dimensionless derivative of the kernel
adds the geometry correction. This structure is what enables the neat endpoint exponents
reported later (e.g., elasticity dropping from = 2 near crest to ~1.25 near full height for
the elliptic case).

Circular weir - Exact kernel and rating law

In addition, exact Beta-series Eq. (10) and Padé-type approximation Eq. (14) remain valid
for the circular weir, of diameter D, obtained by setting 2a = 2b = D, corresponding to:
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p=h/2a=h/D=¢& (15)
where 0 < &< 1.

With this identification, i.e., f — ¢, the same dimensionless geometry-flow depth kernel
Y governs the flow; only the geometric prefactor in the discharge law changes when
passing from an ellipse to a circle. Thus Egs. (10) and (14) specialize verbatim to yield
an exact kernel W(¢) and a compact, uniform Padé-type law for 0 < ¢ < 1. The end-point
physics are preserved by construction: W(¢) ~ (n/8) x V& as ¢—0, i.e., incipient
submergence, and (1) = 4/15 at full height, which in turn produces the expected full-
height scaling Q7 o [V(2g)] x D>?.

In what follows the authors formalize this specialization, deriving Eqgs. (15) to (23) for
the circular weir and presenting the corresponding exact theoretical rating law alongside
its high-accuracy Padé counterpart.

Inserting Eq. (15) into Eq. (10), yields the following exact geometry-driven kernel (&),
valid for the circular weir:

‘P(f)=\/2ni) (—f)nB(n+§,gj (16)

According to Egs. (3) and (16), and after rearrangement, the exact theoretical discharge
relationship for circular weirs can be written as follows:

o) 1
Q(;ihcular=2\/2g_Dh22 2 (_g)nB(n+§,gJ 7)
n

n=0 22

NSNS

Eq. (17) specializes the general loss-free rating law to the circular geometry by setting 2a
=2b=D and ¢ = h/D. It preserves the same dimensionless geometry-flow depth kernel
Y defined earlier, so the physics and normalization are unchanged, i.e., the Torricelli
prefactor carries the hydrodynamic scaling, while ¥(¢) encodes the geometry-flow depth
interaction. This immediately guarantees the two end-point anchors in the circular setting,
namely incipient submergence and the full-height value. In short, Eq. (17) is the exact,
loss-free circular rating obtained without any empirical tuning.

The most recognized classical monographs by Chow (1959), Henderson (1966), French
(1985), Bos (1989) usually present the integral form of the discharge, or fold it into a
discharge coefficient Cy, and then proceed by tabulation or calibration, rather than by
deriving a closed, analytic kernel. Recent engineering contributions, notably in the
Vatankhah line cited previously, deliver explicit, easy-to-use rating equations by first
computing pointwise values of the discharge—flow depth relationship, from experimental
datasets or numerical quadrature of the defining integral, and then regressing a short
polynomial/rational form to those values. The result is accurate and convenient for
practice, but it is still an empirical surrogate for the underlying geometry—flow depth
kernel rather than an analytic evaluation of that kernel.
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By contrast, Eq. (17) inherits from the prior sections an analytic kernel ¥, via the Euler—
Beta series, that is uniformly valid on 0 < ¢ < 1 and physics-exact at both ends; any real-
flow effects can be appended multiplicatively via Cy without disturbing the underlying
geometry kernel. In practical terms, since the same kernel ¥ governs elliptic, semi-
elliptic, and circular openings, Eq. (17) establishes a unified baseline for circular weirs:
it is differentiable in closed form useful for sensitivity, and, via the paper’s Padé-type
surrogate, admits a compact, uniformly accurate formula with a maximum relative error
of 0.04%, i.e., sub-0.05%, (Table 1), far smaller than typical uncertainties in Cy or field
measurements. Thus, Eq. (17) is the reference theoretical law to which fitted or
coefficient-based relationships should be compared.

In addition, Eq. (17) can be rewritten in the following reduced form:

05" =2,J2g DI’ (&) (18)

where

P(é)=% 9)

Thus, according to Eq. (16), one may write the following:

P(§)=i z (—Cf)nB(n+%,%j (20)

n=0

P (5) could be called the dimensionless discharge kernel for the circular weir, or simply

the circular kernel.

Eq. (20) defines the dimensionless discharge kernel P(¢) for the circular weir, often called
simply “the circular Kernel”. It is the circular analogue of the elliptic kernel ¥ after the
specialization 2a = 2b = and f—¢ = h/D. In this normalization, all geometry-flow depth
coupling for the circular opening is absorbed into a single dimensionless function (the
“circular kernel”), while the universal hydrodynamic scaling remains in the Torricelli
prefactor. Put differently, Eq. (20) isolates geometry from physics, exactly as Egs. (3) and
(4) do in the elliptic case, so that the discharge law can be written in a reduced and
portable form. Because Eq. (20) inherits the same kernel structure as the elliptic
formulation, it enforces the two anchors by construction: near the crest ((—0), the kernel
exhibits the Torricelli-driven square-root onset V&, and at full height (¢ = 1) it attains
the exact value 4/15. These constraints are not added empirically; they flow from the
exact formulation, via Egs. (16) to (19)) and guarantee consistency with the circular full-
height scaling O7p, « Vi 2g) D, Eq. (20) is not a fit; it is the exact circular kernel implied
by the general theory. As a result, any subsequent approximation, e.g., the compact Padé-
type law introduced next, is measured against a physics-exact reference. This separation
lets the user appends a discharge coefficient C; for real-flow effects multiplicatively,
without contaminating the geometry kernel, simplifying calibration and uncertainty
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analysis. With Eq. (20) in hand, the circular rating law inherits all the smoothness and
differentiability properties of the kernel, via the Euler-Beta representation from the
elliptic framework. That enables reliable sensitivities (6Q/0h), curvature (6>Q/0h*) for
sensitivity study. Where much of the literature either keeps the circular factor implicit,
folded into C, or replaces it with a fitted surrogate, Eq. (20) provides the explicit analytic
kernel for the circle, closing the loop from geometry to rating without empirical tuning.

For f = ¢, and according to Egs. (14) and (19), the Padé-type approximation for circular
weirs can be written as follows:

2
P(¢)= p0+p1cf+p2§
1+q,¢+4q,6

The deviations between the exact Eq. (20) and the approximate Eq. (21) are the same than
those affected ¥ (f = &) reported in Table 1 below. Accordingly, Eq. (21) provides a
compact Padé-type surrogate of the exact circular kernel defined in Eq. (20). The endpoint
behavior’s, W(&)~(n/8) x V& as ¢ — 0 and W(1) = 4/15, originate from Eq. (20) and are
imposed on Eq. (21) as matching constraints, yielding a uniformly accurate yet simple
rating formula.

e2))

As can be seen in Table 1, the Padé-type approximate form delivers a maximum relative
error of 0.04%, i.e., sub-0.05%, across the full range 0 < f <1 and 0 < ¢ < 1; the
documented worst case is about 0.04% reached at f = &= 0.96, and the relative error at
=¢=11is ~0.026%, far below typical discharge-measurement and C; uncertainties. In
short, it is “exact enough” for engineering while remaining closed-form. Thus, the Padé-
type approximate formula, given by Eq. (21), is then a near-exact (0.04% maximum
deviation) representation of this exact kernel for convenient, uniformuse on 0 < &< 1.

Thus, for f = ¢, and 2b = D, considering Eqgs. (3), (19) and (21), and after rearrangement,
the following is an excellent approximate theoretical discharge relationship for the
circular weirs, while remembering that the subscript “App.” denotes “Approximate”.

2

icular po+p1§+p2§ 2

oo :2[ 1/ZgDh (22)
v Th 1+%§+Q2§2

In Eq. (22), the term \(2gD) is the reference velocity scale induced by using D as the
reference length in the nondimensionalization (& = A4/D). It does not assume /# = D; the
actual flow depth enters only through the dimensionless kernel P(&). Also, it is not the
local slice velocity V(2g(h — z); it is just like Torricelli’s V(2gh), but with the reference
length D. Herein, nondimensionalization means replacing dimensional variables by unit-
free ratios built from a characteristic scale. The flow depth %, which is a length, is scaled
by the diameter D, which also a length. Grouping the discharge as follows, makes the
physics transparent: area x velocity gives the baseline flow-rate scale, while the kernel
P(¢), with &= h/D, accounts for how the actual flow depth # fills the opening:
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cicular 2
Ouorn ~ D7 x 28D x P(&) (22a)
—
area scale velocity scale dimensionmess kernel

Thus, V(2gD) plays the role of a reference exit velocity, while D? supplies the geometric
area scale; together they yield the classical V(2g) x D32 scaling, which is exactly the
capacity scaling reached at full wetting, where P(1) = 4/15. The kernel P(¢) modulates
this scale according to the actual relative flow depth &= A/D.

Eq. (22) is the paper’s “engineering workhorse” for circular sharp-crested weirs, a near-
exact, closed-form rating law which can be dropped straight into calculation routine. It’s
built by substituting the uniformly accurate Padé kernel into the loss-free circular
formulation, so one may keep exact physics, i.e., Torricelli scaling, correct end-point
anchors, while gaining a single compact evaluator. Eq. (22) is a short rational form means
cheap, stable evaluation and smooth derivatives dQ/dh, d?Q/dh? for sensitivity. It exhibits
the same kernel architecture as the elliptic case; only the geometry scale changes. There
is only one framework for elliptic, semi-elliptic, and circular openings. Eq. (22) is a rare
combination, theory-near-exact structure with computationally light and real-time
friendly. Moreover, it should be treated as the baseline circular rating; appending Cy for
reality, and the users have a robust, high-fidelity law for the full usable flow depth range.

When the circular opening is fully wetted, the geometry reaches its natural end state and
the discharge law locks to a single, universal constant set by the circle itself. This
condition serves as the definitive anchor for the entire development: it removes
ambiguity, collapses scaling cleanly to diameter and gravity, and yields a benchmark that
any laboratory rig or field installation can reproduce. In practice, this end point is
invaluable. It provides a one-point calibration check for instruments, sets the absolute
capacity ceiling for a given diameter, and offers a simple pass/fail target for simulations
and controller implementations. During commissioning and routine diagnostics,
approaching full wetting cleanly separates geometric effects from hydraulic losses and
instrumentation drift, allowing engineers to isolate the discharge coefficient and
troubleshoot with confidence. In short, the fully wetted circular case is the model’s
keystone and the practitioner’s most reliable reference state.

For the configuration in which the circular opening is fully wetted, corresponding to &=
1, the exact kernel reaches the endpoint value W(1) = 4/15, which, by Eq. (19), implies
P(1) =4/15. Inserting this result into Eq. (18) and simplifying leads to the following exact
theoretical discharge relationship governing the fully wetted circular case:

; 8
Q]fyhll cicular _ E 2gD5 (23)

The scaling O o< V. (ZgDS) is the only one compatible with a gravity-driven, loss-free
orifice whose wetted height equals its diameter; the V/(2g) term is the Torricelli (gravity-
driven) velocity scale; the factor D> comes from multiplying the circular length scale D
by the flow depth law 4*2, which at full height & = D gives D x D32 = D2,
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Eq. (23) yields the capacity diameter for full height under loss-free conditions, under the
following form:

2/5
(23a)

p| 5o
S o hg 2T

Eq. (23a) can be rewritten in the following reduced form, where the discharge Q in (m%/s)
and the diameter D in (m):

2/5

D ~0.709 QTh (23b)
For operational ratings, Eq. (23a) can be used in the following form:
2/5
15
D=|———0 (23¢c)
822 C,

where C; is the discharge coefficient. This formula is a capacity anchor, loss-free and full
height; in practice, the site-calibrated C; < 1 should be applied.

The scaling Q « D>? at full height is classical; it follows from integrating Torricelli
velocity against the circular width. The inverted form D o 0?* is a direct corollary, and
is sometimes used implicitly in design charts or quick checks. However, many texts
present the forward relation and/or fold geometry into empirical coefficients; they do not
always print the inverted capacity law explicitly. Including the compact inverted law, i.e.,
Eq. (23Db), is justified and helpful. However, the users must: (1) explicitly link it to Eq.
(23), (2) note the full-height, loss-free regime, and (3) accompany it with the operational
version with Cg. In short, the users can consider the following practical variant of Eq.
(23b):

2/5

p~0700] 2 (23d)
C

d

Cy maps reality to theory. The theory cleanly separates geometry and flow depth through
the kernel; all non-ideal hydraulic effects are then appended multiplicatively as Cg,
preserving the correct ordering between the theoretical upper bound and the actual
discharge. In other words, the following can be written:

Cd = Qmeasured (23¢)
QTh (h 5 D, g)

Meanwhile, Cy still accounts for installation-specific losses, non-ideal hydraulic effects,

i.e., vena-contracta/edge sharpness and thickness, approach-flow nonuniformity and
Froude effects, viscous/scale influences, surface tension at small flow depths, and
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possible downstream influence, i.e., approach flow conditions, appended multiplicatively
to the loss-free circular law. That’s exactly how the authors position the operational
rating: Q= Cy x Q.

Exact Euler-Beta kernel vs. Padé surrogate - Full-range accuracy and engineering
relevance

This section benchmarks the compact Padé approximation, expressed by Eq. (14), against
the exact Euler-Beta representation of the kernel, Eq. (10), across the entire admissible
depth range. Using high-precision evaluations of the exact series as reference and a
numerically optimized Padé form with four-significant-figure coefficients, we quantify
pointwise deviations and verify that the surrogate preserves the governing physics at both
ends (incipient-submergence onset and full-height anchor). The tabulated results show a
sub-0.05% maximum relative error (~0.04%), with the worst near the upper end of the
range, with a still smaller deviation at full submergence, levels far below typical
uncertainties associated with discharge coefficients and field instrumentation. In practice,
this means the Padé law provides the accuracy of a reference model with the
computational economy needed for design charts, calibration workflows, and real-time
controllers, while remaining transparent and easy to differentiate for sensitivity.

Table 1 demonstrates that the Padé-type surrogate reproduces the exact Euler-Beta kernel
with uniform, extremely small error over the entire admissible range 0 < < 1. The largest
relative deviation is 0.04%, occurring near § = 0.96; at full height # = 1, the deviation
drops to ~0.0255%. These numbers are fully consistent with the error curve shown in the
accompanying Fig. 2 and confirm the surrogate’s tight tracking of the reference values.
This is attributable to the use of four-significant-figure coefficients in the Padé form: the
analytic construction enforces the full-height anchor, but rounding the coefficients
introduces a minute, practically irrelevant offset.

A < 0.04% kernel mismatch is orders of magnitude smaller than uncertainties from
discharge coefficients and field instrumentation, so the Padé surrogate will not be the
limiting factor in engineering accuracy. It offers the convenience of a short, closed-form
evaluator with performance indistinguishable from the exact series for design, calibration,
and real-time use.

In addition, Table 2 is valid for elliptic, semi-elliptic, and circular weirs. The reason is
structural: both the exact kernel and the Padé surrogate being compared in Table 1 are
shape-unified objects. Eq. (10) gives an exact Euler—Beta series for the same geometry-
flow depth kernel ¥ across the family, elliptic, semi-elliptic, and circular, with only the
admissible range of the relative flow depth changing; the circular case is the specialization
2a =2b = D with ¢ = h/D. Eq. (14) is a compact Padé surrogate for that very kernel
and was designed to respect the endpoint physics on the full range; it therefore inherits
the same cross-geometry validity.

It can be observed from Table 1 and Fig. 2, a uniform smallness and upper bound in the
semi-elliptic range. Therefore, on the semi-elliptic sub-range 0 < f=¢< 0.50, deviations
are strictly smaller than the global worst case. Concretely, Table entries give 6(0.48) =
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0.0071991% and 6(0.50) = 0.0083703%, i.e., well below 0.01% at the semi-elliptic
ceiling. Across 0 < = ¢ <0.50, all listed deviations remain under 0.009%, as it can also
be seen in Fig. 2. Finally, regarding the semi-elliptic weir, the deviations reported in Table
1 are negligible compared with typical rating-curves uncertainties.

Table 1: Deviation between Padé-Type approximation [Eq. (14)] and exact Beta-
Series [Eq. (10)]

B=h/(a) EET(;‘;‘)”’ Apprg’(‘l‘f‘(‘fz‘; YB  peyiation (%)
0 0 0 0
0.04 0.0777494 0.0777361 0.0170935
0.08 0.1088220 0.1088105 0.0105626
0.12 0.1318740 0.1318666 0.0055844
0.16 0.1506298 0.1506269 0.0018835
0.20 0.1665437 0.1665444 0.0004485
0.24 0.1803655 0.1803685 0.0016721
0.28 0.1925426 0.1925460 0.0017661
0.32 0.2033663 0.2033684 0.0010315
0.36 0.2130387 0.2130378 0.0004153
0.40 0.2217059 0.2217005 0.0024104
0.44 0.2294767 0.2294658 0.0047307
0.48 0.2364340 0.2364170 0.0071991
0.50 0.2395377 0.2395176 0.0083703
0.52 0.2426414 0.2426183 0.0095174
0.56 0.2481483 0.2481197 0.0115181
0.60 0.2529926 0.2529595 0.0130513
0.64 0.2572025 0.2571666 0.0139501
0.68 0.2607979 0.2607610 0.0141469
0.72 0.2637910 0.2637548 0.0137292
0.76 0.2661865 0.2661516 0.0130888
0.80 0.2679804 0.2679460 0.0128314
0.84 0.2691589 0.2691209 0.0141196
0.88 0.2696944 0.2696444 0.0185241
0.92 0.2695383 0.2694637 0.0276762
0.96 0.2686012 0.2684938 0.0399672
1.00 0.2666666 0.2665985 0.0255112
Max.
0.0399672%
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Figure 2: Deviation (%) between exact kernel Eq. (10) and the approximate Padé
Eq. (14), according to Table 1

SENSITIVITY ANALYSIS

Definitions

For any quantity x, the absolute sensitivity of discharge to x is expressed as follows:

_%Q

S. =
Y oox

24

S is the absolute sensitivity of discharge Q to the variable x. It tells how much Q changes

for a small absolute change in x, for instance change in Q in m3/s per mm of flow depth.
Typical examples are the following:

0
S h= —Q: Sensitivity to flow depth /4
oh

g _99 i
D= 6_D or §,;, S b= Sensitivity to geometry

0
S ¢ = 8_Q = Sensitivity to gravity
g

For operational ratings, Scd = —— = Theoretical discharge O
d

224



Exact theoretical rating law for sharp-crested elliptic, semi-elliptic, and circular weirs

The elasticity, or the relative sensitivity, or the log-slope of the rating, is defined as
follows:

E, = ==—===9 (25)

which quantifies the percent change in O caused by a percent change in x. In rating-curve
terms, Ep is the local exponent of the O—h law.

Elliptic and semi-elliptic weirs
Sensitivity to flow depth h

Eq. (3b) is the cleanest way to see the parameter dependence, because it rewrites the loss-
free rating as a product of a pure scale factor and a dimensionless kernel as follows:

0, =22\2¢ (%} Ko w(p) (26)

dimensionless Kernel
scale

Remember that f = //(2a) € [0, 1], or € [0, 0.5] for semi-elliptic weir. With the help of Eq.
(10), Eq. (26) can be rewritten in the following reduced form:

Op(h,a,b,g) = J2g (%) n? @(p) 7)

dimensionless Kernel
scale

where

@(ﬂ)zzﬁm (28)

N

where the ®(f) is the dimensionless geometry-flow depth kernel which absorbs the
constant 2Y2, and any internal normalizations. This keeps the scale bNa cleanly separated
from the shape—flow depth coupling, all in ®.

Differentiate Eq. (27) with respect to &, while noting that 0f/0h = 1/(2a), the following
can be written:

_0_ fgb LS
Sh_ah_@\/;[zhcb(ﬂhzaqb(ﬂ)} (29)

E), as defined by Eq. (29) is the logarithmic slope, or the log-slope of the rating, so any
constant prefactor, such as 4b x \/(Zg), as it can be seen in Eq. (3), cancels out. What
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matters is the 4% term and the kernel ®(f). Thus, with Eq. (29), and after differentiating
Omi(h) with respect to 4, the flow depth elasticity can be expressed as follows:

The corresponding elasticity, i.e., log-slope of the rating, is obtained by combining Eqgs.
(25) and (29). It reads as, follows:

_ongy, @ (p)

—_— 30
b ik @ (5) G0

Proceeding to the checks at the endpoints from Kernel’s physics, yields the following:

As f — 0, i.e., incipient submergence, (/) tends to a constant determined by the exact
kernel, hence  ®@'/® — 0. Thus, Eq. (30) reduces to the following:

E, =2 31
This can be written in the following symbolic form:

E, > 2 32
Fua (32)

This result indicates that, very near the crest, a 1% error in / produces ~2% error in Q.
From the geometric intuition, near the crest, the local opening width of an ellipse grows
like VA. Multiplying that by the Torricelli velocity scale «cvi and the usual depth
integration o gives O o< h%, whose log-slope is 2.

At full height # =1, according to Eq. (30), one may write what follows:

()
Eh_2+ER5-

Exact calculations show what follows: W(1) =4/15, and ¥’(1) =— 1/15. One can proceed
to a numerical check against table 1. Using the exact values in Table 1, ¥(0.96) =
0.2686012 and W(1) = 0.2666666, the backward secant slope over [0.96, 1] is a follow:
(0.2686012 — 0.2666666)/0.04 = 0.048365, which trends toward the analytic limit —1/15
~—10.0667 as f —1".

Differentiating ®(5) using Eq. (28), yields the following:

@' (5)=2n2 {T’(ﬂ)ﬂ‘l/z—iq’(ﬂ)ﬂ‘ﬂ 34

(33)

Thus, Eq. (34) leads to the following:

@'(1):2\/5[\11'(1),8‘”2—%\P(l)xr”} (35)
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Or

Thus, according to Eq. (28), the following can be written:
ooz 0 o et B2
Ji 15 15

Thus, Eq. (33) gives the final result as follows:

2 2x15
b, 25

3
h— 5x8><\/5 - Z

This result can be written in the following symbolic form:

5
4

EZ — 5/4
p—1

(36)

37

(38)

(39)

Thus, the following meanings can be deduced: (1) Near full wetting, i.e., at the top of the
range, the theoretical rating behaves locally like a power law O o« h'%; (2) A 1% change
in flow depth produces about a 1.25% change in theoretical discharge at this endpoint;
(3) The elasticity drops from 2 near the crest (very sensitive) to 1.25 at full height (less
sensitive). Thus, errors in 4 matter less as we approach full wetting than they do near

onset.

In other words, these limits succinctly capture the decreasing flow depth-sensitivity as
the opening becomes fully wetted: the rating is most sensitive to flow depths near the

crest, less so near full height.

For any f value, the corresponding exact elasticity £ can be computed using Eq. (30).
For instance, when considering f = 0.50, the following can be written. From Eq. (10),

confirmed by Table 1, one may write:
¥(0.50) =0.2395377

And, according to Eq. (28), the following is derived:
0.50 0.2395377
( ) =2x \/5 X

Jos0 Jo.s0

From Eq. (28), the following can be derived:

@ (p)= M[ T (p)- iﬂ‘”‘l’(ﬁ)}

@ (0.50) = 2x+/2 x ——=*
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On the other side, using Eq. (10), i.e., the exact series for ¥, the exact derivative at § =
0.50 is as follows, valid for elliptic and semi-elliptic weirs:

W'(0.50) = 0.155185

On the basis of the foregoing numerical results, Eq. (28a) produces the following:

. . 1 .
D (o.so):zxﬁx[o.so 1/2><O.155185—E><0.50 3/2><o.2395377}

Calculations give the following:

® (0.50)=—0.3374108

Final, using Eq. (30), the elasticity sought is obtained as follows:

—0.3374108

E, =2+0.50x%
0.9581508

That is
Eh =1.8239205 ~1.824

Equivalently, since ® o 8 2 x ¥, according to Eq. (28), the following can be written:

1 ¥'(0.50) 3 0.155185
E, =2-—+0.50x— 2 =24050x "
st 2 ¥(050) 2 0.2395377
That is
E, =18239205~1.824
£ -0.50

This coincides with the previously derived result.

Another method can be used to compute ‘P’(O.SO). This is based on the centered secant,
or the central difference slope. To approximate a derivative at a point S, a centered secant
uses two values symmetrically placed about fo:

.:‘P(ﬂ0+5)—‘1’(,80—5)

v

It’s “centered” because the two-evaluation points straddle fo. For elliptic weirs the
admissible range is 0 < < 1, s0, fo = 0.50 is an interior point. That lets us use a symmetric
pair, e.g., 0.48 and 0.52 around 0.50, which gives a more accurate (second-order) estimate
than a one-sided difference. In addition, in the calculation, one may take ¢ = 0.02 because
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Table 1 provides exact-series values at § = 0.48, 0.50, 0.52. Hence, one may write what
follows:

20=2x%0.02=0.04
which is also simply the spacing between the two following symmetric points:
0.52-0.48 =0.04
Thus, the following can be written:
¥(0.50+0.02)— ¥ (0.50—0.02)
2x0.02

¥ (0.50) =

That is
¥(0.52)—w(0.48)
0.04

Table 1 provides the exact following values: ¥(0.52) = 0.2426414, and ¥(0.48) =
0.2364340. Thus, one may derive the following final result:

' 0.2426414 —0.2364340
¥ (0.50) = =0.155185

0.04

w'(0.50) =

Accordingly, this reproduces the previous result.

The previous final result £, ~ 1.824 means that 1% relative error in 4 produces ~ 1.824%
relative error in the discharge Q. It is worth noting that Ej is the local “power-law
exponent” of the stage—discharge curve. At f = &= 0.50, the value E;~ 1.824 means that

a relative error in flow depth is magnified by a factor of =1.824 in the discharge. Thus,
the following can be written:

A9 z1.824A7h

For example, a 0.5% relative error in flow depth % yields =~ 0.91% discharge relative error.

This mid-depth sensitivity sits below the near-crest limit, where E; —2, as indicated in
Eq. (32), for elliptic/semi-elliptic weirs, and above the upper-range values as the opening
approaches full height, as indicated in Eq. (39). Physically, the square-root kernel flattens
with depth, so the O—h curve becomes progressively less steep, and £, decreases from its
onset value toward its upper-range limit.

The computed Ej; < 2 reflects a negative kernel slope at § = 0.50, i.e., ®'(0.50) < 0:
incremental increases in flow depth add proportionally less new effective width than at
small flow depths, so Q grows a bit more slowly than 4.
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Users can use Ej as the magnification factor to size gauge precision and to propagate
reading errors. If a project tolerates the following:

591,

around £ = 0.5, then the allowable flow depth relative error is as follows:

|An| . 100x0.01
h 1.824
From a robustness point view, multiplicative factors like a discharge coefficient C; do not

affect £y, as they cancel in dInQ; the value 1.824 therefore characterizes the intrinsic shape
of the theoretical rating at mid-depth.

=0.54824561~ 0.55%

From reproducibility point view, because the kernel is evaluated in closed form, or with
a uniformly tight Padé surrogate, the numerical value is stable and repeatable to the
reported precision.

Sensitivity to geometry b (horizontal semi-axis)

By construction, ® depends solely on f, and hence on % and a, not on b. So, b appears
only in the linear prefactor b/\a, according to Eq. (26).

Holding #, a, g, fixed, one may write the following:

aQTh =/2g —th (40)

On the other hand, by definition as expressed by Eq. (25), the following can be written:

_Olngy, b 00y
b~ omb @, ob

Substituting Eq. (27) and the derivative expressed by Eq. (40), Eq. (41) yields the
following:

B b
b o (b1 ()

Thus

(41)

Vg (1/4a) o (p) | =1 “2)

E, =1 43)
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Therefore a 1% change in b produces a 1% change in Q. For operational discharge O =
Cq * Qm : if Cy 1s independent of b, then £, remains 1. If Cy depends on b in a particular
installation, add dInCy / Olnb to get the total operational elasticity.

Sensitivity to geometry a (vertical semi-axis)

Since B = h/(2a), thus &f/6a = — fla, and there is also a ~ "% in the discharge law expressed
by Eq. (27). Therefore, from Eq. (24), the following can be written:

9O,

S =
a oa

(24a)

Takin into account Eq. (27), Eq. (24a) leads to the following:
ng—hz[ d)(ﬂ)—gd) (ﬁ)} (44)

Therefore, one may derive the following:

_ oy, :_l_ﬂcp'(/;)
olna 2 T ®(p)

(45)

Proceeding to the checks at the endpoints from Kernel’s physics, yields the following:

Previously, we have stated that as f — 0, i.e., incipient submergence, ®(f) tends to a
constant determined by the exact kernel, hence f ®'/® — 0. Thus, Eq. (45) reduced to the
following:

1
E, =— 5 (46)
This result can be written symbolically as follows
E, =- l (46a)
£—0 2
At full height § = 1, according to Egs. (36) and (37), Eq. (45) can be written as follow:
gL 225 13 1 .
5x8x \/5 2 4 4
Thus
E, = l (48)
4
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which can be written in the following symbolic form:

1
,BE _a>1 1 (48a)
The sign flip reflects the competing effects of a. As a increases (with £ fixed), two things
happen. First, the scale factor b/Na decreases, which pushes Qi down. Second, 8= h/(24)
becomes smaller, so a larger portion of the ellipse is effectively open and the kernel ®(5)
increases, which pushes Q7 up. Near full wetting, this second effect is stronger, so the
net influence of a is slightly positive.

At f —1, It is worth noting the following:
E, +E,6 = > 49
htra=s (49)
This “sum rule” is an excellent sanity check for the user.

As a practical read-out, one may write the following: (1) Uncertainty in » maps 1:1 into
Orn (Ep = 1); (2) Uncertainty in a has flow depth-dependent influence: it reduces Q7n
near onset (elasticity —0.5) but slightly increases it near full height (elasticity +0.25).

Sensitivity to gravity

According to the discharge law expressed by Eq. (27), gravity appears only as V(2g).
Thus, the following can be written:

_ 90 _ 1

b .5
S =—— KD (p) (50)
£ oz Joga
Therefore, according to Eq. (25), on may deduce the following:
1 b
E,=f 5, =8 —ho(p) (51)

£ 0p ¢ 0y Jaga

Replacing Q7r, by the discharge law expressed by Eq. (27), Eq. (51) reduces to the
following:

E,=£ 5, = £ 1 ihchD(,B) (52)

Dot e e Ve
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After easy simplification, Eq. (52) gives the following:

Eg = > (53)
This result means that discharge scales with the square root of gravity. Thus, a 1% change

in g produces a 0.5% change in the theoretical discharge O, provided all else fixed. A
0.5% change in g causes 0.25% change in the theoretical discharge.

Gravity varies only slightly with latitude and elevation, thus, its effect on Oz is small.
For operational discharge Q = Cy % Om, Eg stays 1/2 provided C; does not depend on g.
If it did, add 6InCy / Olng.

In field metering at the Earth’s surface, g is effectively constant; this term matters mainly
in laboratory calibration or metrology traceability discussions; high-accuracy calibration
work where every quantity is tied back to SI units through an unbroken chain of standards
(what labs call traceability). In those contexts, people explicitly account for local g
because it appears in the physics, e.g., Vg in the theoretical law, such as p = pgh for
pressure sensors, or gravimetric weigh tanks where weight depends on g. Even though
variation in g is tiny on Earth, traceable calibrations and inter-laboratory comparisons
sometimes include it in the uncertainty analysis.

Circular weirs

Consider the theoretical discharge law, for circular weirs, expressed by Eq. (18) which
we recall as follows:

05 =2\[2g D2 I°P(¢) a8)

The circular Kernel P(¢) exact formulation is given by Eq. (20), with & = A/D. As in the
elliptic case, the circular kernel enforces the endpoint physics, as it was indicated in one
of the previous sections. Herein the Torricelli scaling sits in \/(2g), the geometry scale is
\D, and all coupling with flow depth appears through the dimensionless kernel P(¢).

Sensitivity to flow depth h

According to the definition of Sy, the following can be written:

s, =222 3¢ 2hp(§)+ﬁp'(§) (54)
h on D

According to the definition expressed by Eqgs. (25) and with the help of Eq. (18), one may
write the following:
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h h n o
E, =—8, = 22g | 2hP(&)+—P (5)} (55)
h QTh h 2 lngl/ZhZP(é:) |: D
After easy simplification, Eq. (55) reduces to the following:
P (<)
E, =2+&——— (56)
" P(S)

Near the crest, i.e., —0, Eq. (20) gives the following:

P(&)~ %JE Land P' (&) ~ %g

Therefore, the following can be written:

P
611310 szP(zj) 2 (62

Thus, inserting Eq. (56a) into Eq. (56) yields the following:

Eh(0+):2+%:§
That is
E, (0%) =§ (56b)

Near the crest, i.e., ¢ = /D —0, the rating behaves locally like a power law Q « 423, So,
En, the log-slope or “percent-to-percent” sensitivity, says a 1% change in flow depth
produces about a 2.5% change in discharge. Physically, that 2.5 comes from three factors
multiplying at tiny heads: (1) the Torricelli velocity scale grows like VA, (2) the available
width of a circular opening grows like VA right above the crest, and (3) integrating over
depth contributes another factor /; together Vi x N x h = k2., that’s what the discharge
Eq. (18) shows. Thus, the rating is most sensitive to flow depth very near onset.

At full height, corresponding to — 1, one may write what follows. From the exact kernel
values: P(1) = 4/15 (circular), and, by the elliptic kernel’s exact derivative at full height,
which carries over under f = £, one may derive ¥'(1) = —1/15, hence P'(1) = —1/15,
according to Eq. (3d). Therefore, Eq. (56) gives what follows:

P (1 _
E,(1)=2+1x ():2+ VS,

P(1) 4/15 (00

FNIEN

1
4
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That is
E, (1) =— (56d)

It can be observed that, for the circular weir, £; monotonically relaxes from 2.5 near onset
to 1.75 at full height. In addition, one may deduce from Eq. (56d), that at full height, £—1,
the rating’s local behavior is Q o 417, Interpretationally, a 1% change in flow depth now
yields only about a 1.75% change in discharge. The geometry explains the drop from 2.5
to 1.75: as the water level approaches the top of the circular opening, the added wetted
area per unit flow depth becomes a thin lens with rapidly diminishing width; the kernel’s
slope is negative there, i.e., P'(1) =—1/15, so the geometric “gain” weakens and the flow
depth-elasticity relaxes. In short, once the opening is nearly fully wetted, extra flow depth
adds relatively little effective area, so O becomes less sensitive to h.

Two quick corollaries that help readers: (1) Ep is the local exponent of the O—4 law, so it
directly tells the error magnification: AQ/Q =~ En x Ah/h; (2) the endpoint values of the

flow depth-elasticity E; come from the loss-free kernel; multiplying by a discharge
coefficient Cy doesn’t change E) because elasticities ignore constant factors.

For the circular weir, the elasticity Ex at &= 0.50 is identical to the value obtained at =
0.50 for elliptic and semi-elliptic weirs; more generally, the computation for any ¢
proceeds in exactly the same way. Accordingly, the procedure outlined in the section on
Ep sensitivity for elliptic/semi-elliptic weirs applies to circular weirs without
modification. The rationale is straightforward: all three geometries share the same
geometry—flow depth kernel ¥ under the mapping B¢ = A/D. The only difference is a
geometric prefactor, which cancels in the logarithmic definition of elasticity, so Ep
depends solely on the common kernel evaluated at the same nondimensional depth.

Sensitivity to geometry D

By definition, the following can be written:

00,
== 57
D~ ap D
Let Eq. (18) be written in the following reduce form:
0y, =C(D"*1*)P (&) (58)

with

Cc=2\2¢g (59)
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Let consider the following quantities:

o(ND 0
so-p-or| AT 0

The following elementary derivatives can be written as follows:

o(vp) 1

-1/2

oD 2
P(&) &
oD _P(é)aD

The chain rule for &= h/D, at h fixed is as follows:

95 __h __<
oD D* D
Thus, Eq. (60) becomes as follows:

Sp=22g i’ BD_“ P(§)+\/BP'(§)(—%H

After rearrangement, Eq. (64) reduces to the following final form:

Sp=2428= [ )-¢P (f)}

The two-term bracket can be interpreted as follows:

1
() +EP (f) comes from the explicit VD;

(60)

(61)

(62)

(63)

(64)

(65)

2)-< P (5) comes from the implicit dependence P(&) has on D through &= /D, hence

the minus sign.

On other hand, Eq. (18) allows writing the following:

InQ :Constant+llnD+21nh+lnP(§)
2

(66)

Differentiating with respect to InD, while holding / fixed, and considering Eq. (25), yields

the following:
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== 126

s _Dfog Lfap(g) 1+alnp(§)aln§_1
b 2 oD 2 dm¢é dlnD 2 " P(¢)

That is
_Dfog| 1 3 P'(f)
Ep= _Q [_6 ] =—=—5—== (67a)

That is

1 P(9)
KPR

Considering both Eqs. (56) and (67b), yields the following:

E,+Ep= 2+,§m + l—gm =é (68)

P(¢) 2 "P(&)) 2
Thus, we obtain the elasticity sum rule for the circular weir, as follows:

5
E, +E =3 (68a)

(67b)

Hence the “sensitivity budget” is fixed: whenever geometry makes the rating more (less)
sensitive to flow depth, it makes it equally less (more) sensitive to diameter, and the total
stays at 2.5 for every . From a physical interpretation point view, the following can be
state: (1) The constant 2.5 decomposes as 2, from the 4? in the discharge law, + 0.5 from
the explicit \D; the remaining shape—flow depth coupling = £XP'/P merely redistributes
sensitivity between /2 and D without changing their sum.

This identity is kernel-agnostic: it holds for the exact P(¢) and for any surrogate that
preserves the same normalization, because it is an algebraic consequence of Egs. (56) and
(67Db).

In short, Eq. (68a) is a conservation law for sensitivities in the circular normalization: the
geometry can only trade sensitivity between 4 and D; it cannot change their total, which
is fixed at 5/2 by the structure of the rating law.

Regarding the endpoints check from the Kernel physics, one may derive the following:

For £&—0:

P(£)~ZVE (69)
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P(1)=— (70)
Thus, near onset, the following can be written:
! T o-1/2
P(§)- ¢ (71

According to Eq. (65), the following can be derived:

[113((:)—:13'(6)}%[@ £ ]=0 @

2

This the leading order; i.e.; the dominant term in the asymptotic expansion as {—0.
Because the Vé-terms cancel, the first member of Eq. (72) is smaller than any constant
multiple of \/E; it is of higher order than \/é‘; its next non-zero term in higher order in &,
hence, Sp expressed by Eq. (65), satisfies Sp = o(Vé) as ¢—0, i.e.:

hm (73)

§—>0\/_

Below is a tight parenthetical we drop in right after the near-crest cancellation sentence,
plus one clarifying sentence about the little-o claim. In particular, because the exact
kernel, expressed by Eq. (20), admits a half-integer small-¢ expansion as follows:

P(f):%\/g+c3/2§3/2+cs/2§5/2+.... (74)

302,
¢

thus, the first non-vanishing term in the first member in Eq. (72) scales like ; if one

uses a smooth surrogate, i.e.:

P(§)=%\E+Cl§+%/2§m+---- (75)

then the remainder scales like &. In both cases the first member in Eq. (72) is o(¢).

It is worth noting to recall that 3, ¢sp, ...in Eq. (74) are the constant coefficients of the
higher-order terms in the small-flow depth, i.e., £—0, asymptotic expansion of the
circular kernel P(¢) beyond the leading (n/8) x \¢& term. For the exact circular kernel
expressed by Eq. (74), the constant coefficients are geometry-dependent.
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Herein, geometry-dependent refers to dependence on dimensionless shape parameters,
e.g., an ellipse’s aspect ratio, not on absolute size. Because the circular kernel P(¢) is
defined on the scaled variable & = A/D, its small-¢ coefficients c3p, ¢sp, ...are pure
numbers for the circular shape, and thus independent of g, D, and /. The size D enters
only via the prefactor 2 x \(2g) x VD and the argument ¢ = A/D, not through these
coefficients.

SEMI-EMPIRICAL Cp-MODELS

The present section of the study develops a practical, physics-respecting framework for
predicting the discharge coefficient, Cy, in sharp-crested meters with elliptic, semi-
elliptic, and circular openings.

The authors underscore that the proposed discharge-coefficient C- models are not ad-hoc
curve fits but principled translations of canonical mathematical kernels, most notably
Hill/Michaelis—Menten saturations and stretched-exponential (Weibull) forms, into the
hydraulics of elliptic, semi-elliptic, and circular weirs. Cast in nondimensional variables
X = h/b and the compound contraction index I', these families are complemented by
compact rational-polynomial representations for the contraction-limited ceiling Coo(I")
and are calibrated to enforce the key physical requirements: boundedness (0 < Cy < Coo <
1), strict monotonicity with respect to X, and the correct shallow- and deep-flow
asymptotes. The resulting parameterization, typically (Ceo, 6, m) for the saturation
families, retains clear physical meaning (ceiling, half-saturation “knee,” and steepness)
while remaining sufficiently simple for robust estimation and cross-geometry
comparison.

Starting from a clean dimensional analysis, the text isolates two similarity controls that
matter most in the field: a relative flow-depth variable that captures how “thick” the
driving flow depth is compared to the opening’s span, and a compound contraction index
that merges lateral and vertical contractions into one interpretable knob. These choices
strip away secondary effects (viscosity and capillarity under appropriate operating ranges)
and focus the modelling on what actually drives meter behaviour across regimes.

On top of this foundation, it is introduced herein eight complementary, semi-empirical
families, Asymptotic One-Minus (AOM), Reciprocal-Power Saturation (RPS), Bounded
Padé Saturation (BPS), Half-Saturation Exponential (HSE), Arctan Saturation (ATS),
Residual-Difference Pyramid (RDP), Hill Saturation (HIS) model, and Exponential
Saturation (SES) model that are expressly designed to be (1) bounded below unity, (2)
monotone with increasing relative flow depth, and (3) asymptotically correct, plateauing
at a contraction-limited ceiling at large flow depth while avoiding unphysical collapse at
very low depth. Each model keeps parameters few, interpretable, and tied directly to
geometry and operating regime, making them robust to fit by constrained least squares
and easy to carry into design charts and calibration workflows.
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Beyond point prediction, the presents section derives a closed-form elasticity of C; with
respect to upstream flow depth. This turns the models into tools for uncertainty
propagation and sensitivity analysis, clarifying when flow depth effects dominate and
when contraction effects matter more, precisely the information needed for defensible
metering and decision-making in the field. Because geometry is factored into a
dimensionless kernel and C; represents real-flow effects multiplicatively, the same
methodology transfers cleanly across opening shapes with only a change of similarity
variables and a refit of coefficients.

In short, the present section of the study provides a disciplined path from first principles
to fit-ready models, giving practitioners a compact set of curves that rise fast when
shallow, flatten when deep, never exceed physical limits, and come with the diagnostics
needed to quantify confidence.

Influencing parameters and Cs-dependency

The authors successfully conduct a systematic investigation, such as a dimensional
analysis, to rigorously identify all parameters governing the discharge coefficient C,. The
authors state that the discharge coefficient C; may be governed by the following
functional relationship, excluding the approach-flow Froude number Fa, i.c., assuming a
negligible approach-velocity head, and the crest-thickness ratio #/4, i.e., a thin, sharp crest:

Cd:f(h/a,a/b,2b/B,P/h,«/ghh/v,pghz/a) (76)

The two last terms can be identified as the Reynolds number based on / (Re) and the
Bond number (Bo), or, equivalently for capillarity, the Weber number based on /# (We),
respectively. In a well-designed installation producing appropriate discharge and
upstream flow depths, one may write that Re > 1 and We > 1, i.e., inertial forces
dominate viscous and surface-tension effects; the previous C; governing relationship can
be simplified accordingly by neglecting viscosity and capillarity.

Moreover, one can compress the [1-set derived earlier by grouping the lateral and vertical
contraction ratios into a single compound contraction index, while keeping only the
minimum additional groups needed to capture shape and operating regime. Here’s a clean
reduction, while neglecting the viscosity and surface tension effects.

Let the following:

Semi-height penetration index: 2f = h/a, 0 < f < 1, for the full elliptic weir. The ratio
h/(2a) is the “penetration-flow depth index”; this ratio tells us how deeply the available
flow depth “penetrates” the vertical extent of the aperture. Thus, this ‘penetration’
concept concerns the flow depth-to-aperture-height ratio /4/(2a), even if the gauge is
located far upstream.

Aspect ratio, or the ellipse shape: L=a /b

Compound Contraction Index (lateral + vertical), introduced recently in the literature
related to flow measurement:
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2b/B
=—— (77)
1+P/h

with I € ]0, 1[, and B the rectangular approach channel width.

It is therefore highly probable that the discharge coefficient C; exhibits a strong
dependence on the upstream flow depth 4, either directly or through associated
dimensionless parameters.

Thus, the functional relationship f, previously defined by Eq. (76), reduces to the
following:

C,=0(B,AT) (78)

Moreover, the functional form Q can definitely be rewritten by compressing the two
variables f and 4 into a single dimensionless parameter, since S x 1 = X/2 = h/(2b), which
allows defining the following ratio:

h
b )

X = h/b. Hence, the functional relationship Q reduces to the following final form:
C,=Y(x,I) (80)

It must be emphasis that the ratio X = A/b is a flow depth-based similarity variable, the
upstream flow depth / normalized by the lateral half-width, the semi-horizontal axis, of
the semi-elliptical opening. It measures how “thick” the driving flow depth is relative to
the span of the opening. In other words, it compares the flow’s gravitational driving scale
to the aperture’s lateral size. As X = h/b increases, the low-flow depth (thin-nappe) losses
become relatively less important and the discharge coefficient C; moves toward its
contraction-controlled ceiling, whereas small X = 4/b indicates a thin nappe over a wide
opening, where entrance, curvature, and boundary-layer effects are proportionally
stronger and Cy is lower. In other words, X = A/b is the “relative flow depth” with respect
to the opening’s width, and it controls the transition from loss-dominated, i.e., small 4/b,
to asymptotically efficient, i.e., large //b, discharge behavior.

Asymptotic One-Minus (AOM) model

Accordingly, if an analytical derivation of the governing law for the discharge coefficient
is not available, which would clearly constitute the ideal solution, the users should supply
a physics-consistent, empirically calibrated alternative against experimental data. This is
the alternative One-Minus (AOM) model that stands out as a robust semi-empirical
approach that balances physical plausibility with data-driven adaptability, making it
particularly well-suited for hydraulic applications where a purely analytical derivation is
not available. Using the measured variables 4, b, B, P, and Q, the user must estimate the
parameters of a robust saturating form that respects the physical bounds of Cy, and the
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monotonic approach to a contraction-controlled limit. Moreover, this model preserves the
correct limits (monotone in 4/b), contraction captured by I', and C; — Coo(I') < 1 as h/b
— oo as indicated in the Eq. (81) below, and is fit-ready on the dataset. The AOM model
provides a minimal, interpretable flow depth—contraction rating surface Cq(h/b, I), i.e., a
family of rating curves C,;(h/b) parameterized by the compound contraction index I, that
honours the physics and calibrates cleanly against experimental data, making it a strong
alternative when a closed-form analytical law for Cy is unavailable, as overmentioned.

According to the authors’ calculation, the discharge coefficient C; is given by the
following Asymptotic “One-Minus” (AOM) model:

A()
C,(h/b;T)=C, ([-——21_ 81
a( ) () e b)" (81)
where
Co(T)=co+c,T+c,I? (82)
A(T)=d,+d,(1-T) (83)

The derivation of the previous Cz-formulation follows the asymptotic ‘One-Minus’
principle: the discharge coefficient Cy is expressed as an upper bound, Coo(I'), minus a
diminishing flow depth-deficit term, A(T')/(1+X™). This guarantees both the correct
asymptotic ceiling and the physically consistent decay of losses with increasing flow
depth. Herein, “ceiling” means the upper bound or maximum limit that the discharge
coefficient Cy can approach, but never exceed. In the AOM model, that ceiling is written
as Coo(T"). Physically, it represents the value of Cy at very large relative flow depths, i.e.,
h/b — o, as it can be seen in the previous Cg-relationship, when viscous and scale effects
vanish and the discharge coefficient is controlled only by contraction geometry.

Herein, according to Eq. (83), do is the baseline deficit at weak contraction, i.e., I — 1;
d1 measures the extra deficit as contraction strengthens, i.e., smaller I". The function A(T')
is the flow depth-deficit amplitude: at very small relative flow depth //b, i.e., a thin nappe,
the discharge coefficient drops below its contraction-controlled ceiling Coo(I") by an
amount A(T).

Weak contraction means I'—1: the opening nearly spans the channel (2b/B—1) and/or
the sill is low relative to the flow depth, i.e., P/h —0. In that case, A(I' — 1) =do. Stronger
contraction means I" gets smaller, i.e., narrower opening 2b/B| and/or larger P/ht. Also,
Co is the asymptotic Cy at strongest contraction, meaning: Coo (I'— 0) = ¢y is the large-flow
depth (viscous losses negligible) discharge coefficient when contraction is most severe,
i.e.,, small I'. The interpretation is that baseline ceiling set by geometry in the worst
contraction case. The coefficient ¢; is the initial slope of the contraction asymptote,
meaning: the derivative Coo'(I") | I — 0 = c1. [t measures how quickly the large-flow depth
ceiling improves as contraction relaxes from its strongest state. The interpretation is that
higher ¢ implies Coo rises more rapidly with I near I' = 0. The coefficient ¢, is the
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curvature of the contraction asymptote, meaning: controls whether Coo(T") is slightly
concave (c2 < 0) or convex (c2 > 0) over I' € ]0, 1[. The derivative is Coo'(I') = ¢; + 2cal.
The interpretation is that it lets the fit capture mild nonlinearity in how contraction affects
the asymptotic coefficient. The practical constraint lies in the fact that it keeps Coo,
requiting ¢1 > 0 and ¢; + 2¢2 > 0; also enforces the following inequalities:

O<cy<cy+c, +c, <1 (84)

Finally, the exponent m in Eq. (81) is the flow depth-approach rate to the asymptote,
meaning: it governs how fast C; approaches Coo(I') as X = /b increases in Cy = Coo(T") —
A(T) /(1 +X™). The interpretation is that larger m implies that the low-flow depth deficit
collapses faster with increasing flow depth; smaller m implies a more gradual approach.
It also sets the flow depth-elasticity of Cy. Furthermore, the exponent m is positive, i.c.,
m >0, and, practically, it takes values between 0.6 and 2. For this study, no specific value
of m is available; therefore, it should be estimated in accordance with the below procedure
based on experimental measurements of the governing parameters.

Using Eq. (81) overmentioned, the six involved coefficients, i.e., co, c1, c2, do, d1, m)
should be calibrated by constrained nonlinear least squares using the experimental dataset
h, b, B, P, and Q, with the predictors X = i/b and I" = (2b/B) / (1+P/h), and the response
Ca = Q/QOrtn, where Q7 has already been defined as the theoretical discharge from the
governing weir equation.

It is worth noting that since the paper’s theory isolates geometry in a dimensionless kernel
and appends C; multiplicatively for real-flow effects, thus the same kernel governs
elliptic, semi-elliptic, and circular openings; so, the Cy layer is portable across shapes.
Consequently, the C4.—AOM based model is valid for circular sharp-crested weirs as well,
provided using the circular specialization of the similarity variables and refit the
coefficients on circular data.

Reciprocal-Power Saturation (RPS) model

The RPS model is introduced as a compact, physics-guided parameterization of the
discharge coefficient that operates on the two key similarity controls established earlier,
relative flow depth X, i.e., the upstream depth normalized by the weir’s half-width, and a
compound contraction index I' that aggregates lateral and vertical contractions. It encodes
two essentials of meter physics: (1) strict boundedness and monotonic approach to a
contraction-limited ceiling at large relative depth, and (2) a progressive collapse of low-
flow depth losses as flow depth increases. With a small set of interpretable parameters
tied directly to contraction and depth effects, RPS-based C; model, or simply C4-RPS, is
easy to calibrate by constrained least squares, numerically stable, and remains strictly
below unity under all admissible conditions. It also connects naturally to the previously
proposed “one-minus” family, recovering similar behavior for small deficits, while
providing superior control of the very-low-depth regime through its reciprocal-power
saturation. As such, RPS delivers a transparent, fit-ready surface C; (relative flow
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depth, contraction) that honors the asymptotic structure of the problem, supports clear
uncertainty propagation, and slots cleanly into design and field calibration workflows.

As it has been demonstrated in the previous section, the dimensional analysis show that
the discharge coefficient C; for the elliptic weir solely depends on the compound
contraction index I" defined by Eq. (77), and the dimensionless ratio X, defined by Eq.
(79).

The new semi-empirical Cz-model, introduced herein, is defined as follows:
Co (D)

1+A4(T)Xx ™" ®)

C,(x;I)=

with m >0

Coo(T'), and A(T") are defined by Egs. (82) and (83), respectively. In addition, the
inequalities defined by Eq. (84) is still valid herein.

The model is strong due to the following physics-consistent bounds:
0<C,<C (IN<1 (86)
and

C J T with X, C 7 T with weaker contraction, i.e., larger I".

The model presents a clean asymptote, i.e.:
X >0 =C,—>C, () (87)

In addition, the model is numerically stable and parsimonious since it presents the
following three interpretable building blocks, with light constraints, meaning that no risk
of C4> 1 occurs:

{Co(T), A(T), m}

It connects to AOM since for small deficits, i.e., z = A(T)*X ™ « 1, the following can be
written:

1
1+z

~l-z (88)

Thus, RPS reduces to what follows:
C,(X:D) =, (T)[1+4(0) X " |=C, (D) +C, (T)A(D) X " (850)

scaledtieﬁcit
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which is the same “one-minus” structure used in AOM at large X (with the deficit
amplitude scaled by Co). This small-deficit step is precisely what’s captured in Eq. (88),
derived from Eq. (85).

C4-RPS behaves like a subtractive one-minus law but remains strictly bounded and often
fits better at very low flow depths.

(1) Build predictors from your measurements 4, b, B, P, Q: X = h/b, I' = (2b/B)/(1+P/h);
response Cy = Q/Q7n; (2) Parameterize Coo(I") and A(T") as previously indicated; impose
simple box constraints, e.g. 0 <co<co+ci +c2<1;do >0, d >0; m>0; (3) Validate
with k-fold or leave-one-geometry-out; report max/mean relative errors, not just R2.

Ca-Elasticity (for error propagation)

Let’s define following:

X = 4 (79)
b
as the relative flow depth, related to the half horizontal axis of the elliptic weir.
2b
k=— (89)
B

As the lateral contraction of the elliptic weir, applicable also to semi-elliptic and circular
weirs, recalling that B is the rectangular approach channel width.

k i h

= = (77a)
1+P/h h+P
As the dimensionless compound contraction index.
(1) Derivative of I' with respect to Ina
A convenient closed form is the following:
or dr r
=h—=T|1-— (90)
Olnh dh k

As h — o, I'—k according to Eq. (77), and the above term expressed by Eq. (90) fades
to 0.

(2) Flow depth-elasticity of Cy
Define the following:

a(X,T)=A4(T)x " ©1)
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Then, the exact logarithmic sensitivity, i.e., elasticity Ep, of Cy to 4 is the following:

onC
E}‘lcd)z o hd =E+MxN (92)
n
where

explicitin # via X=h/b

_CG(r) __Amx"

= — 94
C,(T) 1+ A(T)x " o9
effect of I
r
N= I(}—%J 95)
S
chainruled I'/dInh

This splits cleanly into the following:

- a direct flow depth /4 term (E), dominated by m when X is small; and
- a contraction term (N), driven by how Coo and 4 vary with I', modulated by I'(1-T/k).

From this, the ordinary derivative follows immediately as:
dc, C,
—L=—1E, 96)
dh h

(3) Plug-in for the suggested parameterizations

If using the simple forms previously suggested, namely Eqs. (82) and (83), the following
can be written:

Co(T)=c,+2¢,T 97)

A (T)=-d, (98)
and the elasticity, expressed by Eq. (92), becomes as follows:

E, =E+[I+Z]N (99)
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where
+2c,T
(o 179 i (100)
cO+c1F+c2F
dx"
Z= (101)
1+{dy+d,(1I-T)} X"
a(X,F):[dO +d1(1—F)]X"” (102)

(4) Physical interpretation

- For large flow depth, X — o according to Eq. (79); & — 0 according to Eq. (102), and
I' — faccording to Eq. (77). Hence E, — 0 according to Eq. (99) because E =0 (a — 0)
and N = 0 (I'—k): According to Eq. (81), the discharge coefficient C; approaches its
contraction-limited ceiling Cy = Coo(k) and stops changing with 4.

- For small flow depth, according to Eq. (102) a > 1; thus, according to Eq. (93) one may
write ma/(1+a) = m, while I is still well below £, according to Eq. (77), so the contraction
term N, expressed by Eq. (95), contributes modestly. Thus, as a net effect, C; rises rapidly
with A, but remains bounded.

- Monotonicity and bounds: With m > 0, A(I') > 0, and 0 < Coo(T") < 1, the model keeps 0
< Cq<Coo(I') <1 and Ep > 0 under ordinary conditions, matching meter physics.

(5) How to use this in practice

(5.1) Compute:
X h Eq.(79),and I' =k h Eq. (77a)
=— Eq. ,an =k ——, Eq. (77a).
b WP

(5.2) Evaluate Coo(I') from Eq. (82), and a from Eq. (102).
(5.3) Plug into En, Eq. (99), to get the flow depth-elasticity contributed by Ca.

(5.4) For total discharge elasticity, add this to the theoretical (loss-free) elasticity of O
— h. That is meaning the following:

E, = E\™ 1 g\ (103)

where

E;Th) is from the loss-free evaluator Q75—h, and
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C
E]g a) is from the discharge coefficient Cy., as it is expressed by Eq. (92).

It is emphasis to note that the theoretical framework factors geometry into a dimensionless
kernel and represents real-flow effects through a multiplicative Cy; because the same
kernel governs elliptic, semi-elliptic, and circular apertures, the C; parameterization
transfers across shapes. Accordingly, the C4~RPS model is fully applicable to circular
sharp-crested weirs, provided that the circular specialization of the similarity variables is
adopted and the coefficients are refitted on circular datasets.

Bounded Padé Saturation (BPS) model

In the present section, the authors we introduce the Bounded Padé Saturation (BPS) model
as a compact, physics-respecting parameterization of the discharge coefficient Cy that
combines strict bounds with flexible curvature. Built on the same similarity controls used
throughout, relative flow depth and a compound contraction index, BPS employs a
bounded rational (Padé-type) form that (1) is provably monotone in flow depth, (2)
remains strictly below a contraction-limited ceiling for all admissible conditions, and (3)
offers a tunable mid-range shape via two independent “deficit” knobs. This gives the
model enough agility to fit datasets that bend slightly before plateau, without sacrificing
asymptotic correctness: at large flow depth, it approaches the ceiling smoothly; at very
low flow depth it avoids non-physical collapse. Locally (small deficits), BPS reduces to
the familiar “one-minus” behaviour used in AOM, while globally it inherits the robustness
of saturation models like RPS, delivering a best-of-both blend that is easy to calibrate
under simple box constraints, numerically stable, and directly interpretable for design,
calibration, and error-propagation analyses via Ej. The Padé saturation model is not only
valid for elliptic and semi-elliptic weirs, but it can be also extended to circular weirs.

This model uses the same dimensionless parameters than those used in C4-AOM and Cy-
RPS based models, namely X, k, and T, expressed by Eqgs. (79), (89), and (77),
respectively.

The Cs-Bounded Padé Saturation (BPS) model is expressed in the following form:

C,(X;T) =Cw(r)% (104)
with

m >0 (105)

0<y(T)<e(T) (106)

0<C,(IN)<1 (107)
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4 (F) and @ (F) will be well-defined in the next section, especially:

7(T)<e(T) (108)
Why BPS is strong
(1) It presents strict bounds, everywhere, such as:

0<C,<C,(I) (109)
(2) According to Eq. (104), the following can be deduced:

Jim C, =Cy () (110)

At very low flow depth, i.e, X — 0 according to Eq. (79), and considering Eq. (104), one
may write the following:

¢, (X;F)=Coo(r)@ (111)

X0 4 (F)
Thus, there is no unphysical collapse.

(3) Monotone in flow depth

For m > 0 [Eq. (105)], and y < ¢ [Eq. (108)], C, increases with X, decreases with X ",
matching meter physics.

(4) Curvature control

The two “deficit” knobs y, and ¢, independently tune mid-range curvature without
breaking the bounds; this often fits better than single-knob models when data bend
slightly before plateau.

(5) Connects to AOM / RPS
For small deficits ¢, such as the following:
=X "<<l1 (112)
the following can be written:
l+yt
1+t -

1-(p—y)t (113)

Thus, BPS reduces to a classic “one-minus” law with deficit amplitude (¢ — v), i.e., it
locally recovers AOM-like behaviour while remaining strictly bounded like RPS.
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A simple, interpretable parameterization

Co(T)=co+c,T+c,I? (82)

7(T)=a,+a,(1-T) (114)

o(T)=y(T)+6,+6,(1-T) (115)
with the following box constraints:

O<cy<cy+c +c, <1 (84)

ay,a,,04,0,=0 (116)

0,+0,>0 (117)

me(0.6, 2.5) (118)
These ensure, for admissible I', the following:

0<C,<Cy(T)<1 (86)
and

7(T)<e(T) (108)

Ca-Elasticity (for error propagation)

Let denote partial derivatives with respect to I" by subscripts, such as the following:

dC,,
=% 119
Then, the following can be written:
dInC
h dinp 12 (120
where
o, mt[LLJ 1)
l+pt 1+t
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C
wzzr(l—zj ol | e Or (122)
k)|l C, l+yt 1+t

- For large flow depths, i.e., A — oo, on may write t — 0, or X — oo, since ¢ is defined by
t =X "= (h/b)~"™. Thus, w; in Eq. (121) is equal to zero. Eq. (122) reduces to the
following:

C
o, =1"(1—£]Lr (122a)

According to Eq. (77a), for & — oo, it can be written that [— £, meaning that w, = 0,
according to Eq. (122a). Thus, since @ =0, and w, = 0, then Cy-elasticity = 0, according
to Eq. (120), meaning the following:

E =0 (120a)

Cq plateaus at Coo(I).

It is emphasis that for large but finite flow depth, we keep the first non-zero terms to

quantify how fast Cg-elasticity Eh(Cd)

following can be written:

¢, r
E;lc")z m(p—y)t - F(I_EJT.’OF +F(1_Ej(%_¢r)t

[ S ———
contraction effect ~A  mixed term ~4 1=

approaches 0. From the BPS expansion, the

R ——
explicit flow depth effect ~h ™"
This is Eq. (120b).
What dominates?
t=(h/b)~" shrinks like h ™"

If:
(1) If m > 1, the following term typically dominates at high flow depth:

=

(2) If m < 1, the following explicit term dominates:
m(p—y)t

(3) If m = 1, both decay at the same rate; the larger coefficient wins.
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In all cases, Eh(Cd) — 0 as h — oo; Cy approaches its ceiling Coo(I” — k).

In addition, setting in Eq. (120b), the following:

t=0
F(L—£j=0
k

and
corresponding to ['— k, or 7 — oo according to Eq. (77a), thus, Eq. (120b) reduces to the
following:

E@ =0

Thus, the exact result, given by Eq. (120a), is recovered.

- For small flow depth, i.e., X << 1, or £ >> 1, the following can be written:

11
2 =-—+0(t7?)>0 (123)
l+pt to
Similarly, the following can be written:
/4 :1l+0(t‘2)—>0 (124)
I+yt ty

Thus, as ¢t >> 1, from Eq. (121), one may write the following:
= 0 (121a)

In addition, the second member in the brackets of w, in Eq. (122) can be written as
follows:

®» %
P A S 0 S ) S R (122b)
I+yt 1+t 1 1
t—+y| tl—+o
t t
The term ¢ is cancelled, and for >> 1, 1/¢ — 0. Thus, Eq. (122a) reduces to the following:

4 G W 4 (122¢)
I+yt l+ot Yy @
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Thus, Eq. (122) reduces to the following:

C
o, =F(1—£j 2,1 (122d)
k) C,
Considering Eqs. (120), (121a), (122¢), and (122d), the following can be written:
C
Elicd)zr(l_Ej OO’F+7’_F_(/’_F +0(1/;) (125)
k) Co v @

Eq. (125) is the small-depth asymptote for the elasticity of the discharge coefficient within
the BPS framework. It consolidates the upstream reductions just above it, where auxiliary
terms are simplified and a cancellation removes the flow depth-ratio blow-up, into a
single leading-order statement. The upshot is that the direct flow depth sensitivity
dominates, while the contraction pathway survives only as a weaker correction. This nails
the expected physics for a thin-nappe regime: elasticity is positive, bounded, and driven
primarily by the exponent-controlled flow depth term.

Together with the large-depth results a few lines earlier, where elasticity dies out and the
coefficient plateaus at its contraction-limited ceiling, Eq. (125) brackets the entire
operating envelope. The user now has a clean “rises fast when shallow, flattens when
deep” narrative that is internally consistent and easy to propagate through uncertainty
analyses.

The equation makes the role of the depth-law exponent explicit: it controls how quickly
losses collapse as flow depth grows from very small values. The text also clarifies which
term wins depending on that exponent, reinforcing that the asymptotics are not just formal
but practically discriminative.

In short, Eq. (125) is a well-targeted asymptotic that delivers the right physics for shallow
flow and dovetails smoothly with the deep-flow ceiling, offering a robust, interpretable
hinge for sensitivity and error-propagation analyses.

Half-Saturation Exponential (HSE) model

Predicting the discharge coefficient Cy across shallow and deep regimes usually needs a
contraction measure that the user can’t observe reliably in the field. HSE avoids that. It
uses only the relative upstream flow depth X = 4/b, as defined by Eq. (79) (upstream flow
depth % scaled by a geometry length b), and three interpretable parameters. The result is
a bounded, monotone, asymptotically correct curve that’s easy to fit and compare across
geometries, no contraction coefficient required.

Cu-HSE model
HSE assumes Cy rises smoothly from 0 and approaches a finite ceiling Coo. The “half-

saturation” parameter € marks the relative flow depth X where C, reaches exactly half the
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ceiling, and the shape exponent m controls how sharp or gentle the rise is. The C4-HSE
model can reads as follows:

C,(X)=C, {1—2_()(/9) } (126)

where m >0, > 0, and 0 < Coo < 1. Thus, the “half-saturation” parameter  corresponds
to X' = 6, implying the following:

c,=1c, (1262)
2

The model does not present any overshoot, or wiggles, since 0 < Cy < Coo, and Cy
increases strictly with X. In addition, in the HSE model, a Geometry-agnostic ceiling can
be observed: Coo is the large-depth plateau that absorbs unmeasured geometry, edge, and
entrance-loss effects, enabling calibration and comparison of Cy (X) using only X = h/b,
no contraction coefficient required.

The model presents correct limits. As the flows depth grows, i.e., X — o, C; approaches
a finite plateau Coo; when the flow depth is tiny, C,; follows a power law in X, as expected
from leading-order flow depth scaling. The following is the authors’ explanation:

From writing simplicity, set the following:

y=(Xx/0)" (127)
Then, Eq. (126) can be rewritten as follows:

Cd(X):COO(l—z_y) (126a)
which can be re-written as follows:

Cd(X):Coo(l—e_ylnz) (126b)
For tiny depth, i.e., X < 6, or y < 1, the following expanding can be written:

e_ylnzzl—yln2+%(ln2)2y2—... (128)

Thus, Eq. (126b) becomes as follows:

m 2m
C,(x)=C, (mz)(%) —C—2°°(1n2)2 (%) L OX10)™) (129)
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That’s a power law in X with exponent m, while the leading order is expressed as follows:
C,(X)~C,(In2)o" X" (130)

The error of the power-law approximation expressed by Eq. (129) can be estimated as
follows, writing the next term as:

O((X /0)*™)

A handy relative-error estimate is the following:

1 2 9
Error ;C‘D(lnz) Y _In2

Leading term N Co(In2)y 2

y (131)

After calculation, and considering Eq. (127), Eq. (131) reduces to the following:

Emor 3466 (X / 0)™ (131a)

Leading term
For instance, if (X /0)" =0.2, the power-law expressed by Eq. (129) is within =7%.

Cu-HSE model fitting

Three parameters are involved in the C;~-HSE model, namely Coo, 6, and m, which can be
estimated from data {/i, bi, Cgai}, with Xi = hi/bi. In HSE model, Coo is not governed by
a single universal physics law. In HSE, Cwo is the large-depth plateau and is best treated
as a fit parameter, per geometry/configuration.

The procedure of estimating the three overmentioned parameters is as follows:
Step 0
For each observation:

e compute Xi = hi/bi.

e Compute Cqi from the ratio Qmw/Qexp, where the subscripts “Th” and “Exp”
denote “Theoretical” and “Experimental”, respectively. Qr is given by Eq. (3a).
Keep points with 0 < Cg,i < 1; If any Cg,i > 1, or Cq,i <0, cap or discard them.

o Sort the data by ascending Xi. Keep both small X (shallow) and large X (deep)
points if available.

Step 1

e Estimate the plateau Coo, from deep points only. Take the deep subset: the top
20-30% largest Xi values, e.g., the largest 20% of Xi.
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e Let Coo be the median of their Cd,i values, i.e., compute the median of the
corresponding Cd,i values in that deep subset.; the median is robust to outliers. If
that median exceeds 1, set Coo = 1.

e Thus, set the following:

= min{ 1, median of deep Cd,i} (132)

o0, med

where the subscript “med” denotes “median”.

Step 2

This section is devoted to the computation of & med This corresponds to:

1
Ca =75 Coomed (133)
This result provides from Eq. (126a), when writing the following:
Cd = Coo,med
Thus:
- Compute the following normalized values:
C,.
Y =% (134)
Coo,med

- Find two consecutive points, in the X-sorted data, that straddle 0.5; thus, the following
can be written:

Y, <05<Y, (135)

i
Yi is governed by Eq. (134).
If the users have such a pair, do a linear interpolation in (X, Y) as follows:

0.5-Y, (

o =X.+

med i _Y. Xi+l_Xi) (136)
I
This gives the X at which the curve crosses half the plateau.

-Ifall Yi<0.5, i.e., there is no deep data, you cannot locate half-saturation reliably; set a
provisional 6 med to the median of Xi and note the limitation.

- If all Yi > 0.5, i.e., there is no shallow data, set & med to the smallest Xi with Yi > 0.5,
i.€., a conservative estimate.
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Step 3
This step aims to estimate the shape exponent m using shallow points only.

For shallow points, i.e., X < 6, and according to Eq. (129), HSE behaves like a power
law, as follows:

m

X
In2)| —— 137
(n)e (137)

med

C,(X)=C,

,med

Use the points with the following condition, as a shallow subset:

Cd i
Yi =——>-<03 (138)
Coo,med

For each such point, compute; compute the following:

mo=———""2 (139)

Then take the median of {mi}as you estimate the following:

m. 4= median {ml} (140)

If you have too few shallow points, e.g., fewer than 3, set the following as a practical
default:

M ed = (141)

Step 4
This step optional but recommended as a one quick polish of all three parameters. Use
your current:

(c

w0, med> Mmed>

emed )

as starting values and fit them jointly by minimizing the sum of squared differences
between observed and model-predicted Cg, as follows:
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_ [Xi/gmed)mmed

sum of squared errors = Z C C 1-2 (142)

) “di T oo med
1

with the following bounds:
O<CdS1,‘9>0, m >0

This “polish” adjusts the three following HSE parameters a little so the full curve best
matches the data.

(Cw,m, 9)

Herein, “Polish” means a short nonlinear least-squares refinement starting from the initial
estimate parameters:

(c 0

m med )

o, med’ ""'med’

The user is required to report the maximum percentage deviation between the predicted
and observed values of the involved parameters, especially the discharge coefficient Cy.

Flow-depth elasticity of Cd

(1) Differentiate Cd with respect to X

In previous sections, such as in Eq. (92), the exact logarithmic sensitivity, i.e., elasticity
Ep, of Cyto h, has been define as follows:

£Cp _0ICy b 9C,
" olnh C, oh

92)

Because X = /b as defined in Eq. (79), the following can be written:

On the other hand, the following can be written, which provides from the definition of
elasticity:

SCp_0nC, _ x o€,

= = 143
Y omx C, 0X i
Let consider the following chain rule:
olnC; 0InC, dlnX
= (144)

dlnh  dlnX Olnk
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As X = h/b, the following can be written:

6lnX_1
Olnh

Thus, Eq. (144) allows writing what follows:

Let recall the following:
y=(Xx/0)"

Then Cy(X)-HSE model given by Eq. (126) reduces to the following:
C,(X)=C,(1-27")

Differentiate C; with regard to X, using the following chain rule:

acC d _ d /._
—E=C— (127 )=-C - (27)

Now differentiate 2~ 7. Write the following:
"V _ e yn2

Then, the following can be written:

d (2—y): d (e—yan)

dx dXx
The result is the following:
d

dXx
Therefore, Eq. (147) becomes as follows:
dc, d

—d__c —{2_y(—1n2)5—;;}:Cw(ln2)2_yj—));

dX *dx
It remains to compute the following:

dy
dX
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From Eq. (127), one may write what follows:
y=(X/0)"=0""x"

Then, the following can be written:

m
dy _ g~mxym-1 —mX—mi
d 0" X

Taking into account Eq. (127), Eq. (152) yields the following:
4
dXx X

Substituting Eq. (153) into Eq. (151), the following can be written:

2% _c () 2_y(m l)
dx X

The final result can be written in the following form:

2% ¢ min(2) L2
dx X

(2) Convert to derivative with respect to £

Recall Eq. (79) as follows:

x=2
b

With b = constant, the following can be written:
oX 1
oh b
Let consider the following chain rule:
oC, _9C, 0x
oh 0X Oh

Substituting Eqs. (153) and (156) into Eq. (157), yields the following:
oC _
%\, min(2) L2 |1

oh X b
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(3) Form the flow depth-elasticity E h(c”)

Recall Eq. (92) as follows:

C h oC
E\) - 2" d (92)
C, oh
Write Eq. (79) in the following form:
h=bX (79a)
Recall Eq. (126b) as follows:
Cd(X)=COO(1—2_y) (126b)
Substituting Eqgs. (158), (79a); and (126b) into Eq. (92), yields the following:
bX |
E\) :—_[Cwmln(2)l2 y—} (159)
Co(1-277) X~ b
Cancelling C,, b, and X, Eq. (159) reduces to the following:
-y
(Ca) _ 2
E; —mln(2)y—_y (160)
1-2
This is already a correct closed form. Now, it is required to simplify the factor:
7Y
— (161)
1-277
(4) Algebraic simplification of the above factor
Let us use the following
— 1
y_
2 =57 (162)
Thus, Eq. (161) can be rewritten as follows:
1 1
Y Y 1
2= (163)
271 274
2V Y

Substituting the result expressed by Eq. (163) into Eq. (160) yield the following:
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C Y
E\) —min(2) 5 (164)
27 -1
Using Eq. (127), Eq. (164) can be written in the following final form:
m
C C X/6
E;(, d)zE&d)zmln(z)# (165)
(x76)
2 -1
This is the explicit expression for the flow depth-elasticity of Cy in the HSE model.
Eq. (165) can be rewritten in the following reduced form:
C C y m
E\%) = ES) —mn(2) o y=(X/0) (165a)
(5) Limiting checks to verify the formula
- As already stated in step 3, for shallow depth, the following can be written:
X << (166)
Then, from Eq. (127), one may deduce what follows:
y=(Xx/6)" -0 (167)
Let use the following:
y y 1
= = +O0(y (168)
2V -1 yln2+0(y2) In2 ()
Substituting this result into Eq. (164) yields the following:
C
Eﬁl ) s m (169)
Thus, Eq. (169) matches the expected power-law slope.
- For deep flow depth, i.e., X — oo, the following can be written:
X>0 (170)
Then, from Eq. (127the following can be written:
y=(X/6)" > (171)

Consequently, the following is deduced:
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2 dominates

Then

y
2V —1

Substituting this result into Eq. (164) yields the following final result:

-0 (172)

C
Eﬁl i) 50 (173)
Thus, both limits agree with the model’s physics.
Arctan Saturation (ATS) model

The ATS model gives a clean, bounded description of the discharge coefficient C; across
all regimes, rising smoothly at shallow flow depth and flattening toward a finite ceiling
at large flow depth. It uses only the measurable relative flow depth, i.e., X = 4/b (flow
depth scaled by a chosen geometric length), so you don’t need any hard-to-observe
contraction metrics. Because the core curve is an arctangent, the model is numerically
tame, strictly increasing, and incapable of overshoot or spurious wiggles.

Each parameter has an immediate physical role. The geometry-agnostic ceiling, C-
infinity, is the large-flow depth plateau that absorbs unmeasured geometry, edge, and
entrance-loss effects. The theta parameter is a half-saturation marker: it is the relative
depth at which the coefficient reaches exactly half of that ceiling, giving the user a precise
“knee” for design and comparison. This marker is the same than that used in previous Cy-
models. The m parameter controls curvature, how sharply the curve rises when flow is
shallow and how crisply it approaches the plateau as flow depth grows.

Calibration is intentionally simple. First, read the plateau from your deepest
measurements (a robust summary like a median works well). Second, locate theta by
finding where the data cross half of that plateau; this is a straightforward visual and
numerical step. Third, estimate m from the shallow-flow depth trend or with a quick
straight-line fit after a simple one-step transformation; if data are limited, m can be fixed
to a reasonable value and refined later. A brief bounded least-squares pass can then polish
all three parameters in seconds.

ATS is robust to noise and small datasets. The arctangent core compresses extremes,
limiting the leverage of a few very shallow or very deep points; the half-saturation
property decouples horizontal positioning (theta) from vertical scaling (C-infinity),
improving identifiability; and the shape control (m) gives just enough flexibility without
introducing fragile curvature knobs. Because the model is framed entirely in relative flow
depth, the same procedure transfers cleanly across circular, elliptical, and slot-type
openings, only the scaling length you choose for nondimensionalization changes.
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In short, ATS delivers a physically credible curve, easy calibration with minimal
assumptions, stable behaviour from shallow to deep flow, and parameters that user can
interpret at a glance, exactly what the user wants for field use, sensitivity studies, and
design documentation.

The C4+ATS model is defined as follows:

m
C,(X)= szarctan (EJ (174)
T 0
where the shape exponent (dimensionless) is as m > 0, the half-saturation relative flow
depth (dimensionless) is as > 0, and the large-depth plateau (geometry-agnostic ceiling;
dimensionless) is as 0 < Coo < 1. The relative flow depth X is defined by Eq. (79) as X =
h/b. The “half-saturation” parameter 6 corresponds to X = 6, implying the following,
knowing that arctan (1) = #/4:

1
C, :EC"O (175)

So 6 is exactly the relative flow depth where C, reaches half of its ceiling. This result is
the same than that expressed by Eq. (126a) for the previous model, i.e., HSE model.

Let us recall Eq. (127) as follows:

y=(Xx10)" (127)
Then, Eq. (174) can be rewritten as follows:
2
C,(X)=C, —arctan(y) (174a)
T

(a) Boundedness

Because:

arctan(y) € |0, 7z/2[ for y>0 (176)
Then, the following can be written:

O<%arctan(y)< 1 (177)

Consequently, Eq. (174a) yields what follows:
C,(X)< C, (178)
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(b) Monotonicity (strictly increasing)
(bl) Derivative of y with respect to X
Reall Eq. (127a) as follows:

y=(X/6)"=0""x"
Then, one may write the following:

d_y:me—me—l
dX

Takin into account Eq. (127), Eq. (179) becomes as follows:
dy _my
dX X

(b2) Derivative of arctan (y) with respect to X

The following can be written:
dy
1+y2dX

A arctan () =
dX 4

Inserting Eq. (179a) into Eq. (180) yields the following:

ialrct'dn(y): ! 5 (ﬂ]
dX I+y° L X

(b3) Chain rule for Cy
From Eq. (174a), the following can be written:

dC 2
d—)? =C, - Earctan(y)

Inserting Eq. (181) into Eq. (182) yield what follows:
4 o 2 _1 (m)
dX 1+ L X

After rearrangement, Eq. (183) can be written in the following form:
4C _ cm__y
dx "z x(1+)%)
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From Eq. (183a), it can be observed that all factors on the right are positive for y > 0, as
shown in Eq. (127). Thus, one may write what follows:

dc,
—450 (184)
dX

This result allows concluding that the discharge coefficient Cy(X) is strictly increasing.
(c) Correct limiting behaviour

(c1) For shallow flow depth, corresponding to X << @, thus, according to Eq. (127), y <<
1. Hence, one may write the following:

arctan(y):y+0(y3) (185)
Thus, Eq. (174a) reduces to the following:
2
Cd(X):Cw;y+0(y3) (186)
Taking into account Eq. (127), Eq. (186) can be rewritten as follows:
Cd(X):CwE[%j +0((X/9)3m) (1862)
T

Thus, one may write the leading order power law as follows:
C,ocX"™ (187)

(c2) For deep flow depth, corresponding to X >> @, thus, according to Eq. (127), y >> 1.
Hence, one may write the following:

arctan(y) >z /2 (188)
Then, Eq. (174a) reduces to the following:
C,(X)>C, (189)

(d) Elasticity (sensitivity) with respect to flow depth
(d1) Elasticity with respect to X
Recall Eq. (143) as follows:
pCo_0InC, X 0C, _ x d,
Y T emx C,0X C,dX

(143)

Recall also Eq. (183a) as follows:
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dCd—C 2m %

o X)) o
Recall also Eq. (174a) as follows:
C, (X)=Cw%arctan(y) (174a)
Inserting Eqs. (183a) and (174a) into Eq. (143) yields the following:
ES® = X cm_ vy (190)
C, arctan(y) 7" X(1+y2)

T

After simplification and rearrangement, Eq. (190) gives the elasticity of C; with respect
to X as follows:

m
Ef = s , y=(x/16)" (190a)
(1 +y ) arctan ()
Furthermore, one may check the following:
d1-1) For shallow limit, corresponding to X << 6, thus, according to Eq. (127), y << 1,
and considering Eq. (185), Eq. (190a) allows writing what follows:
€
Ey® > m (191)

This result agrees with the leading-order power law.

d1-2) For the half-saturation, corresponding to X = 8, Eq. (190a) allows writing the
following:

y—l1 (192)

Inserting Eq. (192) into Eq. (190) yields the following relationship of the elasticity of Cy
with respect to X, for the half-saturation:

1
E(Cd) :L 193
X (1+1)><(7z/4) (193)
Or
E(XC”’) _2m (193a)
T
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d1-3) For the deep limit, corresponding to one may write that X >> @; thus, according to
Eq. (127), y >> 1, i.e., y —0. Hence, one may write the following:

. . 1
lim LZ= Im ———=0 (194)
Yoo (14 y?) v 1
y
Thus, Eq. (190a) allows writing what follows:
(&)
Ey? =0 (195)
(d2) Monotonic decrease of F )((C“’ )

Let us adopt the following:

Y
G(y)= : (196)
(1 +y ) arctan ()
Substituting Eq. (196) into Eq. (190a) yields what following:
€
EXd :mG(y) (190b)
In addition, let us denote the denominator of Eq. (196) as follows:
B(») =(l+y2)arctan(y) (197)
This allows writing the following:
d
—B(y) =2yarctan(y)+1 (198)
dy
On the other hand, let’s denote the numerator of Eq. (196) as follows:
A(y)=y (199)
Thus, the following can be written:
d
—A(y)=1 (200)
dy

Let us adopt the following quotient rule:
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ey
Y Y
—G = 201
dy () B2 (201)
Substituting Eqs. (197), (195), (199), and (200) into Eq. (201) yields the following:
1+ y*)arctan(y)— y| 2 y arctan( y)+1

dy [(1+y2)arctan(y)]2

The sign of the above derivative is the sign of the numerator, since the sign of the
denominator is positive. Denoting N(y) the numerator of Eq. (202), the following can be
deduced:

N(») =(1—y2)arctan(y)—y (203)

For all y > 0, computation shows the following:

N(»)<0 (204)
(d2-1) If:

0<y<l (205)
and since:

arctan(y)<y (206)
and

1-2>0 (207)
Thus, the following result can be written:

N(y)S(l—yz)y—y=—y3<O (208)
(d2-2) If:

y>1 (209)

Then, the following can be written:

1-2<0 (210)
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and
arctan(y) >0 11)
These allow writing the following:
(l—yz)arctan(y)SO (212)
Thus, Eq. (203) allow deducing the following:
N(y)<0-y=-y<0 (213)
Therefore, for all y > 0 and from Egs. (202) and (203), the following can be written:
d
—G(y)<0 (214)
dy
Thus, according to Eqs. (190b) and (214), the following can be written:
d _(c d
—Eg/)zm—G(y)<0 (215)
dy dy
Thus
d _(C
_EM <0 (215a)
dy

Since y(X) is strictly increasing in X according to Eq. (127), Eq. (215a) implies that E )((Cd )

is strictly decreasing in X.

(d3) Elasticity with respect to the flow depth 4 and equality £ h(c"’ )= E )((Cd )

By definition [Eq. (92)], we know the following:

= 92
" olnh C, 0h 2
Recall Eq. (156) as follows:
oXx 1
—=— (156)
oh b
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Let’s adopt the following chain rule:

0C, 9C,0X
Ooh 0X Oh

Substituting Eq. (156) into Eq. (216) yield the following:
oC, 10C,
oh b oOX

Thus, Eq. (92) gives the following:
LG 10C, bX13C, X 0C, _ic,
oo, bex c,box Cc,ox X
Finally, the following result is obtained:

FC) _ (G

Substituting Eq. (190a) into Eq. (218), the following result is derived:

m
B — g - T , y=(x/6)"
(1 +y ) arctan(y)
For rigid geometry, Eq. (219) holds exactly.
d4) Parameter elasticities (sensitivities to Coo, 8, m)
d4-1) Elasticity to Coo

For any parameter p, one may define the following:

E(cd)_élnCd =£6Cd

b=
olmp C, op
Since Cy is linear in Coo, Eq. (174a) allows writing the following:
oCc, 2
—4 =Zarctan(y)
oC, «

On the other hand, Eq. (220) gives the following:

E(Cd) =C;oo 6Cd
“ ., oc,
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Substituting Eqs. (174a) and (221) into Eq. (222) yields the following:

E(Cij’) = Cer 2 arctan (»)
C, ~arctan(y) *

T

After simplification, the final result is as follows:
E(Cd) -1 h 223
¢/ =1, everywhere (223)

« Everywhere » means at every flow depth.

Thus, 1% error in Coo produces the same error in Cy.
d4-2) Elasticity to 6

Let’s recall Eq. (174) as follows:

2 xY”
C,(X)=C,=arctan| | — (174)
V4 0
This allows to derive the following:
—L=—C,=mX" ———— (224)
00 V4 0"+ X
On the other hand, from Eq. (127a), the following can be written:
X"= y@m (127b)

Substituting Eq. (127b) into Eq. (224), while simplifying and rearranging, results in the
following:

oC, c 2 my

—a4 —_ - (225)
00 S o(1+y?)
From the definition expressed by Eq. (220), the following can be written:
c,) 6 oC
B o2 (220a)
c, 06
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Substituting Eq. (225) into Eq. (220a) results in the following:

£(G) 0 c 2 my

o 00 2
C, 7 0(1+y%)
Recall Eq. (174a) as follows:

C,(X)= Cw%arctan(y)

(226)

(174a)

Inserting Eq. (174a) into Eq. (226), and simplifying, yields the following final result:

Eécd) __ my
(1 +y? ) arctan ()
Taking into account Egs. (219) and (227), yields what follows:

E}ECd) _ E(Cd):_E;Cd)

X
d4-3) Elasticity to m
Recall Eq. (174) as follows:

m
C,(X)= Cw%arctan (%)

This allows deriving the following:
2

— T

om 1+(X/6

oc, G« (X/6)" In(X/06)

)2 m
Recall Eq. (127) as follows:

y=(Xx10)"

Then, substituting Eq. (127) into Eq. (229), this reduces to the following:

le
—d:cwz( 4 zjln(X/G)
om w\l+y
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According to Eq. (220), the following can be written:

C oC
B\ M 231)
C, Om
On the other hand, let’s recall Eq. (174a) as follows:
2
C, (X):Coo;arctan(y) (174a)
Substituting Eqs. (230), and (174a) into Eq. (231) yield what follows:
2
= — " cw—[ Y 2]1n(X/9)
C, ~arctan(y) * T+y
T
After simplification, the following final result is obtained:
In(X/86
) = [ | X 10) o3)
1+y* )arctan(y)
Let’s recall Eq. (190a) as follows:
Efe = —2 , y=(Xx/0)" (190a)
(1 +y ) arctan(y)
Comparing between Eqs (190a) and (232) yields the following:
ES) 2 ECOm(x /6) (233)

The following implications can be pointed out:

At X = 0 the od C; to m elasticity is zero; it is negative for X < § and positive for X > 6.
The knee carries minimal information about m; shallow/deep tails inform m.

d5) From Cy to total discharge sensitivity

If the measured flow is modelled as Q = Cy(X) x Qtn,, with Q7 the theoretical/loss-free
discharge for the considering geometry, the flow depth-elasticity of total flow splits
additively as follows:

Eh(Q) = E}(lcd) + EI(ZQTh) (234)

d6) Calibration procedure
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What is given is: (1) the data {Ai, bi, Qi}, and (2) a given weir geometry. Compute
observed Cy,i, then fit (Coo , 8, m) following these steps:

d6-1) Step 0 — Build (Xi, Cyi)

- Compute the relative flow depth Xi = hi/b, valid for the three weirs geometries
considered in the present monograph:

- Compute the observed Cd,i = Qi / Qrn (hi), with Q7 (hi) provided from the exact loss-
free formula for the geometry. Keep 0 < Cgi < 1.

d6-2) Step 1: Plateau Coo from deep points

Sort by Xi. Take the top 20-30% largest Xi and set. Then, consider the median value of
Coo, i.e., Coo, med as follows:

C

oo,med

min{ 1, median of deep C i in that deep subset} (235)

Median is robust; “min with 1”” enforces the physical bound.
d6-3) Step 2: Linearization to get 8 and m

Normalize Ci = Cgi/ Coo, med. Keep points with 0 < Ci < 1. Using Eq. (174), provide
the following identity:

N\ m
tan(% Ci] = (%) (174b)

Take natural logs on both sides of Eq. (174b) and present the final result as follows:

In tan(%CiJ —mIn Xi—mIn(6) (1740)

This is a straight line in InXi. Fit by least squares to get: (1) the slope m_ 4 ; (2) intercept

Kied =M ln(ﬁ) and provide the following:

emed = eXp(_K‘med / mmed) (236)

d6-4) Step 3: Optional short polish (joint fit)

Use the following as starting values:

(Coo, med? Hmed;mmed )
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The, minimize the sum of squared errors (SSE) in the original model, as follows:

2
sum of squared errors = Z[C C med arctan( X, /6, )m med } (237)

d,i ©

With the following bounds:
0<C. <1 >0 m>0
o0 — o >
A few iterations, e.g., Levenberg—Marquardt, typically “polish” the parameters.
d6-5) Step 4: Sanity checks
d6-5-1) For the half-saturation, the data points where the following:

1
Cd,i ~ ECOO, med

should lie nearby:
Xi=0
d6-5-2) Shallow slope: on a log—log plot of Cy vs X, the initial slope should be near m
median.
d6-5-3) Plateau: at the largest Xi, the fitted curve should flatten near Coo median.
d6-6) Notes for stability

Discard points with Ci extremely close to 0 or 1, e.g., Ci < 0.02 or Ci > 0.98; to avoid
numerical blow-ups in tan (n/2 % Ci).

If data are scarce in the shallow tail, you may temporarily fix m = 1 in this step and refine
later.

d7) Dominant knobs by regime

d7-1) For a shallow regime, m (slope) and @ (horizontal shift) dominate. For X << 0, the
arctangent in Cy (X) formulation, [Eq. (174)], behaves like its argument. Precisely as
follows:

2 (x\"
C,(X)= Cw; (Zj (238)

Thus, on a log—log plot of Cy vs X, the initial slope is m; larger m = steeper take-off, while;
smaller m = gentler take-off.

d7-2) For a deep regime (large X), Coo (vertical scale) dominates. What “vertical scale”
means herein:
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The parameter Coo sets the overall height of the entire Cy; curve on a plot of Cy (vertical
axis) versus relative flow depth X = A/b (horizontal axis). If you multiply Coo by any
factor, every predicted Cy value is multiplied by the same factor. The curve is stretched
(or compressed) up or down without changing its horizontal position or its shape. In both
HSE and ATS models, Cy (X) is written as follows:

C,(X)=C,xdimensionless shape that depends on X, €, and m

That front factor Coo scales the vertical axis only.

For X>> 6, or y —oo, the arctan in Eq. (174) approached n/2 from the following:

arctang(y) = z 1 + o(lj y =0 (239)
2y \y
With:
y=(Xx10)" (127)
the gap to the ceiling is as follows:
2 1 2 "
C,—C,(X)xCpo———7= C,— (ﬁj (240)
/4 ( X/ 9) T\ X

constant
Thus, the tail decays to the plateau like a power m of 6/.X.

d8) Identifiability: 6 is pinned by the exact half-saturation, m by tail (very small X)
curvature, and Ceo by deep data. The parameter m governs how sharply the curve peels
away from 0 when shallow and how fast it approaches its ceiling when deep.

Residual-Difference Pyramid (RDP) model

The C4-RDP model is built to give practitioners a clean, bounded, and strictly increasing
description of the discharge coefficient across all regimes, without asking for anything
that is hard to measure in the field. It stays within your established similarity controls, so
it drops naturally into the same plots, diagnostics, and workflows you already use. Like
ATS, the emphasis is on numerical stability, physical credibility, and day-one
interpretability rather than curve-gymnastics: the model rises briskly when the flow is
shallow, then settles smoothly into a finite, geometry-aware plateau as depth grows.

What is new in RDP is how it explains the journey to the plateau. Instead of forcing one
universal shape, RDP views the approach to the ceiling as the fading of two simple “loss
channels.” One governs the very shallow take-off; the other shapes the mid-range. Their
influence shrinks with depth, so the model cannot overshoot and cannot wiggle; it simply
climbs and levels out. This two-timescale view gives you just enough curvature to capture
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real-world behaviour, especially when edges, entrances, or mild secondary effects are
present, without burdening the fit with fragile knobs.

Each parameter plays an immediate, observable role. The plateau sets the overall vertical
scale; the two exponents govern how sharply the curve peels away from zero and how
decisively it locks onto the ceiling; the mixing weight trades emphasis between those
regimes. Because these roles are orthogonal, identifiability is strong: deep points pin the
plateau; the shallow trend informs the take-off; the mid-range balances the mix. The result
is a model you can read off a plot and defend in a design review.

Calibration follows the same plateau-first, shape-second rhythm you already use. Read
the large-depth plateau from your deepest measurements, then fit the two-channel shape
on the full dataset, and, if desired, run a short bounded least-squares polish. This keeps
the workflow fast, transparent, and robust on small or noisy datasets, precisely the virtues
that made ATS model attractive in practice.

Finally, Cd-RDP is deliberately portable. Because it is framed in the same
nondimensional controls as the existing weir families, it transfers cleanly across circular,
elliptical, and slot-type openings with only the scaling length and the fitted parameters
changing. In short, RDP model gives the user the same trustable backbone as ATS,
boundedness, monotonicity, and easy calibration, while adding a realistic, two-timescale
pathway to the ceiling that often sharpens fit quality without sacrificing simplicity.

C4-RDP model
Positioning within our established framework

The dimensional analysis and reduction isolate two similarity controls for the discharge
coefficient Cy: the relative flow depth X = A/b and the compound contraction index T'.
These appear as Eqs. (79) and (77), respectively, and the dimensionless lateral contraction
of the three considered geometries, kK = 2b/B, appears in Eq. (89). In regimes where
viscosity and capillarity are negligible, i.e., large Reynolds and Weber/Bond numbers, Cy
is modelled as a function of X and I" [cf. Egs. (76) — (80)]. In what follows, we keep
exactly these controls, and we reuse the standard elasticity with respect to /, Eq. (92), as
the vehicle for sensitivity/uncertainty analysis, together with the closed form of Eq. (90).

Model definition (RDP core)
The RDP core models the losses as a two-level residual pyramid, two simple, saturating

deficits that decay with flow depth, bounded by a contraction-controlled ceiling, as
follows:

/4 -y J
C,(X,T)=C,(T)|1- — (241)
a () =Col )( 1+x" 1+ x"?
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with the parameters such as follows:
m;>0,m,>0,ye€]0,1] (242)

The two fractions in Eq. (241) act as near-field and mid-field deficits. Their convex
weights y and (1 — y) sum to 1, so the parenthesis transitions cleanly from 0 at X =0 to 1
at X — oo,

The ceiling is the same light-weight quadratic we already used [Eq. (82)]; it reads as
follows:

Co(T)=cy+cT+c,I%, 0<Cy(T) <1 (82)
with our usual mild constraints, defined as follows:
¢;>0,¢,+2¢,>0

O<cy<cyte te, <1 (84)

Physical consistent properties

(a) The RDP- model present bounds everywhere. Since the term in the parenthesis of Eq.
(241) lies in the range 10, 1], the following can be written:

0<C,(X,T)<C,(I)<1 (243)

(b) The RDP-model is monotone in X, so that the following can be written:
-1

dc, 2 m; X "
Z — >0, X>0 (244)
dX j=1 (1+Xml)
with:
wl:y,and w,=1-y

Eq. (244) is written as follows:
m, —
€| ,mE m X
o 2
dx (1+Xm1) (1+Xm2)

(c) Correct asymptotes

(244a)
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For small flow depths, i.e., X << 1, one may write the following:
B m m
C,~Cy|7X "+(1-7)X 2} (245)

(d) For large flow depths, i.e., X >> 1, the following can be derived:

B -m —-m

C,~Cy|l-yX "'—(1-y)X 2} (246)
This corresponds to “One-Minus” with two decaying deficits, mirroring the “One-Minus”
principle used in AOM model.
(d) Optional J-level extension

J @;
C,(T)=C ()| 1- > —L— (247)
j=1l+ X
with
. > .=
@; >0, ijj 1 (248)

Flow-depth elasticity (for uncertainty propagation)

One may use the same decomposition as in the previous sections: the logarithmic
sensitivity of Cy to 4 splits into a direct depth part E and a contraction pathway N [Eqs
(93) and (95)].

Indeed, for RDP model, Eq. (241), the following can be written:
C,(X.I)=C,S(X) (241a)

in which S(X) is the term in the parenthesis of Eq. (241), independent of T'; this is the base
of RDP. Applied the following chain rule for Eq. (92):

InC,=InC,,(T')+InS(X) (249)
Knowing, by definition, that:

2% ~0lnC; oIS OlnX olnC, dT
h olnh  OlnX dlnh or dinh
—_— ———

E(X) N(r‘)

(250)

with the general form and notation as in Eq. (92), and with the same derivative of I" with
respect to A, according to Eq. (90), and with same parameter £ expressed by Eq. (89).
Below, we provide E(X) and N(T) for the RDP-model.

(a) Direct flow depth term E(X)
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Because X = A/b as expressed by Eq. (79), the following can be derived:

-/ m;\?
ey _xoc, T (1+x7)
X —_ — =

Cd oX 1— 2 a)j
= g

» W=7, w2=1_7 (251)

In Eq. (251), E(X) it is the direct contribution through X = /b alone.

Eq. (251) can be rewritten in the following form:

i "o
m; X m, X
4 s +(1-7) 2
m "y
. @+X ) @+X )
EG = (252)
X oy 1=y
1+ x" 1+x™2
withX:h/b,ml,m2>0,O<7/<l
On the other side, one may provide the following behaviour:
ESe ~ ym, +(1=y)m, as X —>0 (253)
and
ECY 50 as X
3% as X —> o0 (254)

Thus, RDP rises briskly when shallow and flattens when deep, our standard qualitative
envelope.

(b) Contraction pathway N(I')

Since the term in parenthesis of Eq. (241) does not depend on I" (base RDP), only the
ceiling contributes. According to Eq. (250), the following can be written:

N<cd):81nCw dr C"OF(I 1")

r or dinh C,

255
i (255)

C,, is given by Eq. (97) as follows:
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C;O(F):cl+02F,C;O(F)>O, ¢;>0,¢,+2c,>0 (97)
Thus, the following can be written:

N >0 (256)
Moreover, as h — oo, I'— k according to Eq. (77), and, thus, N — 0, according to Eq.

(255), confirming the plateau.

In short, regarding elasticity, the following can be written:
E,=E+N2=0 (257)

with E dominant when X<<1, and N fading as I"' — & (deep regime). This is the same
split and behaviour the authors documented for AOM/RPS/BPS/ATS.

Calibration procedure

Step 0

Build predictors/response. From {Ai, bi, Bi, Pi, Qi}, form Xi = hi/bi [Eq. (79)], and I'i =
(2bi/Bi) / (1 + Pi/hi) [Eq. (77)]. Compute observed Cy,i = Qi / Q1n (hi). Keep 0 < Cy,i <
1.

Step 1

Ceiling vs. contraction. Fit Coo(I') = ¢ + ¢1I" + c2I'? [Eq. (82)] on the deep subset (top 20
to 30% Xi), enforcing Eqgs. (84) and (86 so 0 < Coo < 1. This mirrors the AOM/BPS
procedure of “reading the plateau” first.

Step 2
Depth-loss shape. With Coo fixed, form the following:

C,. _
Ci=—%inp- 7 _ ! 4
Co 1+X, ' 1+X, 2

Search mi, m, € [0.6, 2.5] on a coarse grid; for each pair, compute the bounded least-
squares estimate of y € [0, 1]; the model is linear in y given my, m. Pick the triplet
minimizing SSE.

Step 3

Optional joint polish. Starting from Step 1-2, jointly refine co, c1, ¢2, m1, mz, and y by
constrained nonlinear least squares, with respect Eq. (84), m12> 0, and y € [0, 1]. Report
R? and max/mean relative errors, as in the other models.

282



Exact theoretical rating law for sharp-crested elliptic, semi-elliptic, and circular weirs

Hill Saturation (HIS) model

The Hill Saturation (HIS) model, also known as the generalized Michaelis—Menten
model, i.e., an extension of the classical Michaelis—Menten kinetics, extends the paper’s
semi-empirical framework for predicting the discharge coefficient Cy in sharp-crested
meters by keeping the same two similarity controls, relative flow-depth and contraction,
while offering a steeper, cooperative-like transition from shallow to deep regimes. Within
this framework the behaviour is governed primarily by a dimensionless relative flow-
depth and a compound contraction index; each proposed family is built to be bounded,
monotone, and asymptotically correct, plateauing at a contraction-limited ceiling.

HIS uses a Hill-type saturation curve in the relative depth variable X = A/b, as defined in
Eq. (79), to model how Cjy rises from near zero at very small depths to a finite plateau as
depth increases. The Hill construction preserves the key “half-saturation” landmark, there
exists a 8 > 0 such that C, reaches exactly half of its ceiling at X = 6, and introduces a
single shape (Hill) exponent that controls how abruptly the curve turns upward. In short:
shallow regime — power-law in X; deep regime — finite ceiling.

As in the other families, HIS separates “how high” the curve can go from “how fast” it
gets there. The large-depth plateau is handled by a geometry-agnostic ceiling Coo < 1.
When a contraction descriptor is available, the same quadratic ceiling used elsewhere,
Coo(I') = co+ c1" + coI'? as defined by Eq. (82), can be plugged in directly; when it isn’t,
Coo can be read from deep data as a single fit parameter.

HIS is deliberately compatible with the paper’s design principles. Like HSE, it locates a
clear knee at X = 6, which is the “half-saturation” point, but HIS replaces HSE’s
exponential rise with a cooperative Hill rise that can be either gentler or sharper
depending on the Hill exponent, giving users a tunable transition without sacrificing
boundedness or monotonicity. The limiting behaviour mirrors the established envelope:
a power-law onset at small X and a horizontal approach to Co at large X.

The HIS parameters are estimated exactly as in the half-saturation families already in the
paper: (1) read the deep-flow plateau from the largest 20-30% of X values (a robust
median works well), yielding Coo; (2) locate 6 where the data cross half the plateau; (3)
infer the shape exponent from the shallow-depth trend and then refine all parameters with
a bounded least-squares pass.

As with other families, a closed-form flow-depth elasticity follows from the same master
definition [Eq. (92)], revealing the same clean split between a direct depth term and a
contraction pathway when a I'-aware ceiling is used, depth effects dominate when X <<
1, while contraction fades as the curve saturates. This gives HIS model the same
uncertainty-propagation and sensitivity advantages already developed in the present
monograph.

Practically, HIS is a one-equation, three-parameter surface since Cy depends on X, Coo,
6, and shape, that (1) honours the monograph’s physics and asymptotics, (2) remains
interpretable at a glance, i.e., ceiling, knee, and steepness, (3) is easy to calibrate with
sparse, noisy field data, and (4) nests naturally within the same contraction-aware ceiling
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that authors already use. It gives the practitioner a compact curve that rises briskly when
shallow, flattens when deep, never overshoots, and exposes the parameters that matter for
design and comparison.

C4-HIS model

The Hill (generalized Michaelis—Menten) saturation gives a bounded, strictly increasing,
half-saturating curve with an exact power-law take-off and a power-law tail to the ceiling.
It stays within the X—I" framework and slots directly into your (E + N) elasticity split [Egs.
(90), and (250)].

Definition and admissible parameterization

The core form of the C;~-HIS model can be written as follows:
(x/6)"

C,(X,T)=Cp(T — -
a0 ()(X/H) +0(T)

(258)

It is worth noting that the term (X768) ™ in Eq. (258) corresponds to y in Eq. (127), according
to the notation adopted by the authors.

Eq. (258) can be rewritten in the following reduced form:
C,(X,I)=Cy(I) S(X,0,m) (258a)
where

__ (x9)” )
S(X’a’m)_(X/e)’M o(r)" o

In Eq. (258), Coo(T) is the standard ceiling expressed by Eq. (82) with constraints
expressed by Eq. (84). 6(I') locates the knee, i.e., half-saturation as defined by Eq. (174),
which recalled as follows:

1

C, ZEC“’ (174)

A simple and monotone 6-I" linkage that shifts the knee earlier as contraction weakens
(I'?) is as follows:

o(I)=6, {1+q(1—%ﬂ, 6,>0,g=0 (259)

with k& =2b/B expressed by Eq. (89).
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Setting ¢ = 0, Eq. (259) reduces to a geometry-agnostic knee, exactly like HSE/ATS
models.

Bounds and monotonicity

Given the following:

(x/6)"

< < (260)
(x/60)"+0(T)"
0<Cd(X,F)< Co(D) <1 (261)
and the following obtained from Eq. (258):
aC m m—1
_dzcw(r)%z >0 (262)
oxX (x"+0m)

then, one may deduce that the discharge coefficient Cy is strictly increasing in X. Below,
we adopt the following notation 6(I") = 6.

Correct asymptotes

For an easy asymptotic analysis, write Eq. (258) in the following form:

(x/6)"

m
X
I+ —
0
Thus, for shallow flow depth, or shallow regime, i.e., X << 8 or X/6 — 0, one may write
what follows:

C,(X,T)=Cyp(T) (258b)

Thus, Eq. (258b) allows writing the following:

m
C,~Cyp (%) (263)
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On the other side, Eq. (258) can be also rewritten as follows:

1

— (258¢)
“1+(0/x) :

For deep flow depth, or deep regime, corresponding to X >> 6 or /X — 0, the following
can be written:

1
1+ x

:1—x+(0(x)2),x:(6?/X)m (264)

Thus, Eq. (258c¢) reduces to the following:

c, =COO[1—(¢9/X)"’J+(0(<9/X)M) (265)

Elasticity with respect to the upstream flow depth h

Let’s reconsider the same formulation of that presented in Eq. (250), which defines the
total depth elasticity as a clean split of a direct depth part E and a contraction part N via
the chain rule. Thus, the following can be written:

oInC, lnC
g ST O [iLIe® a1 (266)
olnh  OInX |rpey  OT |ypeqdIn
E(X) N(T)

With X = A/b given by Eq. (79) and using the exact decomposition expressed by Eq. (92),
along with Eq. (90) giving the derivative of I" with respect to InA, a short calculation
provides the following:

(a) Direct X-path contribution

Using the authors’ notation y expressed by Eq. (127), the kernel S [Eq. (S-1)] can be
rewritten as follows:

S(v)= 1 fy (S-2)

Because Coo(T") is independent of X along the fixed-I" path, and considering Eq. (266), the
following can be written:

E(X):alnCd| _ 0l
onX | olnx

S(X,0,m) (267)
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Differentiating S(v) given by Eq. (S-2) while considering Eq. (127) and @ held constant,
the following can be written:

(a-1) The derivative of y with respect to X gives what follows:
dy _d (X\'_m uq_my
dX dx\ 0 o X

(a-2) Taking into account Eq. (127), the derivative of S(y), expressed by Eq. (S-2), with
respect to X yields the following:

(268)

dy dy
1 &y _,4r
as UV ~vay 1 dy
= - = . (269)
dX (1+y) (l+y) dX

Converting to the requested log-derivative, and taking into account Egs. (S-2), (268) and
(269), the following can be written:

( ): 6lnS:£dS: X I my
olnX  SdX y/(1+y)(1+y)® X

After simplification, the following can be obtained:

E(X)= (l-Ty) (270)

Finally, substituting Eq. (127) into Eq. (270) results in the following:

E(X)= Lm (271)
1+ (XJ
0

This is the compact closed form for the direct X-path elasticity of the HIS model implied
by Eq. (258). It is the same quantity the manuscript calls for when it introduces the HIS
asymptotics around Egs. (258a) to (265) and then proceeds to the “(a) Direct X-path
contribution.” E(X) tends to m for X << @ corresponding to shallow flow depth, or shallow
regime, while (X) tends to 0 for X>> 6, corresponding to deep flow depth, or deep regime.

(b) Direct contraction path N(I') contribution through Coo(I")

N(I') is expressed by the second term of Eq. (266). The derivatives have been already
expressed by Eq. (255) as follows:
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(255)

N(Cd)zalnCw dr _er(l 1};)

r or dlnh C,
As h — o, corresponding to deep flow depth, or deep regime, I' — &, hence N(I') — 0.
(c) Total depth elasticity

The total depth elasticity is given by the sum of Egs. (71) and (255). The final result is as
follows:

of N [ Cw(r)r(1 —Ej @n)
h ( Xj’" C,(T) k
1+ )

Elasticity with respect to Co

From Eq. (258), one may derive easily the following:

alnCd

——= =1, everywhere 273
oInC,, R @7

Elasticity with respect to 0

From Eq. (258), the following can be written:

onC
a ™ = - E(X) (274)

omf (ij
I+ —
6

Elasticity with respect to m

Using Eq. (258), yield the following:
olnC o X
d - ln(

0

olnm x\"
i Hm
[ej '

Thus, the sensitivity to m is negative for X < 6, zero at X = 6, and positive for X > 0; the
same qualitative structure proved for ATS in Eq. (233).

(275)
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Calibration recipe

(a) Step 0 (Predictors and response)

AOM/RPS/BPS/HSE/ATS procedures, build:
Xi=hi/bi [Eq. (77)], and Cgai= Qi / QOrn (hi)

Keep 0 < Cyi< 1.

(b) Step 1 (Plateau vs. Contraction)

On the deep subset (top 20-30% Xi), fit Coo(I') = ¢y + 1" + coI'? with constraints
expressed by Eq. (84), and 0 < Coo < 1; analogous to steps around Eqs. (82), (84), (86).

(c) Step 2 (half-saturation knee)

Normalize

Ci= Cyi/ Co(T) €10, 1[.

Because the Hill core satisfies the following:

L = [ij (276)
1-Cc 0

thus, the exact half-saturation occurs at C = 1/2 corresponding to X = § according to Eq.
(276). Estimate 6 by locating where Ci crosses 0.50; linear interpolation between
consecutive X values bracketing 0.50, as do for HSE/ATS [cf. Egs. (126a), (175) and the
median-based practice].

(d) Step 3 (Shape exponent m)

With 6 fixed, linearize Eq. (276) as follows:

| S| = mIn(x) = m In(0) @77)
1-C
Then, a least-squares fit of the following:

In

o | In(X1i) (278)

gives m (slope) and a check on 6 (intercept). If shallow data are sparse, initialize m € [0.6,
2.5], as in your AOM guidance and polish jointly.
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Simple Exponential Saturation (SES) model

The SES model is also known as the “Weibull CDF”, having the same mathematical form
as the Cumulative Distribution Function of a Weibull distribution.

The SES model is a compact, three-parameter family for the discharge coefficient Cy that
stays fully inside the adopted X—I" framework while offering a steeper, yet still well-
behaved, transition from shallow to deep regimes. It keeps the same similarity controls,
i.e., relative flow depth X = A/b [Eq. (79)] and a contraction descriptor I, and the same
light-weight quadratic ceiling Coo(I), as defined by Eq. (82), with the mild consistency
constraints [Eqs. (82) and (84)]. In other words, SES changes only the shape of the rise
toward the ceiling; all the definitions, constraints, and asymptotic targets remain exactly
those already used throughout the paper.

Like HSE/ATS/HIS families, SES is built around a half-saturation marker 6: by design
the curve reaches precisely half of its ceiling at X = 6, giving the same clear “knee” used
elsewhere for parameter reading and comparisons [cf. Eq. (175)], and its role in the ATS
section. What SES contributes is a stretched-exponential approach to the ceiling: the onset
at small X is an exact power law with exponent m, while the tail at large X decays faster
than any power; there is no overshoot, strictly increasing, and numerically tame. The
result is a bounded, monotone curve whose parameters (Coo, 6, m) keep the same
immediate physical interpretation the authors already established: vertical scale (ceiling),
horizontal location (knee), and steepness (shape).

SES slots directly into the adopted elasticity toolkit. The depth sensitivity with respect to
the upstream flow depth is decomposed by the same chain-rule split into a direct depth
term E and a contraction pathway N [Eq. (250)], with the contraction drift governed by
the same dI'/dInz we already use [Eq. (90)]. Thus, the qualitative story carries over
unchanged: E dominates in the shallow regime, i.e, X << 8; both E and N fade as X — o
and I'— k, so the total elasticity vanishes at flow depth and C, levels off at the contraction-
limited ceiling. Practically, this means SES can be analyzed, compared, and uncertainty-
propagated with the very same equations and workflows as uses for:

AOM/RPS/BPS/HSE/ATS/HIS.

Because SES preserves the half-saturation convention, the users can lift the existing three-
step field routine without modification: (1) read Coo(I') versus I' using the familiar
quadratic Eq. (82) under constraints in Eq. (84); (2) locate 8 at the 50% crossing; (3)
estimate the shape m from the shallow log—log slope and refine all parameters with a short
bounded least-squares pass. No new knobs or hidden states are introduced; SES is simply
a different, often sharper, “riser” plugged into the same ceiling and elasticity architecture.

In short, SES is strong, bounded, monotone, asymptotically correct, and contraction-
aware, and simple, three interpretable parameters, half-saturation preserved, and full
drop-in compatibility with the adopted ceiling [Eqs (82)/(84)], elasticity split [Eq. (92)],
and I'-drift [Eq. (90)]. It gives practitioners a crisp, noise-robust curve that rises briskly
when shallow and flattens decisively when deep, without changing any of the surrounding
machinery they already use.
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C4-SES model

The SES, similar to Weibull CDF, gives a bounded, strictly increasing, half-saturating
curve with an exact power-law take-off and a power-law tail to the ceiling. It stays within
the X-T" framework and slots directly into your (E + N) elasticity split [Egs. (90), and

92)].
Definition
The core form of the C4-SES model is expressed as follows:

C, (X,F)=COO(F){1 — exp[(—an)(X/H)m}} (279)

Positioning inside the X-I' framework

We keep the same similarity controls and ceiling we already adopted throughout the
present monograph, as recalled in the following:

(a) The relative flow depth X = //b define by Eq. (79);

(b) The contraction descriptor I', or the compound contraction index, expressed by Eq.
(77a);

and

(c) the following geometry parameter, or the lateral contraction index, k=25b/B, as defined
by Eq. (89).

(d) The quadratic ceiling defined by Eq. (84), with mild constraints given by Eq. (84),
and no risk of C;> 1:

Co(T)=cy+c,T+c,I?, 0<C, (T)<1 (82)
with our usual mild constraints, defined as follows:
O<cy<cy+c +e, <1 (84)

(e) The flow depth-elasticity is always split by the chain rule into a direct flow depth term
E and a contraction pathway N, as presented in Eq. (250); the I'-drift with flow depth uses
the closed form of Eq. (90).

(f) To preserve the “half-saturation at X = 6” convention (cf. knee definition we use
elsewhere), we normalize SES so that the normalized core reaches 1/2 at X = 6, thus, the
following can be suggested:
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Cd(X,F):COO(F){I 1Y) }

%/—/
S(X;H;m)

(280)

The ceiling Coo(I") and its constraints are exactly those in Egs. (82) and (84). Herein, 6 >
0 sets the knee, i.e., the half-saturation abscissa, and m > 0 sets the shape/steepness. This
slots into exactly the same X-I architecture we used for AOM/RPS/BPS/HSE/ATS/HIS.

Let y = (X/0) ", the same auxiliary variable as in your Hill/HSE sections, cf. Eq. (127), so

that the kernel is as follows:

m
_(X/6
S=1-2 (x10) ,y:(X/e)’” [Eq.(127)]
Eq. (281) can be rewritten in the following reduced form:

S=1-277
Physics-consistent properties

(a) Bounds and ceiling

Because

0<27V<1, y>0

for

we have the following:
0<S<l1

Therefore, these conditions, along with Eq. (280), allow writing the following:
0<C,(X,I)<C,(I)

(b) Monotonicity in the flow depth

One may write the following chain rule:
ds _dsdy
dX dydX

On the other hand, it can be derived from Eq. (281a) what follows:

dS d _ d /. _
d_yza(pz y):—a(z y):z Y1n2
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dy d{x\" mxm!
—=—| = | =— (283Db)
dx dy\ @ 0
Introduction the y Eq. (127) into Eq. (283b) yields the following:
4y __my (283¢)

Thus, substituting Eqs (283a) and (283c) into Eq. (283), the following can be written:
ds —y m
—— =In(2)2 yony.o (284)
dx X

Eq. (280) allows writing the following:

dcC ds

d
—4£ =Cyp()—>0 285
dX ( )dX (285)

Thus, one may deduce that SES is strictly increasing in X, mirroring our monotonicity
checks used across models. Users can compare the monotonic proofs the authors write
around Eq. (244) for RDP.

(c) Correct asymptotes

(c-1) For shallow regime, we know that X << @, or y << 1. Using the following

development:

27V =e M@ o1 yn@) + 0(y?) (286)
Thus, Eq. (281a) allows writing the following:

S=1-2""=ymn@) +0(y?) (287)
Substituting Eq. (127) into Eq. (287) yields the following:

X\

S = (Ej In(2) + O((X/H)zm) (287a)

Thus, Eq. (280) becomes as follows:
x\"
C,(X,T) ~ Cop(T) (Zj In(2) (288)

This is the power-law take-off with exponent m.
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(c-2) For deep regime, we know that X >> 6, or y >> 1, or y — oo. Since:

27V 50 (289)
Thus, according to Eq. (281a), the following can be written:

S -1 (290)
Substituting this result into Eq. (280) yields the following:

C, (X,T) ~ Cy(D) (291)
This is the contraction-limited ceiling.

Direct flow depth elasticity E(X) (Fixed I)
From Egs. (266) and (267), the following can be written:

olnC 1 X
OlnX |pgeqg OIMX  SdX
Substituting Eqs. (281a) and (284) into Eq. (292) yields the following:
X —y my
E(X)==—"—1In(2)27"Y —
After simplification, one may obtain the following:
min(2)y2~7
E(X)==—""""—— (293)
Substituting Eq. (127) into Eq. (293) the following final form of E(X) is obtained:
" _(x0)"
mm(z)(gj p-(7
E(X) = - (293a)
—_(x76)
1-2
Eq. (293a) can be rewritten as follows:
" _(x/e)"
mln(z)(gj o110
E(X) = v (293b)
—_(x76)
1-2

294



Exact theoretical rating law for sharp-crested elliptic, semi-elliptic, and circular weirs

or in the following reduced form:

E(X)= mln(Z)%, y=(x/6)" (2930)

Proceed to checks as follows.

(a) For shallow regime, we know that X << 6, or y << 1, or y — 0, one may first recall
the following results:

_(xv0)"

2 ~1-In(2)(x/6)" (286)

m
1-277~ [%) In(2) = y In(2) (287)

Substituting Eqs. (286) and (287) into Eq. (293a), and after simplification, yield the
following final result for the initial log-log slope:

E~m (294)

(b) At the half-saturation, corresponding to X = 6, and after simplification, Eq. (293a)
gives the following final result:

E = mIn(2) (295)

(c) For deep regime, we know that X >> 0, or y >> 1, or y — oo, one may derive the
following result:

. y _ _ m
ylgnw(z—yj =0,y=(X/0) (296)

Recall Eq. (289) for deep regime as follows:
27V 50 (289)
Substituting firstly Eq. (289) into Eq. (293) yields the following:

E ~ min(2) 2% (297)

Substituting secondly Eq. (296) into Eq. (297) yields the following final result:
E—>0 (298)

Direct contraction path N(I") contribution
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In this section, recall Egs. (82) and (250) as follows:
Co(T)=cy+c,T+c,I'? (82)
E(cd)_alncd _0IlnS 61nX+8lnCw dr

k" 8lnh 0OlnX dlnh or dlnh
E—————
E(X) N(r)

(250)

E(X) is expressed by Eq. (293) or Eq. (293a).
According to Egs. (250), and (255), N(T') is expressed as follows:

NG _ OnC, dl C"OF(I rj

r or dinh C,

k

(255)

Total depth elasticity En (Cq)

On the other hand, Eq. (82) allows writing the following:
C' _olC, ¢+ 2¢,I

* or ¢yt I'+c,T

(299)

Substituting Eqs. (82), (255), (293), and (299) into Eq. (250), yields what follows:

-y
Ei;Cd) _ mln(2))i2 L at 2e,l F(l—zj
1-277 co+e,T+c,T

300
i (300)

Recall that y is given by Eq (127), while the compound contraction index is expressed by
Eq. (77)/(77a).

As h — oo, i.e., deep regime, according to Egs. (77a) I'— k, implying that the right
member of Eq. (300), i.e., N(I'), falls to zero. On the other hand, for deep regime, Eq.
(298) gives E — 0. Thus, the following final result can be written:

E,(fd) -0 (301)
Reall that, for deep regime, Eq. (291) gives the following:

Cd(X,F)~ Cpo(D) (291)
Parameter elasticities (useful for uncertainty)

(a) Elasticity with respect to the ceiling Coo
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Let’s recall the following equations:

P (79)
b

y=(x/6)" (127)

C,(X,T)=Cyr(T) S(X;0;m) (280)

S=1-277 (281a)

Eq. (280) allows writing the following:
InC, =InC, +InS (280a)

As S is independent of Ceo, and holding X, 6, m fixed, differentiating In (Cq) with respect
to In (Ce0), yields the following:

omC, o
olnC, 0dlnC,

_dlC,  oms _ o

(InC, +InS) =
6InC,  olnC,

Thus, the final result is as follows:
(c) _ olnC, 1

= = 302
“ 8mC, (302

This means that 1% change in (Coo) produces the same change in the discharge coefficient
(Ca).

(b) Elasticity with respect to the knee 6

With X and m fixed, we seek what follows:

C olnC
E( a) _ d 303
¢ dln o (303)

From Eq. (280a), the following can be written:
E(Cd) _ olnC, _ 0
o " ome  ome
As (Coo) is independent of the knee 0, Eq. (304) allows writing the following:
(c,) oIS

E = 305
0 oln 6 (303)

(InC, +InS) (304)
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On the other hand, from Eq. (127), the following can be written:

a_yz_mee—m—l

00
Using the following identity:
0
_9 0
0lné 06
Thus, one may write the following:
0
Y _p oy
0lné 00

Substituting Eq. (306) into Eq. (308) yields the following:

o o
ahfg:e(—mx o~")

Eq. (309) can be rewritten as follows:

CHMIRES

After simplification, Eq. (310) gives the following:

T
o0lné o0

With Eq. (127) overmentioned, Eq. (311) reduces to the following:

oy
=—-m
omo
On the other hand, we use the following identity:
oS _ 105 _ ()
omo Somg Y

Since the Coo is 6-independent, Eq. (280a) allows writing the following:

onC, oIS
olnd  Olno

298
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Substituting Eq. (313) into Eq. (314) yields the following:

omC, 1 8S
oln® S Olnd

However, one may write the following:

oS dS oy

olnd dy olnd

Recall Egs. (283a) and (312) as follows:

== =277 m(2
T=2""I(2)
oy

omo Y

Substituting Eqs. (283a) and (312) into Eq. (316), one may derive the following:

(315)

(316)

(283a)

(312)

(317)

oS _
=27 In(2) (- m
olnd (2) (= my)
which can be rewritten as follows:
oS _
=—mlIn(2 27
olnd (2) 7
Substituting Eqs. (281a) that governs S, and (317) into Eq. (313) yields the following:
(Ca) _ 1 —y

After rearranging, the following result is obtained:
-y
E(Cd) __m ln(2) y 2
0 1-27%

Substituting Eq. (127) into Eq. (318), yields the following final form:

| min(2) (;)’” - (X/a)m

(C) _
Eyd =

m
- 2_()(/9)
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This is the elasticity formulation with respect to the knee 6.

From Egs. (293a) and (319), the following can be written:

E(X)=- E‘(gcd ) (320)
Eq. (319) can be written in the following form:
C
El(gd)=—mln(2) 2yy T y:(X/Q)m (319a)

(c) Elasticity with respect to the shape m, with X, 6, I fixed.
By definition, we know the following:
E(Cd) =6lnCd =ﬂ6Cd _ m 6Cd
" Olnm C, om C,S§ om

(321)

Because Coo does not depend on m, only the kernel contributes, from Eq. (280) one may
obtain the following:

9C, . 05 _ . oS0y

=C,—=0(C, (322)
om om oy om
From Eq. (127), the following can be written:
oy X
— =yln| — (323)
om > ( 0 j
On the ither side, Eq. (283a) provides the following:
45 _y-v In(2) (283a)
dy
Let’s recall S(y) as follows [Eq. (281a)]:
S=1-277 (281a)
Substituting Egs. (281a), (283a), and (322) into Eq. (321), yields the following:
C -
E,(nd) =" ¢ 27 In(2)y ln(gj (324)
C, (1 ~2 y) 0
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After simplification and rearrangement, the following final result is obtained:

E) — o n(2) ﬁ ln(%), y=(x/6)" (324a)

c,). . ..
For X <6, Efn a) is negative, zero at X = 0, and positive at X > 0.

(c-1) For shallow regime, we know that X << 6, ory << 1, or y — 0, one may first recall
the following results:

2 — 1~ yIn(2) (287)

Thus Eq. (324a) becomes as follows:
C X
E,(nd | —>m ln(?) (325)

(c-2) For deep regime, we know that X >> 0, or y >> 1, or y — o. The term in Eq. (324a)
can be in the following form:

A
Y
J = 2 (326)
(27-1) (1ot
2V
For y — oo, the following can be written:
. 1
ylg)nooz_y =0 (327)

On the other side, Eq. (296) provides the following:

yli_r)nw(zlyj =0 (296)

With Egs. (327) and (296), Eq. (326) gives the following:

lim —2X— =0 (328)
y—>® ( 27V 1 )
Thus, Eq. (324a) allows writing the following final result:
C
E,(nd I 50 (329)
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Calibration recipe— C4-SES (Exponential Saturation)
Core

Use the SES form (Weibull CDF kernel) already introduced for C¢-SES, with ceiling
Coo(T'), half-saturation 6, and shape m, all inside the existing X-I" framework.

Build Xi = hi/bi and I exactly as for the previous considered models; keep the quadratic
ceiling and its mild constraints.

The normalized SES core reaches one-half at X = 0.
(a) Step 0: Predictors and response
From your measurements {hi, bi, B, P, Qi}, compute the following:
_ hi

bi

01
Op 1
Retain the following:
0<C di <1

Xi (79)

C,i= (330)

(b) Step 1: Plateau vs. Contraction [Fit Coo(T)]
On the deep subset, i.e., top ~20-30% of the largest Xi, regress the following:

COO(F)=CO+01F+02F2 (82)

under the same mild bounds and monotonicity constraints the authors already use for the
ceiling. Keep the following:

0<C, <1

¢) Step 2: Half-saturation knee (0)
Normalize by the fitted ceiling:
C,1
C,.(T)
Locate 0 at the 50% crossing because SES, by design, satisfies “half of the ceiling at X =

0. Use linear interpolation between the two consecutive X-sorted points that straddle C =
0.50; it is the same practice as in HSE/ATS.

Ci= ,EN0, 1] (331)

(d) Step 3: Shape exponent m via SES straight-line fit
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From the SES definition [Eq. (279)] and its half-saturation normalization [Eq. (280)], the
normalized core is as follows:

C(x)= { 1- exp[(—ln2)(X/0)m}} (332)
Therefore, the following can be written:
In[ = In(1-Ci)|=1In(2) + mIn(Xi) — min(0) (333)

It is linear in InX.
Regress
In[ —In(1-Ci) Jon In(X1i)
using points with reliable Ci € ]0, 1[; the slope gives m and the intercept checks 6. If
shallow data are sparse, initialize m € [0.6, 2.5] before the polish.
(e) Step 4: Joint refinement of all parameters (bounded nonlinear least squares)
(e-1) Goal

Update all five parameters together (co, ¢i, c2, 0) using every data point (Xi, I'i, Cg,i),
starting from the estimates obtained in Steps 1-3. This implements the brief “bounded
least-squares pass” mentioned for SES.

(e-2) Model used in the fit

For each observation, compute the model-predicted discharge coefficient expressed as
follows:

CIretd i 1) = €, (1) 1 - exp[ (~In2)(Xi/0)" [} 39

where
Coo(l“i):cOJrcll“iJrczl"i2 (82)

It is the model-predicted discharge coefficient evaluated at the i-th data point, using that
point’s predictors Xi = hi/bi and I'i. The X-I" framework and the ceiling Coo(I") are exactly
the ones already defined in the present monograph. The In (2) factor guarantees that the
normalized response equals one-half at X = 0; the “half-saturation at X = 0” convention
of Eq. (280).

(e-3) Objective function
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Minimize the sum of squared residuals over all the n points, as follows:
n

2
min [ €, - CH(xiT) | (335)

Cp>C15Cy, 0, m =
If measurement uncertainties are available, users may use weighted least squares by
dividing each residual by its standard deviation before squaring.
(e-4) Bounds and constraints

(e-4-1) Enforce 6 > 0; use the same mild ceiling constraints already adopted for the
quadratic Coo(T") [Eq. (84)], and keep 0 < Coo(I") < 1 over the I range covered by the data.

(e-5) Initialization

(e-5-1) Initialize (co, c1, ¢2) with the Step 1 ceiling fit.
(e-5-2) Initialize 8 with the Step 2 50% crossing.

(e-5-3) Initialize m with the Step 3 straight-line estimate.
(f) Convergence and diagnostics

(f-1) After the optimizer converges, verify the half-saturation property by checking that
Caq (0, T') = 1/2Coo(T") for representative I' values; this follows directly from the
normalization in Eq. (280).

(f-2) Report summary errors, for example, RMSE, mean absolute error, maximum
relative error, and inspect residuals versus X and I to ensure no pattern remains.

(f-3) Context

This step keeps SES inside the same X—I architecture, i.e., X =h/b and I" as in Eq. (77a),
and uses the same light-weight ceiling as elsewhere [Eq. (82)], so it is directly compatible
with the rest of the monograph.

ANALYTICAL FOUNDATIONS OF THE STUDY
Uniform convergence and truncation control

The manuscript replaces numerical quadrature with an exact Euler—Beta series for the
dimensionless geometry—flow depth kernel, stated to be valid on the full admissible range
and shared by elliptic, semi-elliptic, and circular openings. In practice, the paper
supplements the exact series with a compact Padé surrogate whose uniform maximum
deviation is = 0.04% over the whole range, effectively providing a built-in
truncation/error control for routine calculations. Users can rely on the series for arbitrarily
tight accuracy and on the tabulated Pad¢é bound when speed matters.
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Endpoint behavior as anchors

The formulation yields a strictly increasing rating and a predictable flattening with flow
depth. The manuscript states that the log-slope (elasticity) with respect to flow depth
decreases from about 2 near the crest to about 1.25 at full height for the elliptic family,
with a representative mid-range value ~ 1.824 at f = 0.50, which the paper derives from
the exact kernel and its table. These numbers quantify how responsive discharge is to
small flow depth changes across the range.

Certified quadratic-over-quadratic surrogate

A short Padé-type law is built on the exact series and the endpoint constraints and then
benchmarked point-by-point against the series. The worst deviation (~0.04%) occurs near
the upper end of the range, and the table/figure pair in the manuscript documents this
behavior. The bound is well below typical field or C, uncertainties, making the surrogate
safe for theoretical design charts and embedded use.

Circular-weir specialization

The circular opening is treated as a rigorous specialization of the same kernel after
mapping S to ¢ = h/D; only the geometric prefactor changes. Consequently, sensitivity
metrics and elasticity values transfer directly at matched nondimensional flow depth,
unifying elliptic, semi-elliptic, and circular devices within one framework.

Small velocity-of-approach and other non-idealities

The theoretical law is loss-free by design. The manuscript explains that operational
ratings are obtained by multiplying the theoretical discharge by a site-calibrated
coefficient C; < 1, a clean separation that accommodates approach-flow and installation
effects without contaminating the geometry kernel or its end-point physics.

Losses via a discharge coefficient -elasticity remains invariant

Because losses enter multiplicatively through Cy, the elasticity with respect to flow depth
is unchanged, the coefficient cancels in the logarithmic derivative. The paper states this
explicitly and uses it when discussing mid-range sensitivity at = 0.50.

Uncertainty budgeting and measurement priorities

The manuscript uses the elasticity to propagate flow depth-reading errors into discharge
uncertainty and to rank contributors. At f = 0.50, a 1% flow depth error produces ~
1.824% discharge error, illustrating that stage accuracy dominates the budget near mid-
range, while sensitivity eases toward full height. Guidance follows on allocating
measurement precision accordingly.
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Reference implementation and pass—fail verification

Verification is table-driven: the manuscript tabulates the exact-series values and the Padé
values across the range, with the maximum deviation reported explicitly (~0.04%) and an
error curve (Fig. 2). These materials give a simple pass—fail criterion for any independent
implementation: reproduce monotonicity and keep the surrogate’s error below the
tabulated bound.

Template for broader shape families

Within the manuscript’s scope, the same kernel architecture already unifies elliptic, semi-
elliptic, and circular weirs, differing only by geometric scaling and admissible flow depth
range. This structural unification suggests a natural path to other smooth apertures, while
keeping the analysis — surrogate - verification workflow intact.

MAIN FINDINGS OF THE STUDY
Unified, exact theoretical discharge law across three weir shapes

The work derives a loss-free, exact stage—discharge relationship for sharp-crested elliptic
and semi-elliptic weirs, and obtains the circular weir as a rigorous specialization of the
same formulation. The approach separates universal hydraulic scaling from a
dimensionless geometry—flow depth kernel, so one analytical framework covers elliptic,
semi-elliptic, and circular openings.

Exact Euler-Beta kernel with anchored endpoint physics

The kernel W(p) is expressed as an exact Euler—Beta series that enforces the square-root
onset at small flow depth, i.e., ¥~(n/8)x\f as f—0, and the full-height anchor ¥(1) =
4/15, providing a physics-exact reference for analysis and calibration.

Practice-ready Padé surrogate with uniform sub-0.05% error

A compact Padé-type [2/2] approximation is constructed for W(/). Benchmarks against
the exact series show a maximum relative deviation ~ 0.04%, worst near f = 0.96, and
even smaller at full height, well below typical field and discharge coefficient
uncertainties. This makes the surrogate suitable for design charts and embedded use.
Circular-weir specialization via a simple depth mapping

The same kernel governs the circular case after mapping f to &= A/D; only the geometric

prefactor changes. Consequently, formulas and sensitivities transfer across shapes at the
same nondimensional depth.
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Verified accuracy over the semi-elliptic operating range

Within 0 < f < 0.50, the semi-elliptic sub-range, tabulated comparisons show deviations
strictly below the global worst case; representative entries remain below 0.01% at the
sub-range ceiling.

Differentiability enables sensitivity and uncertainty analysis

Because W is analytic, via the convergent Beta series, the discharge law is differentiable
with respect to stage and geometry, enabling trustworthy sensitivity/elasticity measures
and error propagation without empirical tuning.

Depth sensitivity (elasticity) quantified across the range

The log-slope of the discharge O with respect to the flow depth % decreases from =2 near
the crest to ~1.25 near full height for the elliptic family. At mid-range, i.e., f = &= 0.50,

the computed elasticity is E£; =~ 1.824, meaning a 1% flow depth error produces ~1.824%
discharge error.

Geometry sensitivities are transparent

With the kernel depending only on S, sensitivity to the horizontal semi-axis b of the
elliptic/semi-elliptic weirs is linear in the prefactor, yielding E» = 1, i.e., a 1% change in
b yields a 1% change in O, while other dependencies follow directly from the closed-form
structure.

Implementation and verification are table-driven

The paper tabulates exact-series values and Padé results and provides an error curve,
offering a simple pass-fail criterion for any implementation: reproduce monotonicity and
keep surrogate errors within the reported < 0.04% bound.

Broader methodological value

The kernel-plus-surrogate architecture, already unifying elliptic, semi-elliptic, and

circular weirs, provides a template for extending to other smooth apertures while retaining
analytical clarity and computational efficiency.

CONCLUSION

The authors have established an exact theoretical, loss-free stage-discharge law for sharp-
crested elliptic and semi-elliptic weirs, with the circular weir recovered as a rigorous
specialization of the same kernel architecture. The geometry-flow depth interaction is
made analytically explicit via an exact Euler—Beta series for the kernel, ensuring the two
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physical anchors by construction: the square-root onset at small flow depths and the full-
height limit. Building on this foundation, the authors produced a compact Padé-type
surrogate with four-significant-figure coefficients that reproduces the exact kernel with
uniform, sub-0.05% (max. = 0.03996%) deviation across the full admissible range, well
below typical uncertainties from discharge coefficients and instrumentation. Together,
these results provide a transparent reference model (exact series) and a practical evaluator
(Padé surrogate) that share one formulation across elliptic, semi-elliptic, and circular
openings.

The theory cleanly separates physics from geometry: dimensional scaling remains in the
Torricelli prefactor, while the kernel carries only shape and normalized flow depth. This
separation lets practitioners obtain operational ratings by multiplying the theoretical
relation by a site-calibrated discharge coefficient Cy, preserving the correct ordering
between theoretical and actual discharge. The closed-form kernel and its surrogate are
differentiable and numerically stable, supporting sensitivity analysis, and uncertainty
propagation.

The study concluded with a section devoted to a thorough sensitivity analysis, in which,
in particular, the authors quantified how the discharge Q is affected by the flow depth-
reading error 4. In terms of the local elasticity £ = 0lnQ/0lnh, a 1% error in s produces
roughly 2% error in Q near the crest for elliptic/semi-elliptic weirs, while relaxing to

~1.25% at full height. The Ej, value reaches 2.5% near the crest for circular weirs, while

relaxing to =1.75% at full height. Thus, the relative error AQ/Q = Ep xAh/h provides a
direct rule-of-thumb for uncertainty budgeting: gauge accuracy matters most at small flow
depths, while sensitivity decreases as the opening approaches full wetting. The closed-
form expressions and endpoint checks reported herein turn these statements into quick,
auditable theoretical calculations.

The results are theoretical (loss-free) and do not include approach-velocity effects,
aeration, viscosity, surface tension, or contraction losses; these are appropriately absorbed
in Cy. Future work should (1) pair the theoretical kernel with systematic C, calibration
for elliptic and semi-elliptic geometries, (2) assess approach-flow and crest-height
influences, (3) extend the framework to additional curved apertures, and (4) compile
interlaboratory datasets to benchmark combined (theory x C,) ratings against high-quality
measurements.
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THEORETICAL APPENDIX Al

The present theoretical Appendix Al develops explicit, end-point approximations that
link the exact stage-discharge law of the main text to a practical, closed-form estimate of
the flow depth (stage) normalized by the opening height 2a. Starting from the exact kernel
formulation of Eq. (3a), the appendix defines a relative discharge and recasts the rating
into an implicit relationship 2 x W(B) = constant. Two asymptotic regimes are then
extracted directly from the kernel’s built-in physics: the small-flow depth (near-crest)
onset and the near-full-flow depth anchor. Each regime yields an explicit approximation
for f, and their intersection identifies a natural crossover, a discharge and flow depth at
which the two limits agree and where a piecewise explicit rule provides a uniformly
accurate, easily computed estimate across the operating range. The theoretical appendix
Al also states admissibility bounds for the relative discharge, explains the uniqueness and
good conditioning of the resulting f solution, and interprets the crossover in physical
terms (transition from crest-dominated to deep-flow behavior). Finally, the text clarifies
how these formulas support implementation: they supply fast initial values for solving the
exact implicit equation and integrate seamlessly with the manuscript’s exact kernel and
its uniformly tight Padé surrogate.

ﬂ—Q* relationship from the Exact Rating Law

Elliptic and semi-elliptic weirs governing relationship

From the exact discharge law (Eq. 3a), the nondimensional depth enters only through the
geometry-flow depth kernel W(f), with f = h/(2a). Introducing the following relative
discharge:

0'-—£
4b\2g (2a)’"”

Eq. (3a) yields the following exact relationship:
By (p)=0 (A1-2)

This follows directly from the “shape-exact, scale-exact” form of Eq. (3a), where the
Torricelli prefactor carries all dimensions and the kernel carries the geometry-flow depth

coupling. The same Q*fﬁ mapping applies to elliptic, semi-elliptic, and, by specialization

(Al-1)

to circular weirs, f — & only the geometric prefactor used in forming Q* and the
admissible range of the depth ratio change. This is why Q* is the natural similarity
variable across the curved-weir family.

Employing the exact Euler—Beta series of Eq. (10) together with the exact relation (A1-
2), the authors tabulate below the exact f values, as a function of the relative discharge
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QO . To compute the requested S values, the authors employ high-precision summation of
the Euler—Beta series, as follows, with tight convergence tolerance:

Il 2 B33 )7

The calculation included the endpoint verification, so that W(1) = 4/15 = 0.266666679,
giving Q*(l) =4/15, according to Eq. (A1-2); the table matches this to machine precision.

(A1-3)

S =

Table Al1-1: Exact ﬁ'—Q* according to Eq. (A1-2); g € [0, 1], Ap =0.05

B Exact ¥ (5)Eq. (10) Exact Q' Eq. (A1-2)
0.00 0.00 0.00
0.05 0.0867038279 0.0009693783
0.10 0.1210275037 0.0038272257
0.15 0.1462470311 0.0084961847
0.20 0.1665437079 0.0148961221
0.25 01835506661 0.0229438333
0.30 0.1981093815 0.0325526931
0.35 0.2107198381 0.0436322381
0.40 0.2217059452 0.0560876606
0.45 0.2312895570 0.0698191882
0.50 0.2396280469 0.0847213085
0.55 0.2468350677 0.1006817821
0.60 0.2529926458 0.1175803565
0.65 0.2581583433 0.1352870417
0.70 0.2623692706 0.1536597166
0.75 0.2656437147 0.1725406540
0.80 0.2679804104 0.1917511726
0.85 0.2693545210 0.2110827084
0.90 0.2697071294 0.2302799841
0.95 0.2689164493 0.2490019661
1.00 0.2666666679 0.2666666679
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What the numbers in Table A1-1 show, and why that matters

Monotone, well-behaved map: Q*(/)’) increases smoothly from 0 at = 0 to the endpoint

4/15 = 0.2666667 at f = 1. This guarantees a unique S for any admissible Q’k and makes
interpolation straightforward.

Near-crest behavior is gentle but quadratic: For small flow depths, the table values grow
roughly like ocf?. Example: at f=0.10, 0"(0.10) = 3.83x1073; at = 0.20 it’s ~1.49x10 2,
about 4xlarger, consistent with a §* trend. This tells that tiny flow depth errors are
amplified near the crest, meaning that the user must use a precise gauge there.

Mid-range is the practical “workhorse”: Around S = 0.45 - 0.55 the table entries climb
quickly but predictably, e.g., Q*(O.SO) ~ 0.08472. This means that in that band, the
elasticity, i.e., log-slope with respect to flow depth, is moderate, around Ej ~ 1.8, so the

inverse problem Q*Hﬂ is numerically stable, Newton or even linear interpolation
converges quickly and reliably. By contrast, very small § has higher sensitivity, small
flow depth exaggerates relative errors, and  very close to 1 has a flatter slope, which can
slow inversion slightly.

Full depth is capped and stable: The last row, Q*(l) = 4/15, is a non-negotiable upper

bound. If a computed Q* exceeds ~0.26670, the inputs, or units, are inconsistent with the
theory.

Why the table A1-1 is useful

(1) It gives a portable, dimensionless backbone for design charts and software: one table
works for all sizes once one scales by [4 x b x \(2g) x (2a)*?], or the appropriate shape
prefactor.

(2) It de-risks calibration since one can separate geometric scaling and site losses, via Cy,
from the exact geometry-flow depth physics.

(3) It’s a validation oracle as any implementation of the kernel or any surrogate must
reproduce these values, within interpolation/rounding, while staying monotone over £.

(4) The table gives the dimensionless (relative) discharge Q*(ﬁ). Once f is picked, one
may read, or interpolate, the corresponding Q*(ﬂ) from the table Al-1, and then use
simply Eq. (Al-1) to get O, provided the geometric characteristics of the device are
given.

Step-by-step: (1) Choose f € [0, 1]; (2) Read Q* from Table Al-1; If the picked S is not
a listed row, use linear interpolation between the two nearest § entries; (3) Check that the
derived Q* value is within the admissible following range 0 < Q*S 4/15=0.2667. Values
outside this range are not admissible for the loss-free theory, (4) Knowing the geometric
characteristics of the device, compute the theoretical discharge Q7 using the definition-
Eq. (A1-1) for the elliptic case, as follows:
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O, =[4b\/£(2a)3/2}Q* (Al-1a)

From Eq. (A1-1a), one may write the following for the circular case:
All quantities in consistent SI units: a, and b in meters, g = 9.81 m/s2.
The table A1-1 lists the dimensionless mapping expressed by the exact Eq. (A1-2). That
kernel ¥ is common to elliptic, semi-elliptic, and circular openings. Therefore, the
numerical Q*—ﬁ pairs are shape-independent. What changes by shape is only the

geometric scale (prefactor) used to convert between Q and Q*; the table Al-1 itself does
not change.

Exact /)’—Q* variation

Fig. Al-1 plots the exact, dimensionless discharge Q"(8) = 32 ¥() from Eq. (A1-2),
evaluated with the kernel W(f) via the Euler—Beta series and tabulated in Table A1-1 at
AB =0.05. It is therefore a direct graph of the loss-free rating law in dimensionless form.

It can be observed that the curve of Fig. Al-1 presents Monotonicity and bounds. The
curve rises smoothly from Q*= 0 at f = 0 to the endpoint Q*(l) =4/15 = 0.2667. This
guarantees a unique S for every admissible Q* and makes interpolation straightforward.
Any value of Q* outside [0, 4/15] is physically inadmissible for the ideal, loss-free theory.

The shape of Fig. Al-1 reveals endpoint physics. at small f, near the crest, i.e., f — 0,
the curve starts gently and steepens, a convex-up beginning. Close to full wetting, i.e.,
— 1, W(1) = 4/15 flattens the curve as it approaches its cap. In elasticity terms, sensitivity
drops from about 2 near the crest toward ~1.25 at full depth, explaining the visible
tapering of the slope.
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Figure Al-1: Variation in Q* with respect to S, according to Table A1-1.
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It can be observed from Fig. A2-1 that above about f = 0.60 the curve, expressed by the
implicit Eq. (A1-2) is numerically almost linear, as shown by the dashed line. It does not
become exactly a straight line, the kernel physics still apply, but over 0.60 < <1 a line
fits the Table A1-1 extremely well and is handy for quick calculations.

Consequently, one may derive a practical linear surrogate for 0.60 < g < 1. Using the
exact values in Table Al-1, a least-squares line constrained to pass through the endpoint

(8, Q") = (1, 4/15) gives the following:
0" ~0.3743 5 —0.1063 (Al22)

Eq. (Al-2a) was obtained with a coefficient of determination R? = 0.99982; when
benchmarked against the exact values in Table Al-1, it yields a maximum relative error
of less than 0.54% over 0.60 < < 1. The worst case occurs at 5 = 0.60.

Fig. A1-2 provides a clearer picture of how the deviations introduced by the approximate
relationship (A1-2a) are distributed. By plotting, over 0.60 < § < 1, the relative error
computed as follows:

* *
‘ Q approx Q exact
*

exact

() =100x

it shows that discrepancies peak at = 0.60 and remain below 0.54% across the interval,
tapering toward zero near f = 1 because the line is constrained to pass through the

endpoint Q*(l) =4/15.

Devistion (s}
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Figure A1-2: Deviation between the exact Eq. (A1-2) and the approximate Eq. (A1-
2a) over 0.60 < g <1.
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The authors explain the apparent linearity of the exact implicit relation (A1-2) over 0.60
<p <1 as follows:

For  >= 0.60, the kernel ¥(f) varies slowly and even turns slightly downward as f — 1,
while the prefactor £*2 in Eq. (A1-2) keeps rising. These opposing tendencies offset much

of the curvature, leaving a near-constant slope in Q*(ﬂ) over this band, hence the visual

straightness of the dashed trend. The law remains the same implicit relationship Q*=
BPY(B); it’s just numerically close to a line in this range. User must treat this as a
convenience for 0.60 < f < 1. If the user needs sub-0.05% kernel precision everywhere,
the exact formula, or the paper’s Padé kernel, remains the reference. Interpolation from
Table Al-1 already yields very small errors; the line is most useful when the user wants
a one-step, flow depth-to-discharge evaluator without Tables.

Inserting Eq. (A1-2a) into Eq. (A1-1a) yields the following theoretical approximate O7n
relationship for the full elliptic weirs, valid over 0.60 < < 1:

O, :[4b@(2a)3/1(0.3743,8—0.1063) (A1-2b)

The semi-elliptic weir operating range is £ < 0.50, so this linear shortcut, valid for f >
0.60, does not apply to the semi-elliptic case.

Although Eq. (A1-2b) does not have the usual O—4 form encountered in the field of flow
measurement; it is still a stage—discharge relationship. It’s the same rating recast in
normalized stage, i.e., f = h/(2a), and approximated over the upper range; since S is a
one-to-one function of / for a given weir, one can always map it back to Q(%).

As the ellipse approaches full submergence, £ > 0.60, the aperture’s incremental effective
width gained by raising the flow depth shrinks, the geometry is “saturating”, while the
outer velocity/flow depth scale continues to grow. These opposing trends flatten the exact
O-h curve, making it almost linear in the normalized flow depth, hence the convenient
upper-range approximation (A1-2b). It’s the same physics encoded by the exact kernel
and its compact surrogate; only the variable choice, § instead of 4, and the local
linearization change the look of the formula.

Use the exact Eq. (3a), or its compact Padé form, for an explicit Q(#) anywhere; use Eq.
(A1-2b) as a high-accuracy shortcut in its stated f-range. Both are stage-discharge laws;
one is explicit in 4, while the other is written in f but trivially mapped back via f = h/(2a).

Circular weirs governing relationship

Combining the exact Egs. (18) and (19), while considering &= A/D, one may easily obtain
the following final result:

*

é’: 3/2\11(95) = Qcircular (A1-2¢)
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where the relative discharge Q* is expressed as follows:

* Y
== Al-1

Eq. (A1-2a) has exactly the same form as Eq. (A1-2); it is merely a variant. This is the
essential reason why Table A1-1 also applies to the circular weir, where ¢ spans the same
admissible interval as £, namely [0, 1].

Similarly, Eq. (Al-1a) has exactly the same form as Eq. (A1-1); only the prefactor has
changed. Moreover, Eq. (Al-1a) could have been readily be derived from Eq. (A1-1) by
simply substituting a = b = D/2.

Using the prefactor expressed by Eq. (Al-1a); one may obtain the following theoretical
approximate discharge O relationship for the circular weir, similar to Eq. (A1-2b):

0y, =2 (037436 -0.1063)[2g D*" (Al-2d)
Eq. (A1-2d) is valid over 0.60 < &< 1:
Small-flow depth approximation (near the crest)

As f# — 0, the kernel enforces the incipient-submergence onset as follows:

W(B)~(z/8)JB (A1)

Substituting this exact endpoint physics in Eq. (A1-2) and solving for £ gives the
following:

8
B=—0 (A1-5)
7

Eq. (A1-5) is only valid for f << 1.

This approximation is anchored in the manuscript’s Euler—Beta series, which builds in
the (1/8) x \B onset by construction.

Upper-range approximation (near full depth)

At complete wetting, the kernel takes the exact value W(1) = 4/15. Approximating ¥(5)
=~ 4/15 in the neighborhood of § = 1, Eq. (A1-2) yields the following:

2/3
15 «
ﬁz(zg j (A1-6)

Eq. (A1-6) still valid only for f <= 1.
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The full-height anchor W(1) = 4/15 is explicitly stated and enforced by the exact kernel
used in the paper.

Piecewise explicit rule and crossover

The two formulas, (A1-5) and (A1-6), provide a simple, explicit f/—approximation across
the range when used piecewise. Equating them and solving, they intersect at the following
relative discharge:

2/3
8 & 15 =«

/_Q :(_QJ (A1-7)
/4 4

After calculations, the following is obtained, where the subscript “Int” denotes
“Intersect™:

k
O 1 = 0.0835 (A1-8)
Inserting this result into Eq. (A1-5) or (A1-6), yields what follows:
ﬂlnt =~ 0.461 (A1-9)

Thus, a practical rule is the following:

8 A% A% %
x}*Q 0'<0,

pryVEs oM (A1-10)
[145Q*] 0*> 0"

This rule depends only on the manuscript’s exact endpoint physics (no fitted parameters),
and on the exact implicit relationship (A1-2).

This crossover has a clear physical interpretation: it marks the transition from the regime
where crest (small-flow depth) physics controls the response to the regime where the
deep, well-wetted behavior dominates. Below O*nt, hence § < Bint, the square-root onset
captures the flow most faithfully; above Q*mt, hence > Bint, the full-flow depth trend is

the better descriptor. Practically, O*nt defines a convenient switch point for a piecewise
explicit rule, as defined by Eq. (A1-10). At the switch, the two independent asymptotic
descriptions agree, so the local errors are small and balanced.

The intersection also provides a useful design and computation threshold. In dimensional
terms, it corresponds to the following when considering Eq. (A1-1):

Ot =4b\/£(2a)3/2 01 (Al-11)
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Omt is the actual at which the two endpoint-based, explicit f/—Q* formulas predict the
same nondimensional depth f; concretely, t’s defined by setting O = O*nt in the exact

relationship (A1-2), where Q*y is the constant given by Eq. (A1-8), i.e., 0.0835, and fint
=0.461 according to Eq. (A1-9). Substituting the value 0.0835 in Eq. (A1-11) yields the
following:

O =0334b\2g (2a)’" (A1-12)
The corresponding depth is as follows:

My =20y, (A1-13)
Inserting the result given by Eq. (A1-9) into Eq. (A1-13) yields what follows:

hInt =0.9222a (A1-14)

Ot corresponds also to a flow depth of roughly 46% [Eq. (A1-9)] of the opening height.
That single number is an excellent initial guess if one then refines £ by solving the exact
implicit equation; a single safeguarded Newton step typically suffices, since the rating is
monotone and smooth. Finally, admissibility of the right-hand side is immediate from the
kernel’s endpoints: O* must lie in [0, 4/15]; this quick check screens inputs before
computation and ensures a unique, physically meaningful solution for f.

Sanity checks and range

Because 0 < f < 1 and Y¥(1) = 4/15, the right-hand side of the implicit Eq. (A1-2) must
satisfy 0 < O* < 4/15. This bound is convenient for quick consistency checks before
solving or applying the approximations. The underlying discharge relationship is
differentiable in closed form and exhibits positive elasticity throughout the range, so, the
f-solution corresponding to a given Q* is unique, with good numerical conditioning for
any optional refinement by a single Newton step. The analysis below corroborates the
preceding statement.

The admissible values of O* are constrained by the kernel’s endpoint physics in the paper,
ie:ias B — 0, W(B) ~ (/8) x \B, so f2x¥(B) — 0; at full height # = 1, ¥(1) = 4/15,
giving **x¥(B) = 4/15. Hence, a solvable Eq. (A1-2) right-hand side must lie within
[0,4/15]; otherwise, no S € [0, 1] can satisfy the equation.

Role in implementation
The two explicit formulas, (A1-5) and (A1-6), are accurate near their respective endpoints
and serve as excellent starting values for solving the exact implicit equation if a fully

exact f is desired. The manuscript’s Euler—Beta representation of ¥ ensures a closed,
uniformly valid evaluator, and the accompanying Padé surrogate tracks it with a
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maximum uniform kernel deviation of about 0.04%, so a one-step refinement achieves
essentially exact f while remaining computationally trivial.

THEORETICAL APPENDIX A2

For a circular sharp-crested weir of diameter D, it was shown by Amara and Achour
(2021e) that the application of the energy equation between an upstream flow cross-
section, in the rectangular approach channel of width B, and the weir crest, where the flow
is in a critical state, yields the following dimensionless relationship:

3 6/5 1

i3 _(_j T =0 (A2-1)
2 2 (1+P*)

where:

hf = hl/hlc (A2-2)

h 1/6
D| "™
_DP 7 (A2-3)
P =P/h, (A2-4)

%
P is the dimensionless vertical contraction index parameter.

On the other hand, using the affinity propriety between ellipse and circle, one may replace
the diameter D by the following:

2\Jab

Thus, Eq. (A2-3) reduces to the following:

1/6
w =25 N (A2-5)
B \/ﬁ

Eq. (A2-5) can be rewritten in the following final form:

5/12 176
_~-1/6 2 a ﬁ A2-5
v=2"(Z5) (b} s

It is emphasized to note that the ratio 25/B is the dimensionless lateral contraction index
parameter.
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It is worth mentioning that this substitution is authorized by the fact that, in a critical
regime, Q%/g is proportional to 4> as a dominant geometrical characteristic, where Q and
A denote the discharge and the cross-wetted area, respectively. Thus, it is legitimate to
privilege the equality of areas between the two cross-sections more than other
characteristics. It is clear that a certain deviation from the exact relationship for the critical
depth in the elliptical cross-section occurs, but this deviation will be dampened in the
sense that a free correction function will be added at the end, to account for all the
simplifying hypotheses introduced in the Cy derivation process.

Approximate solution

Eq. (A2-1) can be written in the following form:

3 —en?l+ =0 (A2-6)
where:
3 6/5
Q= bJ y 3 (A2-7)
and
1
A=z—r—— (A2-8)
2(1+P*)

Due to its implicit form, no closed form solution could be found. However, using
perturbation method, it is possible to obtain an approximate solution to a suitable order
for Eq. (A2-6). The application of the perturbation theory gives then the following second

*
order approximation for the relative upstream flow % :

(A2-9)

| =0.5556" = + 047619 " +
4

1073 40/21
»

2473 219721 (/1}1/21
®

Thus, given the values of both ¢ and 4, h*1 is then worked out from Eq. (A2-9).

Stage-discharge and discharge coefficient relationships
The discharge O law may be written as follows (Amara and Achour, 2021e):
0= B\[g p52 (A2-10)

T *3/2 1
3 2h,
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or as in the following form:

\/_ B \/E 5/2 (A2-10a)

2 h*3/2h 1

After rearrangement, Eq. (A2-10a) can be rewritten as follows:

|2 _
) *3/2\/_ pS/2 (A2-10b)

~ (2b/B)(, 1)

Eq. (A2-10b) adopts the canonical stage—discharge form for a weir, which reads as
follows:

0=c,2gh3"” (A2-11)

where Cy is the discharge coefficient of the weir, expressed as follows:

\/5 (A2-12)

(267 B)(hy /b) R

C, =

Eq. (A2-12) is the governing Cy-formulation for the elliptic weirs’ geometry. In light of
this equation, the following observations merit emphasis:

(a) Consistent with dimensional analysis, the discharge coefficient Cy is affected by /41/b
rather than //B. In addition, the reliance of Cy on //b follows directly from Eq. (A2-12),
and indirectly through ¢ and y, as established by Eqs. (A2-7) and (A2-5a).

(b) The discharge coefficient C; depends on the dimensionless lateral-contraction index
2b/B, directly via Eq. (A2-12), and indirectly through w and h*1 , as established by Egs.
(A2-5a) and (A2-9), respectively.

(c) The discharge coefficient C; depends on the dimensionless vertical contraction index
parameter P* = P/h;, implicitly through 1 and h*l as it can be seen in Egs. (A2-8) and
(A2-9), respectively.

(d) The lateral and vertical contraction index parameters affect the discharge coefficient
Cq separately, contrary to the prediction of dimensional analysis, which indicates that
these two influential parameters should be combined into a single compound parameter,
such as the following:

2b/B
= (A2-13)
1+ P/h1
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