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ABSTRACT 

This paper provides an exact foundation and uniformly high-accuracy formulas for the 

critical depth in trapezoidal channels. Beginning with the dimensionless critical-flow 

condition, the problem is recast as an exact map η = z(ξ) [Eq. (5)], whose unique physical 

root can be characterized either as the positive zero of a trinomial sextic [Eq. (5a)] or 

through rigorous inverse-function representations, i.e., residue integrals and Lagrange–

Bürmann expansions, thereby establishing a machine-precision “ground truth” and 

clarifying why elementary radicals are unavailable. To convert this exact theory into a 

practical computation, a fifth-root normalization is introduced [Eqs. (5i) – (5j)], reducing 

the problem to a strictly monotone, single-unknown relation [Eq. (5k)]. From this 

normalized equation, the authors derive a reduced form [Eqs. (5n) – (5o)] and construct 

a closed-form rational seed u0(C) [Eq. (5p) with coefficients in Eq. (5q)] that 

approximates the exact root with sub-0.002% worst-case deviation over the broad range 

ξ ∈ [0.001,1000]; the worst case occurs at ξ = 0.001; a single Newton/Halley correction 

[Eq. (5r)] then recovers near machine precision across the full range, as documented by 

the tabulated examples. This yields a quasi-exact, one-step workflow that requires neither 

charts nor special functions and is robust at both shallow and deep ξ limits. In parallel, 

for non-iterative spreadsheet use, a single blended explicit formula for z(ξ) is developed 

by asymptotically correct small- and large-ξ branches merged with a smooth Hill-type 

switch [Eqs. (6) – (9)]. The base blend achieves uniform, sub-6.5×10−5 % deviations on 

the restricted range ξ ∈ [0.001,100] and remains highly accurate within the broad range ξ 
∈ [100,1000]; a minimal deep-branch enrichment further flattens the far tail.  

For readers who prefer a direct depth formula, the paper introduces an explicit η(ξ) 

relationship obtained via a well-conditioned change of variables and a controlled 

asymptotic–Taylor construction; the final expression [Eq. (37)] is quasi-exact for ξ ∈ 
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[0,1000], with a worst-case relative deviation of about 7.1×10−6 % at ξ = 50. An analytic 

mapping quantifies how errors in z propagate to η and design variables [Eq. (17)], 

ensuring that numerical accuracy translates transparently to hydraulically meaningful 

quantities.  

Collectively, the exact map, and proofs of uniqueness, the normalized one-unknown route 

culminating in the explicit seed u0 [Eq. (5p)] plus a single corrective step [Eq. (5r)], the 

blended z(ξ) approximation, and the direct explicit η(ξ) formula [Eq. (37)] deliver a 

verification-driven, implementation-ready toolkit that replaces legacy trial-and-error 

procedures with fast, stable, and reproducible computation over the entire operating 

range.  

Keywords: Critical depth; Trapezoidal channel; Explicit formula; Exact implicit 

mapping; blended (composite) approximation; Hill switch; asymptotic matching; error 

bounds; non-iterative computation. 

INTRODUCTION 

Critical-flow phenomena are central to open-channel hydraulics because, for a fixed 

cross-section, discharge and depth are in one-to-one correspondence. In the classical 

view, the critical state occurs when the specific energy attains a minimum for a given 

discharge, or equivalently, when the discharge is maximized at fixed specific energy, and 

it coincides with a Froude number of one (Hager, 1985; Chow, 1959). This criterion 

underpins practical determination of the critical depth and, in turn, the identification and 

classification of subcritical (calm) and supercritical (shooting) regimes (Hager, 2010; 

Achour and Amara, 2020a; Achour and Nebbar, 2015). 

Recently, studies reconceive critical flow in some channels’ profiles by integrating 

channel slope, wall roughness, and fluid viscosity into a single, coherent analytical 

framework. It forges an implicit, dimensionless relationship by coupling the critical-flow 

condition with a general discharge law, thereby making the influence of viscosity 

operational through a modified Reynolds measure. When applied across smooth, 

transitional, and fully rough turbulent regimes, the framework shows that critical flow is 

not inherent to the geometry; it emerges only when the slope exceeds a definable 

threshold. Below that threshold, the reach cannot attain criticality and remains 

unequivocally subcritical regardless of discharge, a conclusion that directly informs 

design and rating strategies. Above the threshold, the analysis reveals a bifurcation: two 

distinct critical states can exist, one at shallow depths and another at greater depths, each 

corresponding to different operational discharges. Absolute roughness raises the slope 

required to trigger criticality compared with a smooth surface, while viscosity acts as a 

secondary modifier that is most visible in the transitional regime. The studies provide 

implementable graphs that relate relative critical depth to relative normal depth over a 

range of slopes, furnishing practitioners with a clear diagnostic of regime shifts. 

Validation via the specific-energy criterion corroborates the predicted critical points and 

the existence of dual critical states at higher slopes, reinforcing the internal consistency 

of the approach. By treating geometry and flow parameters on equal footing, the work 
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replaces ad-hoc chart methods with a reproducible, parameter-aware procedure that is 

ready for engineering use. Taken together, these results supply a rigorous basis for field 

assessment and future extensions, clarifying when a parabolic channel can sustain critical 

flow and when it fundamentally cannot (Achour and Bejaoui, 2006; Lakehal and Achour, 

2017; Nebbar and Achour, 2018; Achour and Amara, 2020b; 2020c; 2020d; Sehtal and 

Achour, 2023; 2024).  

Closed-form, analytic expressions for the critical depth are available for a few canonical 

shapes, notably triangular, rectangular, and parabolic sections (Chow, 1959; Wong and 

Zhou, 2004; Achour and Khattaoui, 2008). For many other geometries, however, the 

governing relation is implicit, so practitioners historically relied on charts, trial-and-error 

searches, or iterative schemes with limited accuracy (Liu et al., 2012). Foundational 

graphical methods were produced for circular and trapezoidal channels (Chow, 1959; 

Henderson, 1966; French, 1987), and many works has furnished explicit formulae for a 

variety of profiles, including circular conduits, trapezoids, rounded-bottom, egg-shaped, 

and semi-elliptical sections (Swamee, 1993; Swamee and Rathie, 2005; Liu et al., 2012; 

Li et al., 2012; Vatankhah and Easa, 2011; Cheng et al., 2018; Shang et al., 2019). 

Most treatments infer the critical depth solely from the critical-flow relationship and, in 

doing so, do not explicitly incorporate the effects of bed slope, wall roughness, or fluid 

viscosity. Complementary studies have begun to address these physical influences in both 

conduits and channels (Achour and Amara, 2020a; 2020b; Hachemi-Rachedi et al., 2021). 

Determining the critical depth in open-channel hydraulics is central to both theory and 

practice, underpinning tasks such as backwater-curve computations, flow measurement, 

and many design checks (Chow, 1959). For non–power-law sections, and in particular for 

trapezoidal geometries, the governing relation between discharge and depth is implicit, 

so routine calculations typically rely on iteration or elaborate trial-and-error procedures. 

Beyond purely empirical explicit formulas based on curve fitting, several analytical 

strategies have been advanced to “invert” the implicit relation. A direct closed-form 

expression built on a nested-iteration idea was proposed by Wang (1998). Using Lagrange 

inversion, Swamee and Rathie (2005) obtained an explicit series whose convergence is 

provably slow, while Varandili et al. (2019) expressed the solution through nested 

radicals, with accuracy controlled by the number of radical levels retained. Asymptotic 

matching has also yielded compact explicit approximations for related normal and critical 

depths (Swamee, 1994; Vatankhah, 2013). Motivated by the need for an exact yet easy-

to-evaluate formula, Amara and Achour (2023) adopted a δ-perturbation framework 

(Bender et al., 1989) to construct a globally convergent series that recovers the critical 

depth without iterative loops. The approach is straightforward to implement, and, when 

truncated, already delivers engineering-grade accuracy; its convergence properties can be 

established with standard ratio tests (Kreyszig, 1979). Representative canal examples 

documented by Elhakeem (2017) illustrate the practicality of such explicit expressions. 

The chief aim of this work is to obtain an quasi exact, implementation-ready 

characterization of the critical depth in trapezoidal channels and, on that basis, to deliver 

explicit, non-iterative formulas that achieve engineering-grade accuracy across a broad 
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operational range of the governing parameter ξ. Specifically, the authors (1) recast the 

critical-flow condition into a compact implicit relationship in dimensionless variables 

[Eq. (4)], (2) transform it to an exact mapping η = z(ξ) [Eq. (5)], and (3) construct explicit 

approximations for z(ξ) that are uniformly accurate on wide, and practically relevant, 

intervals of ξ. The overarching objective is a pair of tools, quasi exact and explicit, that 

can be used interchangeably: the exact form as a standard of truth, and the explicit form 

as a fast surrogate for routine design and analysis.  

Starting from the critical-state balance [Eq. (1)] and the geometry of the trapezoid [Eq. 

(2)], the authors introduce the dimensionless groups [Eq. (3)] and derive the implicit 

critical-depth relation [Eq. (4)]. By appropriate variable changes, this relation is rewritten 

as the exact η-map [Eq. (5)]. The authors then design a blended explicit approximation 

z0(ξ) [Eq. (6)] that merges rigorously built small-ξ and large-ξ branches with a smooth 

Hill-type switch [Eqs. (7) - (9)], producing a single formula that inherits the correct 

asymptotic at both ends of the ξ-range and remains accurate in the transition. The 

admissible ξ-range for general use is specified in Eq. (10), and accuracy guarantees are 

quantified by provable bounds on the maximum and mean relative error [Eqs. (11) - (12)]. 

For applications requiring even tighter tolerances on ξ ∈ [0.001, 100], an enhanced blend 

[Eqs. (13) - (16)] is provided together with tabulated and graphical error audits (Tables 

1–2; Figs. 1–3).  

The method is deliberately asymptotic-aware and verification-driven. By forcing each 

branch of z0(ξ) to reproduce the exact endpoint behaviours embedded in Eq. (5), the 

blended model attains second-order, or higher, matching near the extremes, while the Hill 

switch ensures a smooth, well-conditioned transition across the interior. Error 

propagation from z to η is formally tracked [Eq. (17)] and validated on representative test 

points [Eqs. (18) - (24)]. The result is a pair of expressions, quasi exact and explicit, that 

are monotone, rapidly evaluable, and uniformly accurate, avoiding the use of approximate 

fitted relationships, eliminating trial-and-error or iterative solvers and enabling robust, 

spreadsheet-level deployment in practice.  

ANALYTICAL SOLUTION FOR CRITICAL FLOW DEPTH IN TRAPEZOIDAL 

CHANNELS 

Governing balance and geometry 

For a trapezoidal channel of bed width b and side slope m, m horizontal to 1 vertical, the 

critical state follows from the equality of mean velocity and wave celerity (Chow, 1959): 

2 3

cos

Q A

g T




=           (1) 

with energy-correction factor α ≈ 1 in practice, Q the discharge, g the acceleration due to 

gravity, A the wetted area, and T the top width. For a trapezoid, and denoting hc as the 

critical flow depth, the following can be written: 
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2
c cA bh mh= + ,   2 cT b m h= +            (2) 

Dimensionless parameters 

Let’s introduce the following dimensionless parameters: 

cm h

b
 =         (3a) 

3 2

5 cos

m Q

g b



=                       (3b) 

Substituting Eq. (2) into Eq. (1), and simplifying, leads to the following compact implicit 

relationship, where ξ is the known parameter: 

( )
3

2

1 2

 




+
=

+
          (4) 

Using appropriate mathematical manipulation, notably by performing variable changes, 

Eq. (4) can be written in the following exact form: 

( )
( )
4

1 1

2

z 
 

+ −

=           (5) 

Once η is calculated, Eq. (3a) allows deducing the critical depth sought hc, since the 

parameters m and b are given. 

EXACT SOLUTION 

Exact characterization of the physical root: Sextic formulation and analytic 

inversions 

An everywhere-valid exact form for z(ξ), i.e, for any ξ, does exist but only implicitly, e.g., 

as the unique positive root of the following trinomial sextic: 

6 2 24 0   − − = , with 1/ z =         (5a) 

or via inverse-function contour integrals and hypergeometric/Appell inversions; so, it is 

mathematically exact yet algebraically unwieldy for routine use; accordingly, the authors 

recommend the single blended explicit approximation in Eq. (6), which is non-iterative, 
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preserves the correct shallow- and deep-ξ asymptotic of the exact map, and delivers 

uniform, very small errors across the entire operating range. 

However, for users who want the exact solution of z, they will find it below. The “exact 

solution” originates from standard results in analysis and algebra for inverting a one-

variable algebraic map. First, by rewriting the problem as a monotone algebraic equation 

in a single positive unknown, existence and uniqueness of the physical root follow 

directly from monotonicity and the Intermediate Value Theorem; smooth dependence on 

the parameter is then guaranteed by the Implicit Function Theorem. Next, two rigorous 

inversion mechanisms provide exact representations: a global contour-integral form 

obtained via Cauchy’s Residue Theorem and the Argument Principle, which returns the 

root as the residue of a meromorphic integrand over a small loop encircling it, and local, 

but exact power-series expansions delivered by the Lagrange–Bürmann Inversion 

Theorem about natural anchor points, with coefficients expressible in Beta/Gamma 

functions and extendable by analytic continuation. After a rational change of variables, 

these series can be written equivalently in terms of Gauss hypergeometric and Appell 

functions, whose standard continuations furnish a single global expression. Finally, 

classical Galois theory (Abel–Ruffini) explains why no finite radical’s formula exists for 

the underlying trinomial sextic, which is why the special-function and contour 

representations are the mathematically exact, albeit algebraically unwieldy, form of the 

solution. 

Contour-Integral evaluation of the exact root: Practical procedure 

The exact solution of Eq. (5a) can be derived as follows: 

( )
( )

( )

' ,1

2 ,
u d

i 

  
 

  


=

         (5b) 

( ): ic e    = + , 0 2           (5c) 

 is a small positively oriented circle enclosing only the positive real zero. 

( ) ( )5
6 2

1
, 1

4
   


 = + −         (5d) 

( ) 5 4' 6 5   = +         (5e) 

( )  is just a way to trace the closed contour used in the contour-integral formula for 

the root; we take a simple circle so readers can picture it. Concretely, setting the 

following: 

( ) ic e   = + , with 0 2   , 0c         (5f) 
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is the circle’s centre on the real axis and  

0   

is its radius.  

“Positively oriented” means ϑ increases from 0 to 2π, so the path goes counter-clockwise. 

Choose c and ρ so that the circle encloses exactly the desired positive real zero of Φ and 

no other zeros, and also so that Φ[ζ(ϑ)] ≠ 0for every ϑ (no pole sitting on the path). With 

those conditions, Cauchy’s residue theorem guarantees the integral equals the enclosed 

root, and by contour-deformation invariance the value does not depend on the particular 

c, ρ as long as the circle keeps winding once around that root only. For numerical 

evaluation, sample ϑ uniformly on [0, 2π [, compute ζ(ϑ) and the integrand at those points, 

and apply the trapezoidal rule; using a circle is convenient because the integrand is 2π-

periodic and analytic on the path, so the trapezoidal rule converges very fast. Finally, ζ is 

a dummy variable along the path; do not set ζ equal to the unknown root u inside the 

integrand; this is Because ζ is the dummy integration variable tracing the contour, while 

u is the unknown root sought. At ζ = u the denominator Φ(ζ) vanishes, so the integrand 

( )

( )

'
 






        (5g) 

has a simple pole and is not defined; the user must encircle that pole, not evaluate the 

integrand at it. The contour integral equals the residue at ζ = u by Cauchy’s theorem, 

which is determined by the coefficient of: 

( )
1

u
−

−         (5h) 

not by plugging ζ = u. Setting ζ = u would also collapse the path to a point and destroy 

the winding needed for the argument principle; numerically, it would place quadrature 

nodes on a singularity and break convergence. Hence ζ must remain distinct from u, and 

the contour must loop around u without passing through it. 

Thus, as noted earlier, obtaining the exact solution is laborious and unwieldy. 

Nevertheless, the next section furnishes users with a swift and virtually exact method of 

calculation. 

Derivation of the quasi-exact solution  

Below is a numerical example on how deriving the quasi-exact solution, for ξ = 0.001, 

taken as an example. 
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Normalization by a fifth-root scaling 

First, let’s setting the following: 

( )
1/5

24y =                        (5i) 

yu =         (5j) 

Substituting Eq. (5j) into Eq. (5a) yields the following: 

( )
6

1/5
6 2

1

4

u u



− =                 (5k) 

Eq. (5k) can be rewritten in the following form: 

( )
( )

5

1/5
6 2

1
1

4

u u



− =          (5l) 

Once u is found, recover z via Eqs. (5a), defining the link between ω and z, and (5i), such 

as the following: 

( )
1/5

2

1 1 1

4

z
yu u 

= = =        (5m) 

In-depth computation procedure 

Compute y using Eq. (5i), and the right-hand side of Eq. (5l). The following can be 

written: 

2 6
0.001 10  −=  =

 

( ) ( )
1/5 1/5

2 2
4 0.001 0.0832553214y  = = =

 

( )
( ) ( )

1/5 1/5
6 2 6 2

3.00281108

4 4 0.001

1 1
C 



= = =



  

The normalized one-unknown relation introduced in Eq. (5k) turns the critical-depth 

problem into solving a strictly monotone scalar equation with a unique physical root. In 

that setting, the only practical choice left is how to initialize the iteration so that 

convergence is both immediate and numerically safe across all operating conditions. To 
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that end, we propose a single, closed-form rational seed u0(C) expressed in terms of the 

dimensionless parameter C(ξ) appearing in Eq. (5k), and which is the last term of Eq. 

(5d). Unlike piecewise or regime-specific starts, this uniform seed requires no switching, 

remains well-conditioned at the shallow- and deep-ξ extremes, and lands within a tight 

neighborhood of the exact root for every ξ in the paper’s restricted and broad ranges. In 

practice, one Newton (or Halley) step from this seed attains machine precision; if desired, 

the seed alone already delivers sub-engineering-tolerance accuracy and can be used 

directly in spreadsheet implementations. 

Conceptually, the construction balances two truths encoded by Eq. (5k): the solution 

behaves “close to one” when the parameter is small and grows like a mild power of C 

when the parameter is large. The rational form captures both behaviors smoothly and 

suppresses the interior mismatch that usually degrades global fits. The result is a single 

evaluation, no tables, charts, or trial-and-error, that is robust to rounding of coefficients, 

stable under double-precision arithmetic, and portable to any platform. In the sequel, the 

authors document the uniform bound achieved by the seed, illustrate its near-identity with 

the exact root on representative test points, and show how one corrective iteration 

recovers the reference solution to floating-point round-off. 

Let’s recall Eq. (5k) as follows: 

( )
6

1/5
6 2

1

4

u u



− =         (5k) 

It can be rewritten in the following reduced form: 

( ) ( )6F u u u C = − −         (5n) 

where: 

( )
( )

1/5
6 2

1

4

C 



=         (5o) 

Eq. (5n) admits an approximate root u0(C), which can be written as follows: 

( )
2 3

0 1 2 3

0 2 3
1 2 31

a a a a
u

b b b

t t t
t

t t t

+ + +
=

+ + +
        (5p) 

where: 

1 /6Ct =         (5q) 
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The coefficients in Eq. (5p) are as follows: 

0 0.99323a =
; 1 1.783111a = −

; 2 1.266808a =
; 3 0.208238a = −

 

1 1.828951b = −
; 2 1.379147b = −

; 3 0.313409b = −
 

In-depth calculation shows that the maximum deviation between exact u-values and the 

approximate u0-values is strictly less than 0.0018 %, within the full range ξ[0.001, 

1000]; the worst case occurs at ξ = 0.001, with a deviation of 0.0017644 %. 

If the users need a smaller maximum deviation, the following one-step iteration 

(Newton/Halley) is an appropriate procedure: 

6
0 0

1 0 5
06 1

u u C
u u

u

− −
= −

−
         (5r) 

The maximum deviation between exact u-values and the approximate u1-values, given by 

Eq. (5r), is strictly less than 
8

8.2 10
−

  %, within the full range ξ[0.001, 1000]; the 

worst case occurs at ξ = 0.001, with a deviation of 
8

8.18846 10
−

 %. 

For the considered example, the following steps must be followed. 

Eq. (5p) gives the following: 

( )
( )

1/5
6 2

3.00281108
1

4

C 



= =

 

0 1.27407573u =
 

On the other hand, exact calculation on Eq. (5n) provides the following: 

exact 1.27405325u =
 

Thus, the deviation is as follows: 

1.27407573 1.27405325
100 0.0017644

1.27405325
%

u

u

−



= =

 

Furthermore, Eq. (5r) gives the following result: 

1 1.27405325u =
 

which is exactly the sought exact value of u overmentioned.  
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Regarding the end-point of the admissible range, i.e., ξ = 1000, calculations yield the 

following: 

( )
( )

1/5
6 2

0.01195 1

4

44
1

C 



= =

 

0 1.00236644u =
 

exact 1.00237392u = , from Eq. (5n) 

Thus, the deviation is as follows: 

1.00236644 1.00237392
100 0.00074584

1.00237392
%

u

u

−



= =

 

Recover z as the following: 

( )
1/5

2

1
9.42758424

0.083255321 1.27405325

1 1 1

4

z
yu u  

= = = = =

 

For ξ = 0.001, Table 2 gives the exact z-value as follows: 

exact

9.427584261721z =
 

Thus, our calculation produces the following relative error: 

9.427584261721

9.427584261721

9.42758424
100

z

z

−



=

 

The final result is as follows: 

7
2.304 10 %

z

z

−
 



 

Thus, this deviation is more than acceptable; it is negligible. 

Once z is determined, the parameter η, defined in Eq. (3a), is then worked out using Eq. 

(5), hence the critical flow depth sought hc.  

Table 1 provides the deviations (%) between u(exact) and u0, and between u(exact) and 

u1, confirming the reliability of the advocated procedure. 
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Table 1: Deviation (%) between u(exact) and u0, and between u(exact) and u1 

computed using one step iteration (Newton/Halley), Eq. (5r) 

  (exact)u  0u  
1u  

Deviation (%) 

(exact)u / 0u  

Deviation (%) 

(exact)u / 1u  

0.001 1.27405325 1.27407573 1.274053248 0.0017644 8.1885E-08 

0.0015 1.24933716 1.24932916 1.24933716 0.00064043 1.0841E-08 

0.002 1.2326826 1.2326723 1.232682602 0.00083599 1.8553E-08 

0.0025 1.22026792 1.22026079 1.220267916 0.00058389 9.0738E-09 

0.003 1.21045038 1.21044712 1.210450377 0.00026931 1.9327E-09 

0.004 1.1955539 1.19555678 1.195553905 0.00024087 1.5488E-09 

0.005 1.18449829 1.18450484 1.184498294 0.00055286 8.2323E-09 

0.0075 1.1655165 1.16552596 1.165516496 0.00081185 1.7861E-08 

0.01 1.15290542 1.15291414 1.152905424 0.0007559 1.5538E-08 

0.015 1.13631824 1.13632325 1.13631824 0.00044109 5.3131E-09 

0.02 1.12537552 1.1253771 1.125375518 0.00014094 5.4222E-10 

0.025 1.11734966 1.11734867 1.117349664 8.8922E-05 2.2106E-10 

0.03 1.11108595 1.1110831 1.111085946 0.00025591 1.7907E-09 

0.04 1.10172844 1.10172341 1.101728441 0.00045646 5.7654E-09 

0.05 1.0949029 1.09489692 1.094902904 0.00054637 8.3353E-09 

0.075 1.08343369 1.08342769 1.083433692 0.00055383 8.5873E-09 

0.1 1.07599714 1.0759923 1.075997142 0.00045024 5.6968E-09 

0.15 1.06645116 1.06644904 1.066451161 0.00019855 1.1139E-09 

0.2 1.06030644 1.06030661 1.060306441 1.6276E-05 1.1476E-11 

0.25 1.05587986 1.05588179 1.055879857 0.00018273 9.2081E-10 

0.3 1.05247357 1.05247683 1.052473569 0.00030942 2.6743E-09 

0.4 1.04746581 1.04747082 1.047465812 0.00047855 6.5687E-09 

0.5 1.04387562 1.04388163 1.043875621 0.0005752 9.5041E-09 

0.75 1.03796493 1.03797178 1.037964933 0.00065965 1.2562E-08 

1 1.03421625 1.03422294 1.034216255 0.00064675 1.2159E-08 
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Table 1 (Continuation and conclusion): Deviation (%) between u(exact) and u0, and 

between u(exact) and u1 computed using one step iteration (Newton/Halley), Eq. (5r) 

  (exact)u  0u  
1u  

Deviation (%) 

(exact)u / 0u  

Deviation (%) 

(exact)u / 1u  

1.5 1.02950334 1.02950888 1.029503336 0.00053852 8.4334E-09 

2 1.02652978 1.02653402 1.02652978 0.00041326 4.949E-09 

2.5 1.02441735 1.02442041 1.024417349 0.00029876 2.5604E-09 

3 1.02280894 1.02281098 1.022808939 0.00019948 1.2432E-09 

4 1.02047165 1.02047208 1.02047165 4.2375E-05 7.7027E-12 

5 1.01881619 1.01881545 1.018816186 7.1959E-05 1.2837E-10 

7.5 1.01612788 1.01612541 1.016127878 0.00024274 1.8835E-09 

10 1.01444709 1.01444382 1.014447092 0.00032297 3.2181E-09 

12.5 1.01326036 1.01325674 1.013260365 0.0003573 3.7048E-09 

15 1.01236089 1.01235719 1.012360894 0.00036623 3.8315E-09 

17.5 1.01164657 1.01164293 1.011646572 0.00036031 3.7365E-09 

20 1.01106019 1.01105669 1.011060186 0.00034545 3.5584E-09 

25 1.01014352 1.01014047 1.010143516 0.00030148 2.7955E-09 

30 1.00944968 1.00944716 1.009449679 0.00024939 1.549E-09 

40 1.00844779 1.00844635 1.008447788 0.00014264 4.985E-10 

50 1.00774275 1.0077423 1.007742748 4.4523E-05 2.7496E-10 

60 1.00720967 1.00721009 1.007209671 4.1487E-05 8.6881E-11 

75 1.00660596 1.00660746 1.006605964 0.00014879 1.9037E-11 

100 1.00590035 1.00590318 1.005900354 0.00028042 2.2143E-09 

1000 1.00237392 1.00236644 1.002373921 0.00074584 1.6769E-08 

ACCURATE APPROXIMATE η-RELATIONSHIPS 

Approximate relationship for the implicit Eq. (5a) 

A more thorough investigation shows that z(ξ), expressed by Eq. (5a) can be replaced by 

the following approximate relationship, that authors derived from purely mathematical 

blended model: 

( ) ( ) ( ) ( ) ( ) ( )0 1 21z z w z w z     =  + −   ,  ( ) 0z             (6) 

( ) 2

0.1

1

1

w 


=
 

+  
 

          (7) 
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( )w  is the smooth weight, switches from small-ξ to large-ξ. It is known as “The Hill 

function”. 

1/3
1/3

1 1/3 2/3

2 10

3 9 1 1.9 0.5
z




 

−= − +
+ +

         (8) 

1/5 4 /5
1/5 2 /5 4 /5 6 /5

2
40 400

2 2
4z   − − − −= − +                         (9) 

It is worth noting that “blended” means a modelling strategy consisting in building a 

single, uniform approximation by blending two simpler formulas with a smooth weight; 

this is often called a blended or composite (uniform) approximation. 

The functions z1 and z2 are built to match the exact limiting behaviours for small and large 

ξ-values. That forces the error to be second-order, or higher, near the endpoints, which is 

exactly what we see numerically. 

The authors chose the blended explicit form in Eq. (6) because the exact map from Eq. 

(5) has two clean, but very different, endpoint behaviours. When ξ → 0, the solution 

scales like z ~ ξ -1/3
. On the other hand, when ξ → ∞, it is like z ~ (4ξ 2)

-1/5
. The constant 

“4” is preserved in this deep-ξ asymptotic; Eq. (6) is built by (1) constructing two simple 

branch formulas z1(ξ) and z2(ξ) that reproduce these exact asymptotic, and their next 

terms, and therefore anchor the solution at both ends, and (2) merging them with a smooth 

Hill-type switch ω expressed by Eq. (7). This function is a single, monotone, non-iterative 

expression that remains accurate through the interior where neither asymptotic dominates; 

this “asymptotic-aware composite” design avoids the oscillations of global polynomial 

fits, respects the product structure of Eq. (5) (hence the constant 4 in the large-ξ branch), 

and yields uniform errors that are provably tiny and empirically single-humped across ξ.  

Accuracy over a large range of ξ 

For engineering use, a very broad and practical range is the following: 

3 3
10 10, − 
          (10) 

Within this range, z varies from z (1000) = 0.047704378 to z (0.001) = 9.427584261. 

Over this range, comparing ( )0z  approximate to the exact root z yields the following 

relevant result: 
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(1) The maximum relative error in z is as follows: 

( ) ( )

( )3 3

0

10 , 10

100 0.0127946 %max
z z

z

 

 
 
 

−

−
=         (11) 

This corresponds to the worst case occurring nearby 0.0316  , where: 

( )0 0.0316 2.720825587563z = vs exact ( )0.0316 2.720477513270z =  

(2) The mean relative error in z is as follows: 

3 310 , 10

0.0031mean %
  

 
 

−
         (12) 

For reference, at ξ = 10, this approximation gives the following: 

( )0 10 0.29741434z =  versus exact ( )10 0.29741208z =  

Thus, the relative error is 0.00075989 % 

In addition, calculation found that exact η spans roughly 0.096717 for the shallow range-

end ξ = 0.001, to 4.1057 for the deep range-end ξ = 1000. For these extreme values 

corresponds to the following: 

( )0 0.001 9.427583220898z = , versus exact ( )0.001 9.427584261721z =  

( )0 1000 0.04770438753218499z = , versus exact 

 ( )1000 0.04770437855694306z =  

Thus, for the shallow range-end, the relative error on z is as follows: 

 
59.427583220898 9.427584261721

100 1.10402 10 %
9.427584261721

z

z

−
 

 −
= =  

Also, for the deep range-end, the relative error on z is as follows: 

0.04770438753218499 0.04770437855694306
100

0.04770437855694306

z

z


 −
=

 

The final result is as follows: 

5
1.88143 10 %

z

z

−
= 
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These results confirm that the approximate explicit Eq. (6) is extremely accurate at both 

ends of the practical range of ξ. 

To better appreciate the deviations within the admissible range for ξ, Table 2 and Fig. 1 

illustrate the distribution of deviations in the calculation of z. 

Table 2: Deviation (%) between exact z-values and approximate z-values computed 

using Eq. (6), within the admissible range 
3 3

10 , 10 −      

  z Exact 0z Approximate Deviation (%) 

0.001 9.427584261721 9.427583220898 0.0000110402 

0.0316 2.720477513270 2.720825587563 0.0127946 

100 0.119407894512 0.119408101897 0.000174 

200 0.090621270632 0.090621355158 0.000093 

300 0.07710478376 0.077104797300 0.000063 

400 0.068751751230 0.068751784151 0.000048 

500 0.062899151912 0.062899176020 0.000038 

600 0.058487983310 0.058488001954 0.000032 

700 0.054999990248 0.055000005226 0.000027 

800 0.052146717136 0.052146729511 0.000024 

900 0.049752773288 0.049752783737 0.000021 

1000 0.047704378557 0.047704387532 0.000019 

 

 
Figure 1: Deviations (%) between exact z-values and approximate z-values 

computed using Eq. (6) within the admissible range of  0.001, 1000   

It is emphasis to note that Eq. (6) is largely accurate over the range ξ [100, 1000], 

according to Fig. 2. However, the accuracy can be improved by adding one term to the 

function ( )2z  , such as 
8 /5a −

. 
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Figure 2: Deviations (%) between exact z-values and approximate z-values 

computed using Eq. (6) within the broad range of  100, 1000   

Fig. 2 provides a broad-range behaviour for Eq. (6) on the whole range [100,1000]. 

(a) Largely accurate, improvable deep-range tail 

Over ξ ∈ [100,1000], the base blend (Eq. 6) remains highly accurate, though the figure 

makes clear that adding one deep-branch term (as suggested in the text) would flatten the 

residual further in this regime. That recommendation is method-consistent: enrich only 

the branch that governs the observed tail, keep the switch unchanged, and avoid 

overfitting the interior.  

(b) Continuity with the restricted model 

Together, Fig. 2 (broad range) and Fig. 3 (restricted range) show the same qualitative 

residual shape, reinforcing that the error control stems from the blend architecture rather 

than ad-hoc tuning. 

Approximate ( )0z  relationship within the restricted range ξ[0.001, 100] 

Fig. 1 clearly shows that the largest deviations in the estimation of z occur for the smallest 

values of ξ, practically belongs to the interval [0.001, 100]. Thus, if the user requires a 

smaller maximum deviation within the previous restricted range, due to a problem that 

necessitates greater precision, the following relationship can be very helpful, while 

reconsidering the blended form as in Eq. (6): 

( ) ( ) ( ) ( ) ( )0 1 21z w z w z    = + −           (13) 
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where: 

( )
1

1

w 






=
 

+  
 

               (14) 

1/3
1/3

1 1/3 2/3
1

c
z a

e g




 

−= + +
+ +

                (15) 

2 /5 4 /5 6 /5 8 /5
2z i k n q   − − − −= + + +         (16) 

The coefficients were obtained by a weighted least-squares fit that minimizes relative 

error of the blended z0(ξ) against the exact root. They are given as follows: 

with: 

0.0503521 = ; 1.63374 = 0.710002a = − ; 0.717425c = ; 1.49524e = ; 

0.0699589g = − ; 0.757858i = ; 0.0287123k = − ; 0.0042281n = ; 

0.000525252q =  

 

Within the checked restricted range ξ [0.001, 100], the maximum relative error in z is 

as follows, occurring at the worst case ξ ≈ 8.4573: 

( ) ( )

( )
0

0.001, 100
100 0.00006427%max

z z

z

 

 
 



−


 

To allow users better appreciation of the deviations produced by Eq. (13), the authors 

compiled the data presented in Table 3, while Fig. 3 depicts the distribution of these 

variations within the considered range ξ [0.001, 100]. 

Table 3 conveys what follows: 

(a) Meets the tighter spec with margin 

Across ξ ∈ [0.001, 100], every listed deviation is ≤ 6.43×10−5 %. The Table therefore 

certifies the relevant blended model on the whole restricted range. 

(b) Very small errors at both ends 

At the shallow end, ξ = 0.001 gives 0.00003199 % deviation, while at the deep end, ξ = 

100 gives 0.00004455. That symmetry-tiny at both ends and slightly larger in the middle, 

is exactly what the authors want from a well-tuned blend: each branch is extremely 

accurate in its home regime, and the blend keeps the middle under tight control.  
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(c) A smooth, single-hump profile across the Table  

From ξ ∼ 0.001 up to ∼10, the deviations rise gently to a broad maximum and then taper 

off again toward ξ = 100. The absence of oscillatory over/undershoots (no “ringing”) is 

strong evidence the coefficients and the switch are well conditioned.  

Table 3: Deviation (%) between exact z-values and approximate z-values computed 

using Eq. (13), within the restricted range ξ   [0.001, 100] 

  z Exact 0z Approximate Deviation (%) 

0.001 9.427584261721 9.427587278065 0.00003199 

0.0015 8.174700316279 8.174702673687 0.00002883 

0.002 7.384561928979 7.384563106796 0.00001595 

0.0025 6.822708330058 6.822708568203 0.00000349 

0.003 6.394292665331 6.394292248016 0.00000652 

0.004 5.770252834009 5.770251727264 0.00001918 

0.005 5.326789810838 5.326788507760 0.00002446 

0.0075 4.603043421107 4.603042449142 0.00002111 

0.01 4.147575680968 4.147575295206 0.00000930 

0.015 3.578092140979 3.578092643587 0.00001404 

0.02 3.220168076266 3.220169001845 0.00002874 

0.025 2.966353438543 2.966354497046 0.00003568 

0.03 2.773268033496 2.773269075302 0.00003756 

0.04 2.492811526875 2.492812378590 0.00003416 

0.05 2.294163639594 2.294164290039 0.00002835 

0.075 1.971338298791 1.971338686867 0.00001968 

0.10 1.769199809366 1.769200161944 0.00001993 

0.15 1.517785944340 1.517786389595 0.00002933 

0.20 1.360644290668 1.36064481970 0.00003888 

0.25 1.249676184478 1.249676758513 0.00004593 

0.30 1.165543003717 1.165543596265 0.00005084 

0.40 1.043816477452 1.043817067584 0.00005653 

0.5 0.957968535724 0.957969103461 0.00005926 

0.75 0.819182780960 0.819183283818 0.00006138 

1.00 0.732785121139 0.732785572770 0.00006163 

1.50 0.625927078126 0.625927463460 0.00006156 

2.00 0.559505616820 0.559505962074 0.00006170 

3.00 0.477468785364 0.477469083245 0.00006238 

4.00 0.426543237864 0.426543506933 0.00006308 

5.00 0.390754658336 0.390754906895 0.00006361 

7.50 0.333131062229 0.333131276194 0.00006423 

10.0 0.297412077054 0.297412267944 0.00006418 

12.5 0.272334675133 0.272334848836 0.00006378 
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15.0 0.253405558808 0.253405718940 0.00006319 

17.5 0.238420705102 0.238420854119 0.00006250 

20.0 0.226151251022 0.226151390698 0.00006176 

25.0 0.207027919469 0.207028044181 0.00006024 

30.0 0.192599353726 0.192599466861 0.00005874 

40.0 0.171834588559 0.171834684708 0.00005595 

50.0 0.157271604843 0.157271688955 0.00005348 

60.0 0.146287633566 0.146287708599 0.00005129 

75.0 0.133876391334 0.133876456186 0.00004844 

100 0.119407894512 0.119407947719 0.00004455 

 

 

Figure 3: Deviations (%) between exact z-values and approximate z-values 

computed using Eq. (13) within the restricted range ξ   [0.001, 100] 

Fig. 3 conveys the following: 

(a) Visual confirmation of a single, broad maximum 

The curve of deviation with respect to ξ shows one smooth hump peaking in the mid-

range and small tails at both ends, mirroring Table 3. This “unimodal” shape is typical of 

composite (blended) formulae when each branch matches the correct asymptotic and the 

soft switch is placed sensibly. 

(b) Blend region drives the peak 

The slight crest near 8 ≲ ξ ≲ 10 is the inevitable place where neither branch totally 

dominates; the tiny residual there, i.e., ∼0.000064 % is proof the switch and the added 

deep-branch term have been tuned about as far as the three/four-term structure can push 

it without overfitting. 

 



Exact, quasi-exact, and explicit unified solution for critical flow depth in trapezoidal 

channels 

363 

Bottom line: Table 3 and Fig. 3 together make a compelling case that the blended z0(ξ) 

achieves uniform, sub-0.000065 % accuracy on [0.001, 100], with a smooth, single-hump 

deviation profile and no spurious oscillations; this is exactly what one hopes to see from 

a carefully tuned, asymptotic-aware composite approximation.  

In addition, the maximum relative error is well beyond typical hydraulic-design needs. 

That accuracy is consistent across the entire restricted range, and there’s no localized 

degradation near the blend region, and the extremes are still exceptionally tight.  

How errors in z map to errors in η 

In-depth exact calculation shows that a relative error in z produces the following relative 

error in η: 

( )% 100
1

1 2

z

z









 +
= 

+
        (17) 

The parameter η in Eq. (17) is the approximate η given by Eq. (5) for z = z0. To check the 

reliability of Eq. (17), one may take the following example. 

Let’s consider the range ξ [0.001, 100], specifically ξ = 3. Table 3 gives the following 

result: 

( )0

app.

3 0.477469083245z =         (18) 

According to Eq. (5), this corresponds to the following: 

0

app. app.

1.03113567z
 

= 
 

        (19) 

On the other hand, Table 3 provides the following: 

( )
exact

3 0.477468785364z =         (20) 

Thus, Eq. (5) gives the following result: 

exact exact

1.0311361z   = 
 

        (21) 

From Eqs. (19) and (21), the following can be written: 

1.03113567 1.0311361
100 0.0000413802

1.0311361
%





−
=  =         (22) 
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In addition, from Eqs. (18) and (20), one may write the following: 

0.477469083245 0.477468785364
100 0.0000623875

0.477468785364
%

z

z

−
=  =     (23) 

Inserting Eqs. (19) and (23) into Eq. (17), yields the following: 

( )
1.03113567

% 100 0.0000623875
1.03113567

1

1 2





 +
=  

+ 
 

The final result is as follows: 

( )% 0.004138022%





=         (24) 

Thus, Eq. (17) reproduces exactly the result given by Eq. (22). This numerical example, 

and many others performed by the authors, corroborates the reliability of Eq. (17). 

Approximate relationship for the implicit Eq. (4) 

As the authors indicated previously, determining the critical flow depth in trapezoidal 

open channels remains a classical yet stubbornly implicit problem: the governing 

relationship, Eq. (4), for the dimensionless depth η and the shape-flow parameter ξ does 

not admit a closed-form solution in its native variables. This note develops a compact, 

high-accuracy explicit approximation for η(ξ) by recasting the implicit equation through 

a judicious change of variables and then applying a controlled asymptotic–Taylor 

construction. The transformation introduces an auxiliary variable that renders the algebra 

tractable, leading first to an implicit relation in the transformed space and, ultimately, to 

a closed-form expression for η suitable for routine engineering use. 

The resulting formula is not merely convenient; it is anchored in the correct physics across 

limiting geometries. In the wide-channel limit, the approximation collapses to the 

classical rectangular-channel expression. In the opposite limit, vanishing bottom width, 

i.e., triangular section, it recovers the well-known triangular-channel critical depth. These 

asymptotes provide transparent checks on both the derivation and the implementation, 

while the intermediate behaviour, relevant to real trapezoidal sections, is captured with 

uniform accuracy over the practical range of η. 

A brief accuracy assessment against numerical (exact) solutions shows deviations on the 

order of 710
−6

 %, which is more than adequate for design, sensitivity analyses, and 

parametric studies. Because the final expression is explicit, it eliminates iterative solves 

within larger workflows (e.g., rating-curve generation or optimization loops), thereby 

reducing computational cost without sacrificing reliability. The remainder of this note 

summarizes the transformation, states the explicit approximation, documents its limiting 

forms, and reports the error characteristics relative to the numerical benchmark. 
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Theoretical development 

Let’s recall that the implicit Eq. (4) as follows:  

( )
3

2

1 2

 




+
=

+
          (4) 

What is sought is the estimation of the dimensionless parameter η for a given ξ, that allows 

deriving the critical depth hc as defined in Eq. (3a). 

It is clear that Eq. (4) is implicit in the sought parameter η. A more suitable relationship 

form for an analytical treatment can be set up with the help of a change of variables. Let’s 

define the following dimensionless parameter X: 

( )
1/3

1 2X = +                      (25) 

From Eq. (25), the following can be written: 

( )31

2
1X = −       (25a) 

Substituting Eq. (25a) into Eq. (4), and after some algebraic manipulations, the following 

can be obtained: 

( )
1/6

1X X= +         (26) 

where: 

1 / 34 =         (27) 

Thus, Eq. (4) can be rewritten in the following form: 

( ) ( )
1/ 6

1 0f X X X= − + =         (28) 

Expanding Eq. (28) in an asymptotic series of X, one may obtain what follows: 

( ) ( )
( ) ( )

1/ 6

5 / 6 11/ 6

1 5
~

6 72
f X X X

X X


 
− − + +          (29) 

It can be observed the following. 

As → , Eq. (29) reduces to what follows: 

( ) ( )
1/ 6

~f X X X−         (30) 
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At this stage, and under the condition→ , one can express the variable X as follows:   

1/ 5X =                                            (31) 

Substituting Eq. (31) in the last term of Eq. (36) yields what follows: 

( )
1/6

6 / 51X = +           (32) 

Now, expanding Eq. (28) in a Taylor series around the approximation given by the Eq. 

(32), the following can be written: 

( )
( ) ( )

0 !n

n n

n

X f
f X

X

a a

n



=

− 
=


          (33) 

where :  

( )
1/ 6

6/51a = +         (34) 

Thus, truncating Eq. (33) to the second order and solving for X, yields the following X 

relationship: 

( )

( )

6 / 5
1/6

5/6
1/6

6 / 5

5 1 6

6 1 1

X
 

  

+ +
=

 
+ + −

  

              (35) 

Substituting Eq. (35) into the right-hand side of Eq. (26), the following final result can be 

written: 

( )

( )

6 / 5
1/62

5/6
1/6

6 / 5

5 1 6
1

6 1 1

X
  

  

+ +
= +

 
+ + −

  

        (36) 

Let’s recall Eq. (25a) as follows: 

( )31

2
1X = −       (25a) 

Thus, the explicit solution for the sought parameter η can be derived straightforwardly by 

substituting Eq. (36) into Eq. (25a), and rearranging, as follows: 
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( )

( )

1 /6
2 6 /5

5 /6
1 /6

6 /5

1/ 2

5 1 61 1

4 2
24 1 1 4

  


  

 
 + +

 + − 
  + + −    

        (37) 

This is the final approximate relationship for the implicit Eq. (4), where φ is solely 

dependent on the known parameter ξ as defined by Eq. (27), recalled below: 

1 / 34 =         (27) 

Accuracy within the full range ξ [0, 1000] 

Table 4 provides the deviation (%) between exact-values of η according to Eq. (4), and 

approximate η-values computed using Eq. (37). This confirms what the authors stated 

previously, i.e., the maximum deviation produced by the approximate Eq. (37) is only 

about 7.110
−6

 %. This worst case occurs at ξ = 50. Eq. (37) can be rightly considered 

as a quasi-exact η-relationship. Fig. 4 depicts the distribution of the deviations according 

to Table 4. 

Table 4 audits the explicit depth formula η(ξ) in Eq. (37) against the exact benchmark 

from Eq. (4) over 0 ≤ ξ ≤ 1000 at Δξ = 50. The errors are vanishingly small: the worst 

relative deviation is 7.10×10−6 % at ξ = 50; the tails are even smaller, e.g., 6.53×10−7 % 

at ξ = 1000, and the match is exact at ξ = 0 by construction. This pattern, minute peak 

near the mid-range and diminishing errors toward both ends, is exactly what one expects 

from a well-conditioned, asymptotic-aware explicit mapping. The Table also makes the 

result reproducible by listing the intermediate variable from Eq. (27), the exact η [Eq. 

(4)], the explicit η [Eq. (37)], and the percentage deviation. In short: Eq. (37) is quasi-

exact across the full practical domain. 

Table 4: Deviation (%) produced by the approximate Eq. (37) 

   Eq. (27) (exact) Eq. (4) 
(Approximate)  

Eq. (37) 
Deviation (%) 

0 0 0 0 0 

50 14.736126 2.07068607 2.07068622 7.1041E-06 

100 18.5663553 2.43677641 2.43677651 4.01E-06 

150 21.2531714 2.67659179 2.67659187 3.0433E-06 

200 23.3921419 2.85930601 2.85930608 2.4076E-06 

250 25.198421 3.00865099 3.00865105 2.0951E-06 

300 26.777318 3.13584514 3.13584519 1.695E-06 

350 28.1891949 3.24714876 3.24714881 1.6107E-06 

400 29.472252 3.34643784 3.34643789 1.3746E-06 

450 30.6523773 3.43629069 3.43629073 1.2265E-06 
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500 31.748021 3.51851534 3.51851538 1.242E-06 

550 32.7728508 3.59443209 3.59443213 1.0516E-06 

600 33.7373066 3.66503651 3.66503655 1.1195E-06 

650 34.6495642 3.73109922 3.73109925 9.1037E-07 

700 35.5161601 3.79322972 3.79322975 8.3903E-07 

750 36.3424119 3.851919 3.85191903 7.9352E-07 

800 37.1327107 3.90756879 3.90756882 6.951E-07 

850 37.8907295 3.96051224 3.96051227 8.1173E-07 

900 38.6195754 4.01102894 4.01102897 7.0613E-07 

950 39.3219029 4.05935593 4.05935596 7.1666E-07 

1000 40 4.10569608 4.10569611 6.5256E-07 

    Max. (%) 7.1041E-06 

Fig. 4 visualizes the same deviations and confirms a smooth, single-hump residual with 

no oscillatory behaviour, evidence that the explicit expression preserves monotonicity 

and numerical conditioning. The dynamic range on the vertical axis is at the 10−6 % level, 

so the curve is effectively flat at publication scale; nevertheless, the plot captures the 

precise location of the worst-case point near ξ ≈ 50. 

Bottom line. Table 4 and Fig. 4 convincingly demonstrate that the explicit η(ξ) 

relationship in Eq. (37) achieves quasi-exact performance across the full operating range, 

with a tiny and well-behaved residual. This level of accuracy, together with the 

documented worst-case location, provides strong assurance for deployment in routine 

engineering calculations.  

 

Figure 4: Distribution of the deviation (%) produced by the approximate Eq. (37) 

within the full range ξ   [0, 1000]                                                                        
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Asymptotic 

It is interesting at this stage to pass to the limiting cases of Eq. (37). The first asymptote 

forms the case of a very wide trapezoidal channel base width, i.e., b → ∞, corresponding 

to the following, according to Eq. (3b): 

0 →
 

Also, in this case, the critical flow depth asymptotically tends to that of a rectangular 

shaped channel, according to Eq. (3b), corresponding to the following: 

0→m  

For that, if we substitute 
3/14 =  in Eq. (37) and expand in McLaurin series, around 

0= , one may obtain the following: 

1/3 2 /3 4 /3 5 /31 55 392

3 81 243
    = − + − +          (38) 

It is easy to show that that the expansion of Eq. (38) converges to the following limit: 

2

5

1/3

cos

ch Q

b b g 

 
=  
 

        (39) 

As it can be seen, Eq. (39) corresponds to the expression of the critical flow depth in a 

rectangular channel. 

The other limiting case forming the second asymptote of the problem is when the 

following is reached: 

0→b   

or equivalently to what Eq. (3b) provides as follows: 

→
 

Expanding now Eq. (37) in an asymptotic series, one obtains: 

( )

3 / 51/ 5
4 2 / 3

1/ 51 3 2 5183 2
2

2 40 691200
 

 

  
= − + + − +   

   
     (40)  

This case is related to the triangular cross-section channel for which the critical depth is 

explicitly given by the following:    
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2
5

2

2

cos
c

Q
h

m g 


=         (41) 

which forms the limit of the convergent series in Eq. (40). To show simply the 

convergence of the series (38) and (40), let us operate a change of variables such that we 

denote 
*  and 

*  as follows: 

* ch

b
 =            (42) 

and 

2
*

5 cos

Q

b g 


 =         (43) 

Then, from the critical flow condition expressed by Eq. (4), the following can be written: 

( )*

*

*

3
*2

1 2

m m

m

 




+
=

+
        (44) 

 From that, it is straightforward to show that the two limiting cases, i.e.: 

 
0→

  

and  

→
  

correspond respectively to what follows: 

* *1/ 3
0  =             (45) 

1/ 5
* 2

m




 
=  
 

              (46) 

which correspond to the first term of the series in Eqs. (15) and (17). Operating in this 

way, the formal convergence analysis of the aforementioned series, in a classical way, is 

shifted to a simpler fact of checking only the correspondence of the first term of the series. 
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MAIN FINDINGS OF THE STUDY 

Exact foundation and uniqueness 

The critical-depth problem is recast as an exact mapping η = z(ξ) [Eq. (5)], with the 

physical solution characterized as the unique positive root of a trinomial sextic [Eq. (5a)] 

or via exact inverse-function representations, i.e., residue integral and Lagrange–

Bürmann/hypergeometric–Appell forms. These provide a machine-precision reference 

and explain why a simple radical form is unavailable. 

Normalized one-unknown route (computational backbone) 

A fifth-root scaling reduces the problem to a strictly monotone scalar equation in a single 

unknown [Eqs. (5i) – (5k)], from which a reduced form is obtained [Eqs. (5n) – (5o)]. 

The authors construct a closed-form rational seed u0(C), Eq. (5p) with coefficients in Eq. 

(5q), delivering a worst-case deviation < 0.002 % over the broad range ξ ∈ [0.001,1000]; 

the worst case occurs at ξ = 0.001. A one-step Newton/Halley update [Eq. (5r)] then 

achieves near machine precision across the full range of ξ. 

Single explicit (blended) formula for z(ξ) 

For non-iterative, spreadsheet-ready use, a blended approximation merges rigorously 

matched small- and large-ξ branches with a smooth Hill-type switch [Eqs. (6) – (9)]. On 

the practical interval ξ ∈ [0.001, 100] it achieves uniform, sub-6.5×10−5 deviations; on 

[100, 1000] it remains highly accurate, with a minimal deep-branch enrichment further 

flattening the tail.  

Direct explicit η(ξ) relationship 

A well-conditioned change of variables and controlled asymptotic–Taylor construction 

yields a closed-form η(ξ) [Eq. (37)] that is quasi-exact on ξ ∈ [0, 1000], with a worst-case 

relative deviation ≈ 7.1×10−6 % at ξ = 50.  

Traceable error propagation 

An analytic mapping quantifies how errors in z transfer to η and design variables [Eq. 

(17)], ensuring that reported numerical accuracy is meaningful hydraulically.  

Implementation guidance and verification 

Beyond formulas, the manuscript supplies practical guidance: how to pick robust starting 

values, how to bracket safely, and how to evaluate the exact integral representation when 

desired. The accompanying Tables and Figures certify monotonicity, identify the worst-
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case location and magnitude, and demonstrate the absence of spurious oscillations across 

the range.  

CONCLUSION 

This study delivers a complete, verification-driven solution to the critical-depth problem 

in trapezoidal channels by connecting exact analysis with deployable formulas that are 

both fast and exceptionally accurate. At the theoretical core is the exact mapping η = z(ξ) 

[Eq. (5)], which establishes existence, uniqueness, and a machine-precision benchmark 

through its sextic characterization [Eq. (5a)] and analytic inversions. This “ground truth” 

explains why a simple radical form is unavailable and anchors everything that follows. 

Building on that foundation, the paper introduces a normalized one-unknown route that 

collapses the computation to a strictly monotone scalar equation [Eqs. (5i) – (5k)]. From 

this normalized form, the authors construct a closed-form rational seed u0(C) [Eq. (5p), 

coefficients in Eq. (5q)] with a worst-case deviation below 0.002% over ξ ∈ [0.001, 1000]; 

a single Newton/Halley update [Eq. (5r)] then attains near machine precision across the 

entire range. This yields a quasi-exact “one-step” workflow that requires neither charts 

nor special functions, and is robust in both the shallow- and deep-ξ limits. 

For non-iterative use, i.e., hand calculations, spreadsheets, embedded design tools, a 

single explicit blended approximation for z(ξ) merges rigorously matched small- and 

large-ξ branches with a smooth Hill-type switch [Eqs. (6) – (9)]. On ξ ∈ [0.001, 100] it 

maintains uniform, sub-6.5×10−5 % deviations; on [100, 1000], it remains highly accurate, 

with a minimal deep-branch enrichment available to flatten the far-tail if needed. The 

residuals are smooth and single-humped, confirming good conditioning and the absence 

of spurious oscillations. 

The manuscript also provides a direct explicit relationship η(ξ) [Eq. (37)], obtained via a 

well-conditioned change of variables and controlled asymptotic–Taylor construction. 

This closed-form expression is quasi-exact over ξ ∈ [0, 1000], with a worst-case relative 

deviation of about 7.1×10−6 %, at ξ = 50.  

Together with a transparent error-propagation mapping from z to η and design variables 

[Eq. (17)], the paper ensures that numerical accuracy is meaningful hydraulically and 

traceable in downstream calculations. 
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