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ABSTRACT

This paper provides an exact foundation and uniformly high-accuracy formulas for the
critical depth in trapezoidal channels. Beginning with the dimensionless critical-flow
condition, the problem is recast as an exact map 5 = z(¢) [Eq. (5)], whose unique physical
root can be characterized either as the positive zero of a trinomial sextic [Eq. (5a)] or
through rigorous inverse-function representations, i.e., residue integrals and Lagrange—
Birmann expansions, thereby establishing a machine-precision “ground truth” and
clarifying why elementary radicals are unavailable. To convert this exact theory into a
practical computation, a fifth-root normalization is introduced [Egs. (51) — (5j)], reducing
the problem to a strictly monotone, single-unknown relation [Eq. (5k)]. From this
normalized equation, the authors derive a reduced form [Egs. (5n) — (50)] and construct
a closed-form rational seed uo(C) [Eq. (Sp) with coefficients in Eq. (5q)] that
approximates the exact root with sub-0.002% worst-case deviation over the broad range
£ €10.001,1000]; the worst case occurs at & = 0.001; a single Newton/Halley correction
[Eq. (51)] then recovers near machine precision across the full range, as documented by
the tabulated examples. This yields a quasi-exact, one-step workflow that requires neither
charts nor special functions and is robust at both shallow and deep & limits. In parallel,
for non-iterative spreadsheet use, a single blended explicit formula for z(¢) is developed
by asymptotically correct small- and large-¢ branches merged with a smooth Hill-type
switch [Egs. (6) — (9)]. The base blend achieves uniform, sub-6.5x107° % deviations on
the restricted range £ € [0.001,100] and remains highly accurate within the broad range ¢
€[100,1000]; a minimal deep-branch enrichment further flattens the far tail.

For readers who prefer a direct depth formula, the paper introduces an explicit #(&)
relationship obtained via a well-conditioned change of variables and a controlled
asymptotic—Taylor construction; the final expression [Eq. (37)] is quasi-exact for & €

© 2025 Achour B. and Amara L.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


http://creativecommons.org/licenses/by/4.0
http://larhyss.net/ojs/index.php/larhyss/index

Achour B. & Amara L. | Larhyss Journal, 64 (2025), 343-375

[0,1000], with a worst-case relative deviation of about 7.1x107%% at & = 50. An analytic
mapping quantifies how errors in z propagate to 7 and design variables [Eq. (17)],
ensuring that numerical accuracy translates transparently to hydraulically meaningful
quantities.

Collectively, the exact map, and proofs of uniqueness, the normalized one-unknown route
culminating in the explicit seed uo [Eq. (5p)] plus a single corrective step [Eq. (51)], the
blended z(&) approximation, and the direct explicit #(¢) formula [Eq. (37)] deliver a
verification-driven, implementation-ready toolkit that replaces legacy trial-and-error
procedures with fast, stable, and reproducible computation over the entire operating
range.

Keywords: Critical depth; Trapezoidal channel; Explicit formula; Exact implicit
mapping; blended (composite) approximation; Hill switch; asymptotic matching; error
bounds; non-iterative computation.

INTRODUCTION

Critical-flow phenomena are central to open-channel hydraulics because, for a fixed
cross-section, discharge and depth are in one-to-one correspondence. In the classical
view, the critical state occurs when the specific energy attains a minimum for a given
discharge, or equivalently, when the discharge is maximized at fixed specific energy, and
it coincides with a Froude number of one (Hager, 1985; Chow, 1959). This criterion
underpins practical determination of the critical depth and, in turn, the identification and
classification of subcritical (calm) and supercritical (shooting) regimes (Hager, 2010;
Achour and Amara, 2020a; Achour and Nebbar, 2015).

Recently, studies reconceive critical flow in some channels’ profiles by integrating
channel slope, wall roughness, and fluid viscosity into a single, coherent analytical
framework. It forges an implicit, dimensionless relationship by coupling the critical-flow
condition with a general discharge law, thereby making the influence of viscosity
operational through a modified Reynolds measure. When applied across smooth,
transitional, and fully rough turbulent regimes, the framework shows that critical flow is
not inherent to the geometry; it emerges only when the slope exceeds a definable
threshold. Below that threshold, the reach cannot attain criticality and remains
unequivocally subcritical regardless of discharge, a conclusion that directly informs
design and rating strategies. Above the threshold, the analysis reveals a bifurcation: two
distinct critical states can exist, one at shallow depths and another at greater depths, each
corresponding to different operational discharges. Absolute roughness raises the slope
required to trigger criticality compared with a smooth surface, while viscosity acts as a
secondary modifier that is most visible in the transitional regime. The studies provide
implementable graphs that relate relative critical depth to relative normal depth over a
range of slopes, furnishing practitioners with a clear diagnostic of regime shifts.
Validation via the specific-energy criterion corroborates the predicted critical points and
the existence of dual critical states at higher slopes, reinforcing the internal consistency
of the approach. By treating geometry and flow parameters on equal footing, the work
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replaces ad-hoc chart methods with a reproducible, parameter-aware procedure that is
ready for engineering use. Taken together, these results supply a rigorous basis for field
assessment and future extensions, clarifying when a parabolic channel can sustain critical
flow and when it fundamentally cannot (Achour and Bejaoui, 2006; Lakehal and Achour,
2017; Nebbar and Achour, 2018; Achour and Amara, 2020b; 2020c; 2020d; Sehtal and
Achour, 2023; 2024).

Closed-form, analytic expressions for the critical depth are available for a few canonical
shapes, notably triangular, rectangular, and parabolic sections (Chow, 1959; Wong and
Zhou, 2004; Achour and Khattaoui, 2008). For many other geometries, however, the
governing relation is implicit, so practitioners historically relied on charts, trial-and-error
searches, or iterative schemes with limited accuracy (Liu et al., 2012). Foundational
graphical methods were produced for circular and trapezoidal channels (Chow, 1959;
Henderson, 1966; French, 1987), and many works has furnished explicit formulae for a
variety of profiles, including circular conduits, trapezoids, rounded-bottom, egg-shaped,
and semi-elliptical sections (Swamee, 1993; Swamee and Rathie, 2005; Liu et al., 2012;
Liet al,, 2012; Vatankhah and Easa, 2011; Cheng et al., 2018; Shang et al., 2019).

Most treatments infer the critical depth solely from the critical-flow relationship and, in
doing so, do not explicitly incorporate the effects of bed slope, wall roughness, or fluid
viscosity. Complementary studies have begun to address these physical influences in both
conduits and channels (Achour and Amara, 2020a; 2020b; Hachemi-Rachedi et al., 2021).

Determining the critical depth in open-channel hydraulics is central to both theory and
practice, underpinning tasks such as backwater-curve computations, flow measurement,
and many design checks (Chow, 1959). For non—power-law sections, and in particular for
trapezoidal geometries, the governing relation between discharge and depth is implicit,
so routine calculations typically rely on iteration or elaborate trial-and-error procedures.

Beyond purely empirical explicit formulas based on curve fitting, several analytical
strategies have been advanced to “invert” the implicit relation. A direct closed-form
expression built on a nested-iteration idea was proposed by Wang (1998). Using Lagrange
inversion, Swamee and Rathie (2005) obtained an explicit series whose convergence is
provably slow, while Varandili et al. (2019) expressed the solution through nested
radicals, with accuracy controlled by the number of radical levels retained. Asymptotic
matching has also yielded compact explicit approximations for related normal and critical
depths (Swamee, 1994; Vatankhah, 2013). Motivated by the need for an exact yet easy-
to-evaluate formula, Amara and Achour (2023) adopted a d-perturbation framework
(Bender et al., 1989) to construct a globally convergent series that recovers the critical
depth without iterative loops. The approach is straightforward to implement, and, when
truncated, already delivers engineering-grade accuracy; its convergence properties can be
established with standard ratio tests (Kreyszig, 1979). Representative canal examples
documented by Elhakeem (2017) illustrate the practicality of such explicit expressions.

The chief aim of this work is to obtain an quasi exact, implementation-ready
characterization of the critical depth in trapezoidal channels and, on that basis, to deliver
explicit, non-iterative formulas that achieve engineering-grade accuracy across a broad
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operational range of the governing parameter . Specifically, the authors (1) recast the
critical-flow condition into a compact implicit relationship in dimensionless variables
[Eq. (4)], (2) transform it to an exact mapping n = z(¢) [Eq. (5)], and (3) construct explicit
approximations for z(¢) that are uniformly accurate on wide, and practically relevant,
intervals of & The overarching objective is a pair of tools, quasi exact and explicit, that
can be used interchangeably: the exact form as a standard of truth, and the explicit form
as a fast surrogate for routine design and analysis.

Starting from the critical-state balance [Eq. (1)] and the geometry of the trapezoid [Eq.
(2)], the authors introduce the dimensionless groups [Eq. (3)] and derive the implicit
critical-depth relation [Eq. (4)]. By appropriate variable changes, this relation is rewritten
as the exact #-map [Eq. (5)]. The authors then design a blended explicit approximation
z0(¢) [Eq. (6)] that merges rigorously built small-¢ and large-¢ branches with a smooth
Hill-type switch [Egs. (7) - (9)], producing a single formula that inherits the correct
asymptotic at both ends of the ¢-range and remains accurate in the transition. The
admissible ¢-range for general use is specified in Eq. (10), and accuracy guarantees are
quantified by provable bounds on the maximum and mean relative error [Egs. (11) - (12)].
For applications requiring even tighter tolerances on ¢ € [0.001, 100], an enhanced blend
[Egs. (13) - (16)] is provided together with tabulated and graphical error audits (Tables
1-2; Figs. 1-3).

The method is deliberately asymptotic-aware and verification-driven. By forcing each
branch of zo(¢) to reproduce the exact endpoint behaviours embedded in Eq. (5), the
blended model attains second-order, or higher, matching near the extremes, while the Hill
switch ensures a smooth, well-conditioned transition across the interior. Error
propagation from z to # is formally tracked [Eq. (17)] and validated on representative test
points [Egs. (18) - (24)]. The result is a pair of expressions, quasi exact and explicit, that
are monotone, rapidly evaluable, and uniformly accurate, avoiding the use of approximate
fitted relationships, eliminating trial-and-error or iterative solvers and enabling robust,
spreadsheet-level deployment in practice.

ANALYTICAL SOLUTION FOR CRITICAL FLOW DEPTH IN TRAPEZOIDAL
CHANNELS

Governing balance and geometry

For a trapezoidal channel of bed width b and side slope m, m horizontal to 1 vertical, the
critical state follows from the equality of mean velocity and wave celerity (Chow, 1959):

aQ> A
gcos® T

(1

with energy-correction factor o = 1 in practice, Q the discharge, g the acceleration due to
gravity, 4 the wetted area, and T the top width. For a trapezoid, and denoting /. as the
critical flow depth, the following can be written:
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A=bh, + mh>, T=>b+2mh, )
Dimensionless parameters
Let’s introduce the following dimensionless parameters:
mh,
77 = (33)
b
342
m-Q
=— (3b)
gb” cosf

Substituting Eq. (2) into Eq. (1), and simplifying, leads to the following compact implicit
relationship, where £ is the known parameter:

(n+n°)
=T, @

Using appropriate mathematical manipulation, notably by performing variable changes,
Eq. (4) can be written in the following exact form:

n(¢)= (5)

Once 7 is calculated, Eq. (3a) allows deducing the critical depth sought 4., since the
parameters m and b are given.

EXACT SOLUTION

Exact characterization of the physical root: Sextic formulation and analytic
inversions

An everywhere-valid exact form for z(&), i.e, for any &, does exist but only implicitly, e.g.,
as the unique positive root of the following trinomial sextic:

a)6—4§2a)—§2=0,witha)=l/z (52)

or via inverse-function contour integrals and hypergeometric/Appell inversions; so, it is
mathematically exact yet algebraically unwieldy for routine use; accordingly, the authors
recommend the single blended explicit approximation in Eq. (6), which is non-iterative,
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preserves the correct shallow- and deep-¢ asymptotic of the exact map, and delivers
uniform, very small errors across the entire operating range.

However, for users who want the exact solution of z, they will find it below. The “exact
solution” originates from standard results in analysis and algebra for inverting a one-
variable algebraic map. First, by rewriting the problem as a monotone algebraic equation
in a single positive unknown, existence and uniqueness of the physical root follow
directly from monotonicity and the Intermediate Value Theorem; smooth dependence on
the parameter is then guaranteed by the Implicit Function Theorem. Next, two rigorous
inversion mechanisms provide exact representations: a global contour-integral form
obtained via Cauchy’s Residue Theorem and the Argument Principle, which returns the
root as the residue of a meromorphic integrand over a small loop encircling it, and local,
but exact power-series expansions delivered by the Lagrange—Biirmann Inversion
Theorem about natural anchor points, with coefficients expressible in Beta/Gamma
functions and extendable by analytic continuation. After a rational change of variables,
these series can be written equivalently in terms of Gauss hypergeometric and Appell
functions, whose standard continuations furnish a single global expression. Finally,
classical Galois theory (Abel-Ruffini) explains why no finite radical’s formula exists for
the underlying trinomial sextic, which is why the special-function and contour
representations are the mathematically exact, albeit algebraically unwieldy, form of the
solution.

Contour-Integral evaluation of the exact root: Practical procedure

The exact solution of Eq. (5a) can be derived as follows:

gsgq)gf)

u d 5b
" e s ¢ (5b)
7/:4’(19)=c+pei‘9,0£19<2ﬂ (5¢)
¥ is a small positively oriented circle enclosing only the positive real zero.
1
®(§,§)=45(§+1)—46§2 (5)
D(¢)=6¢° +5¢* (5¢)

4 (9) is just a way to trace the closed contour used in the contour-integral formula for

the root; we take a simple circle so readers can picture it. Concretely, setting the
following:

(9 =c+pe wih0< 9 <27, ¢>0 (50)
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is the circle’s centre on the real axis and
p >0

is its radius.

“Positively oriented” means 4 increases from 0 to 27, so the path goes counter-clockwise.
Choose c and p so that the circle encloses exactly the desired positive real zero of @ and
no other zeros, and also so that ®[{(9)] # Ofor every 3 (no pole sitting on the path). With
those conditions, Cauchy’s residue theorem guarantees the integral equals the enclosed
root, and by contour-deformation invariance the value does not depend on the particular
¢, p as long as the circle keeps winding once around that root only. For numerical
evaluation, sample $ uniformly on [0, 27 [, compute {(9) and the integrand at those points,
and apply the trapezoidal rule; using a circle is convenient because the integrand is 27-
periodic and analytic on the path, so the trapezoidal rule converges very fast. Finally, {'is
a dummy variable along the path; do not set { equal to the unknown root u inside the
integrand; this is Because ¢ is the dummy integration variable tracing the contour, while
u is the unknown root sought. At = u the denominator ®(¢) vanishes, so the integrand

(o (¢)
o($)

has a simple pole and is not defined; the user must encircle that pole, not evaluate the
integrand at it. The contour integral equals the residue at { = u by Cauchy’s theorem,
which is determined by the coefficient of:

(¢-u)”’ (sh)

not by plugging { = u. Setting { = u would also collapse the path to a point and destroy
the winding needed for the argument principle; numerically, it would place quadrature
nodes on a singularity and break convergence. Hence { must remain distinct from u«, and
the contour must loop around u without passing through it.

(52)

Thus, as noted earlier, obtaining the exact solution is laborious and unwieldy.
Nevertheless, the next section furnishes users with a swift and virtually exact method of
calculation.

Derivation of the quasi-exact solution

Below is a numerical example on how deriving the quasi-exact solution, for &= 0.001,
taken as an example.
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Normalization by a fifth-root scaling
First, let’s setting the following:
\1/5 .
y=(4¢%) (5i)
w=yu ()

Substituting Eq. (5j) into Eq. (5a) yields the following:

6 1
U —u=—-z (5k)
(4¢7)
Eq. (5k) can be rewritten in the following form:
5 1
u( u’ - 1) =— (5D
(4¢7)

Once u is found, recover z via Egs. (5a), defining the link between w and z, and (5i), such
as the following:

1 1 1

Z:;:ﬁ:m (5m)

In-depth computation procedure

Compute y using Eq. (5i), and the right-hand side of Eq. (51). The following can be
written:

£=0001= &2 =10"°
1/5 1/5
y=(4£%) " =(4x0001% ) " = 0083255321

I 1
(46§2)1/5 ) (46><0.0012)

The normalized one-unknown relation introduced in Eq. (5k) turns the critical-depth
problem into solving a strictly monotone scalar equation with a unique physical root. In
that setting, the only practical choice left is how to initialize the iteration so that
convergence is both immediate and numerically safe across all operating conditions. To

C(¢) = = =3.00281108

1/
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that end, we propose a single, closed-form rational seed uo(C) expressed in terms of the
dimensionless parameter C(¢) appearing in Eq. (5k), and which is the last term of Eq.
(5d). Unlike piecewise or regime-specific starts, this uniform seed requires no switching,
remains well-conditioned at the shallow- and deep-¢ extremes, and lands within a tight
neighborhood of the exact root for every ¢ in the paper’s restricted and broad ranges. In
practice, one Newton (or Halley) step from this seed attains machine precision; if desired,
the seed alone already delivers sub-engineering-tolerance accuracy and can be used
directly in spreadsheet implementations.

Conceptually, the construction balances two truths encoded by Eq. (5k): the solution
behaves “close to one” when the parameter is small and grows like a mild power of C
when the parameter is large. The rational form captures both behaviors smoothly and
suppresses the interior mismatch that usually degrades global fits. The result is a single
evaluation, no tables, charts, or trial-and-error, that is robust to rounding of coefficients,
stable under double-precision arithmetic, and portable to any platform. In the sequel, the
authors document the uniform bound achieved by the seed, illustrate its near-identity with
the exact root on representative test points, and show how one corrective iteration
recovers the reference solution to floating-point round-off.

Let’s recall Eq. (5k) as follows:
6 1

u’ —u= W (5k)
It can be rewritten in the following reduced form:

F(u)=u6—u—C(§) (5n)
where:

(&)= — (50)

1/5
(4€)
Eq. (5n) admits an approximate root uo(C), which can be written as follows:

2 3
_agtalt+a,l” +asl

uy(t)= 5
ol) 1+ b,t +b,yt* +byt* P

where:

t=C'° (59)
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The coefficients in Eq. (5p) are as follows:

a, =099323 a, =-1.783111 a, =1.266808 a; =— 0.208238

> >

b, =—1.828951 b, = —1379147 b, = — 0.313409

> >

In-depth calculation shows that the maximum deviation between exact u-values and the

approximate uo-values is strictly less than 0.0018 %, within the full range £<[0.001,
1000]; the worst case occurs at &= 0.001, with a deviation of 0.0017644 %.

If the users need a smaller maximum deviation, the following one-step iteration
(Newton/Halley) is an appropriate procedure:

6
uo—uO—C

(51)
6u8 -1

The maximum deviation between exact u-values and the approximate u1-values, given by
Eq. (5r), is strictly less than 8.2><10_8 %, within the full range £€[0.001, 1000]; the
worst case occurs at £ = 0.001, with a deviation of 8.18846x 10_8 %.

For the considered example, the following steps must be followed.

Eq. (5p) gives the following:

1
C(£) = ————= = 3.00281108
(é:) (46§2 1/5

ug =1.27407573

On the other hand, exact calculation on Eq. (5n) provides the following:

u = 1.27405325

exact
Thus, the deviation is as follows:
| Au | | 127407573 — 1.27405325 |
—— =100x
u 1.27405325

Furthermore, Eq. (51) gives the following result:

u, =1.27405325

= 0.0017644 %

which is exactly the sought exact value of # overmentioned.
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Regarding the end-point of the admissible range, i.e., £ = 1000, calculations yield the
following:

C(£) = ———= = 0.01195441

(6)-—
(46

u, = 1.00236644

u =1.00237392, from Eq. (5n)

exact

Thus, the deviation is as follows:

| Au | | 1.00236644 — 100237392
L—=100x

u 1.00237392

= 0.00074584 %

Recover z as the following:

1 1 1 1
R

——=—= —— = = 9.42758424
® yu (452) ,  0.083255321x1.27405325

For £=0.001, Table 2 gives the exact z-value as follows:
exact
z =9.427584261721

Thus, our calculation produces the following relative error:

| Az | | 9.42758424 — 9.427584261721
100

z 9.427584261721

The final result is as follows:

[ Az ] -7
—— ~2304x10 "%
z
Thus, this deviation is more than acceptable; it is negligible.

Once z is determined, the parameter #, defined in Eq. (3a), is then worked out using Eq.
(5), hence the critical flow depth sought /..

Table 1 provides the deviations (%) between u(exact) and uo, and between u(exact) and
u1, confirming the reliability of the advocated procedure.
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Table 1: Deviation (%) between u(exact) and uo, and between u(exact) and u1
computed using one step iteration (Newton/Halley), Eq. (5r)

Deviation (%) Deviation (%)

4 u(exact) U Uy u(exact) /u u(exact) /u

0.001 1.27405325  1.27407573 1.274053248 0.0017644 8.1885E-08
0.0015 1.24933716  1.24932916 1.24933716 0.00064043 1.0841E-08
0.002 1.2326826 1.2326723 1.232682602 0.00083599 1.8553E-08
0.0025 1.22026792  1.22026079 1.220267916 0.00058389 9.0738E-09
0.003 1.21045038  1.21044712 1.210450377 0.00026931 1.9327E-09
0.004 1.1955539 1.19555678 1.195553905 0.00024087 1.5488E-09
0.005 1.18449829  1.18450484 1.184498294 0.00055286 8.2323E-09
0.0075 1.1655165 1.16552596 1.165516496 0.00081185 1.7861E-08
0.01 1.15290542  1.15291414 1.152905424 0.0007559 1.5538E-08
0.015 1.13631824  1.13632325 1.13631824 0.00044109 5.3131E-09
0.02 1.12537552 1.1253771 1.125375518 0.00014094 5.4222E-10
0.025 1.11734966  1.11734867 1.117349664 8.8922E-05 2.2106E-10
0.03 1.11108595 1.1110831 1.111085946 0.00025591 1.7907E-09
0.04 1.10172844  1.10172341 1.101728441 0.00045646 5.7654E-09
0.05 1.0949029 1.09489692 1.094902904 0.00054637 8.3353E-09
0.075 1.08343369  1.08342769 1.083433692 0.00055383 8.5873E-09
0.1 1.07599714 1.0759923 1.075997142 0.00045024 5.6968E-09
0.15 1.06645116  1.06644904 1.066451161 0.00019855 1.1139E-09
0.2 1.06030644  1.06030661 1.060306441 1.6276E-05 1.1476E-11
0.25 1.05587986  1.05588179 1.055879857 0.00018273 9.2081E-10
0.3 1.05247357  1.05247683 1.052473569 0.00030942 2.6743E-09
0.4 1.04746581 1.04747082 1.047465812 0.00047855 6.5687E-09
0.5 1.04387562  1.04388163 1.043875621 0.0005752 9.5041E-09
0.75 1.03796493 1.03797178 1.037964933 0.00065965 1.2562E-08
1 1.03421625 1.03422294 1.034216255 0.00064675 1.2159E-08
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Table 1 (Continuation and conclusion): Deviation (%) between u(exact) and uo, and

between u(exact) and u1 computed using one step iteration (Newton/Halley), Eq. (5r)

Deviation (%)

Deviation (%)

5 u(exact) U, Uy u(exact)/u 0 u(exact)/u |
1.5 1.02950334  1.02950888  1.029503336 0.00053852 8.4334E-09
2 1.02652978  1.02653402 1.02652978 0.00041326 4.949E-09
2.5 1.02441735 1.02442041 1.024417349 0.00029876 2.5604E-09
3 1.02280894  1.02281098  1.022808939 0.00019948 1.2432E-09
4 1.02047165 1.02047208 1.02047165 4.2375E-05 7.7027E-12
5 1.01881619  1.01881545 1.018816186 7.1959E-05 1.2837E-10
7.5 1.01612788  1.01612541 1.016127878 0.00024274 1.8835E-09
10 1.01444709  1.01444382  1.014447092 0.00032297 3.2181E-09
12.5 1.01326036  1.01325674  1.013260365 0.0003573 3.7048E-09
15 1.01236089  1.01235719  1.012360894 0.00036623 3.8315E-09
17.5 1.01164657  1.01164293  1.011646572 0.00036031 3.7365E-09
20 1.01106019  1.01105669  1.011060186 0.00034545 3.5584E-09
25 1.01014352  1.01014047  1.010143516 0.00030148 2.7955E-09
30 1.00944968  1.00944716  1.009449679 0.00024939 1.549E-09
40 1.00844779  1.00844635  1.008447788 0.00014264 4.985E-10
50 1.00774275 1.0077423 1.007742748 4.4523E-05 2.7496E-10
60 1.00720967  1.00721009  1.007209671 4.1487E-05 8.6881E-11
75 1.00660596  1.00660746  1.006605964 0.00014879 1.9037E-11
100 1.00590035 1.00590318  1.005900354 0.00028042 2.2143E-09
1000  1.00237392  1.00236644  1.002373921 0.00074584 1.6769E-08

ACCURATE APPROXIMATE #-RELATIONSHIPS

Approximate relationship for the implicit Eq. (5a)

A more thorough investigation shows that z(¢), expressed by Eq. (5a) can be replaced by
the following approximate relationship, that authors derived from purely mathematical

blended model:
2(§) = 2g(&) = w(£) 21 (&) + [ 1= w(£) ]=2(€). 2(£)>0 (©)
W) =——— o
S
1+ (OJ
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W(f ) is the smooth weight, switches from small-¢ to large-¢. It is known as “The Hill

function”.
1/3
13 2 10 f
=6 T+ 173 3 ®)
3 91+19¢& +0.5¢&
B . 21/5 . 24/5 .
=4 Vg2 g4 65 ©

40 400

It is worth noting that “blended” means a modelling strategy consisting in building a
single, uniform approximation by blending two simpler formulas with a smooth weight;
this is often called a blended or composite (uniform) approximation.

The functions z1 and z; are built to match the exact limiting behaviours for small and large
&-values. That forces the error to be second-order, or higher, near the endpoints, which is
exactly what we see numerically.

The authors chose the blended explicit form in Eq. (6) because the exact map from Eq.
(5) has two clean, but very different, endpoint behaviours. When & — 0, the solution
scales like z ~ & 13 On the other hand, when ¢ — oo, it is like z ~ (4¢& 2)-1/ >. The constant
“4” is preserved in this deep-¢ asymptotic; Eq. (6) is built by (1) constructing two simple
branch formulas z1(¢) and z2(¢) that reproduce these exact asymptotic, and their next
terms, and therefore anchor the solution at both ends, and (2) merging them with a smooth
Hill-type switch w expressed by Eq. (7). This function is a single, monotone, non-iterative
expression that remains accurate through the interior where neither asymptotic dominates;
this “asymptotic-aware composite” design avoids the oscillations of global polynomial
fits, respects the product structure of Eq. (5) (hence the constant 4 in the large-¢ branch),
and yields uniform errors that are provably tiny and empirically single-humped across .

Accuracy over a large range of &
For engineering use, a very broad and practical range is the following:

ge[10‘3, 103] (10)
Within this range, z varies from z (1000) = 0.047704378 to z (0.001) = 9.427584261.

Over this range, comparing Z O(Zf ) approximate to the exact root z yields the following

relevant result:
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(1) The maximum relative error in Z is as follows:

@) - =(9)
§e[w—210ﬂ100 z(&)

= 0.0127946 %

This corresponds to the worst case occurring nearby & ~ 0.0316 , where:
24(0.0316) = 2.720825587563 vs exact z (0.0316) = 2.720477513270

(2) The mean relative error in Zz is as follows:

mean ~ 0.0031%
56[10*3, 103]

For reference, at ¢ = 10, this approximation gives the following:

ZO(IO) = 0.29741434 versus exact Z(IO) = 0.29741208

Thus, the relative error is 0.00075989 %

channels

(11

(12)

In addition, calculation found that exact # spans roughly 0.096717 for the shallow range-
end ¢ = 0.001, to 4.1057 for the deep range-end & = 1000. For these extreme values

corresponds to the following:

24(0.001) = 9.427583220898, versus exact z(0.001) = 9.427584261721

2,(1000) = 0.04770438753218499 , versus exact

Z(lOOO) = 0.04770437855694306
Thus, for the shallow range-end, the relative error on z is as follows:

| Az | 100 | 9.427583220898 — 9.427584261721
— X
z 9.427584261721

Also, for the deep range-end, the relative error on z is as follows:

[ Az ] _ |00, | 0:04770438753218499 — 0.04770437855694306
—_ = X

=1.10402x107° %

z 0.04770437855694306

The final result is as follows:

| Az| s
—— =1.88143%x10"%
z
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These results confirm that the approximate explicit Eq. (6) is extremely accurate at both
ends of the practical range of &.

To better appreciate the deviations within the admissible range for &, Table 2 and Fig. 1

illustrate the distribution of deviations in the calculation of z.

Table 2: Deviation (%) between exact z-values and approximate z-values computed
using Eq. (6), within the admissible range & € [ 10 _3, 10° ]

f 7z Exact Z , Approximate Deviation (%)
0.001 9.427584261721 9.427583220898 0.0000110402
0.0316 2.720477513270 2.720825587563 0.0127946
100 0.119407894512 0.119408101897 0.000174
200 0.090621270632 0.090621355158 0.000093
300 0.07710478376 0.077104797300 0.000063
400 0.068751751230 0.068751784151 0.000048
500 0.062899151912 0.062899176020 0.000038
600 0.058487983310 0.058488001954 0.000032
700 0.054999990248 0.055000005226 0.000027
800 0.052146717136 0.052146729511 0.000024
900 0.049752773288 0.049752783737 0.000021
1000 0.047704378557 0.047704387532 0.000019
0.014 ;
3 Deviation in = (%)
0.012 ]
0.010 ]
0.008 ]
0.006
0.004 1
0.002 ]
] ¢
04 - X = = * . .
0 100 200 300 400 500 600 700 800 900 1000

Figure 1: Deviations (%) between exact z-values and approximate z-values
computed using Eq. (6) within the admissible range of & € [ 0.001, 1000 ]

It is emphasis to note that Eq. (6) is largely accurate over the range ¢ €[100, 1000],
according to Fig. 2. However, the accuracy can be improved by adding one term to the

function z,(&), suchas a&
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0.00020 ;
0.00018 .
0.00016 3
0.00014 3
0.00012 3
0.00010

Deviation in = (%)

0.00008
0.00006
0.00004 3

0.00002 3 —
0 ] <
100 200 300 400 500 600 700 800 900 1000

Figure 2: Deviations (%) between exact z-values and approximate z-values
computed using Eq. (6) within the broad range of & € [ 100, 1000 ]

Fig. 2 provides a broad-range behaviour for Eq. (6) on the whole range [100,1000].
(a) Largely accurate, improvable deep-range tail

Over ¢ € [100,1000], the base blend (Eq. 6) remains highly accurate, though the figure
makes clear that adding one deep-branch term (as suggested in the text) would flatten the
residual further in this regime. That recommendation is method-consistent: enrich only
the branch that governs the observed tail, keep the switch unchanged, and avoid
overfitting the interior.

(b) Continuity with the restricted model

Together, Fig. 2 (broad range) and Fig. 3 (restricted range) show the same qualitative
residual shape, reinforcing that the error control stems from the blend architecture rather
than ad-hoc tuning.

Approximate Zo(f ) relationship within the restricted range &< [0.001, 100]

Fig. 1 clearly shows that the largest deviations in the estimation of z occur for the smallest
values of ¢, practically belongs to the interval [0.001, 100]. Thus, if the user requires a
smaller maximum deviation within the previous restricted range, due to a problem that
necessitates greater precision, the following relationship can be very helpful, while
reconsidering the blended form as in Eq. (6):

20(€) = w(&)z(§) + [ 1-w($) ]2a($) (13)
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where:

1

w(é)=——% (14)
1+(§j
(o2
1/3
~153 cé

zZ, =a-+ + (15)
1 S 1+e§1/3+g§2/3

The coefficients were obtained by a weighted least-squares fit that minimizes relative
error of the blended zo(¢) against the exact root. They are given as follows:

with:
o = 0.0503521; K = 1.63374 a =—0.710002; c = 0.717425; e = 1.49524;

g =—00699589; i=0.757858; k= —0.0287123; n = 0.0042281;
g = 0.000525252

Within the checked restricted range & €[0.001, 100], the maximum relative error in z is
as follows, occurring at the worst case &~ 8.4573:

max 100‘ “0(8) ~=(¢)

£€[0.001,100] z(¢)

~ 0.00006427 %

To allow users better appreciation of the deviations produced by Eq. (13), the authors
compiled the data presented in Table 3, while Fig. 3 depicts the distribution of these
variations within the considered range & €[0.001, 100].

Table 3 conveys what follows:
(a) Meets the tighter spec with margin

Across ¢ € [0.001, 100], every listed deviation is < 6.43x107 %. The Table therefore
certifies the relevant blended model on the whole restricted range.

(b) Very small errors at both ends

At the shallow end, £ =0.001 gives 0.00003199 % deviation, while at the deep end, & =
100 gives 0.00004455. That symmetry-tiny at both ends and slightly larger in the middle,
is exactly what the authors want from a well-tuned blend: each branch is extremely
accurate in its home regime, and the blend keeps the middle under tight control.
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(¢) A smooth, single-hump profile across the Table

From & ~ 0.001 up to ~10, the deviations rise gently to a broad maximum and then taper
off again toward & = 100. The absence of oscillatory over/undershoots (no “ringing”) is
strong evidence the coefficients and the switch are well conditioned.

Table 3: Deviation (%) between exact z-values and approximate z-values computed
using Eq. (13), within the restricted range ¢ € [0.001, 100]

& z Exact Z , Approximate Deviation (%)
0.001 9.427584261721 9.427587278065 0.00003199
0.0015 8.174700316279 8.174702673687 0.00002883
0.002 7.384561928979 7.384563106796 0.00001595
0.0025 6.822708330058 6.822708568203 0.00000349
0.003 6.394292665331 6.394292248016 0.00000652
0.004 5.770252834009 5.770251727264 0.00001918
0.005 5.326789810838 5.326788507760 0.00002446
0.0075 4.603043421107 4.603042449142 0.00002111
0.01 4.147575680968 4.147575295206 0.00000930
0.015 3.578092140979 3.578092643587 0.00001404
0.02 3.220168076266 3.220169001845 0.00002874
0.025 2.966353438543 2.966354497046 0.00003568
0.03 2.773268033496 2.773269075302 0.00003756
0.04 2.492811526875 2.492812378590 0.00003416
0.05 2.29416363959%4 2.294164290039 0.00002835
0.075 1.971338298791 1.971338686867 0.00001968
0.10 1.769199809366 1.769200161944 0.00001993
0.15 1.517785944340 1.517786389595 0.00002933
0.20 1.360644290668 1.36064481970 0.00003888
0.25 1.249676184478 1.249676758513 0.00004593
0.30 1.165543003717 1.165543596265 0.00005084
0.40 1.043816477452 1.043817067584 0.00005653
0.5 0.957968535724 0.957969103461 0.00005926
0.75 0.819182780960 0.819183283818 0.00006138
1.00 0.732785121139 0.732785572770 0.00006163
1.50 0.625927078126 0.625927463460 0.00006156
2.00 0.559505616820 0.559505962074 0.00006170
3.00 0.477468785364 0.477469083245 0.00006238
4.00 0.426543237864 0.426543506933 0.00006308
5.00 0.390754658336 0.390754906895 0.00006361
7.50 0.333131062229 0.333131276194 0.00006423
10.0 0.297412077054 0.297412267944 0.00006418
12.5 0.272334675133 0.272334848836 0.00006378
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15.0 0.253405558808 0.253405718940 0.00006319
17.5 0.238420705102 0.238420854119 0.00006250
20.0 0.226151251022 0.226151390698 0.00006176
25.0 0.207027919469 0.207028044181 0.00006024
30.0 0.192599353726 0.192599466861 0.00005874
40.0 0.171834588559 0.171834684708 0.00005595
50.0 0.157271604843 0.157271688955 0.00005348
60.0 0.146287633566 0.146287708599 0.00005129
75.0 0.133876391334 0.133876456186 0.00004844
100 0.119407894512 0.119407947719 0.00004455
000007 Deviation in = (%)
0.00006
0.00005
0.00004
0.00003
0.00002
0.00001

0

0 10 20 30 40 50 60 70 80 90 100

Figure 3: Deviations (%) between exact z-values and approximate z-values
computed using Eq. (13) within the restricted range & € [0.001, 100]

Fig. 3 conveys the following:
(a) Visual confirmation of a single, broad maximum

The curve of deviation with respect to ¢ shows one smooth hump peaking in the mid-
range and small tails at both ends, mirroring Table 3. This “unimodal” shape is typical of
composite (blended) formulae when each branch matches the correct asymptotic and the
soft switch is placed sensibly.

(b) Blend region drives the peak

The slight crest near 8 < ¢ < 10 is the inevitable place where neither branch totally
dominates; the tiny residual there, i.e., ~0.000064 % is proof the switch and the added
deep-branch term have been tuned about as far as the three/four-term structure can push
it without overfitting.
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Bottom line: Table 3 and Fig. 3 together make a compelling case that the blended zo(¢&)
achieves uniform, sub-0.000065 % accuracy on [0.001, 100], with a smooth, single-hump
deviation profile and no spurious oscillations; this is exactly what one hopes to see from
a carefully tuned, asymptotic-aware composite approximation.

In addition, the maximum relative error is well beyond typical hydraulic-design needs.
That accuracy is consistent across the entire restricted range, and there’s no localized
degradation near the blend region, and the extremes are still exceptionally tight.

How errors in T map to errors in 1f

In-depth exact calculation shows that a relative error in z produces the following relative
error in #:

|A77|(%):100><
n 1+2n =z

L+ |Az]

(17

The parameter 7 in Eq. (17) is the approximate 7 given by Eq. (5) for z = z¢. To check the
reliability of Eq. (17), one may take the following example.

Let’s consider the range & €[0.001, 100], specifically & = 3. Table 3 gives the following
result:

app.
z, (3) = 0.477469083245 (18)

According to Eq. (5), this corresponds to the following:
app. / app.
n| z, |=1.03113567 (19)

On the other hand, Table 3 provides the following:

exact

z (3)= 0.477468785364 (20)

Thus, Eq. (5) gives the following result:

exact / exact
n ( z ) =1.0311361 21
From Egs. (19) and (21), the following can be written:

|An| |1.03113567 — 1.0311361
—— = 100x
n 1.0311361

= 0.0000413802% (22)
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In addition, from Egs. (18) and (20), one may write the following:

|Az] | 0.477469083245 — 0.477468785364
— =100x

= 0.0000623875% (23)

z 0.477468785364
Inserting Eqs. (19) and (23) into Eq. (17), yields the following:
A 1+1.03113567
|an ] (%) =100 x x 0.0000623875

n 1+ 2x1.03113567

The final result is as follows:

| An | (%) = 0.004138022% @4

n

Thus, Eq. (17) reproduces exactly the result given by Eq. (22). This numerical example,
and many others performed by the authors, corroborates the reliability of Eq. (17).

Approximate relationship for the implicit Eq. (4)

As the authors indicated previously, determining the critical flow depth in trapezoidal
open channels remains a classical yet stubbornly implicit problem: the governing
relationship, Eq. (4), for the dimensionless depth # and the shape-flow parameter & does
not admit a closed-form solution in its native variables. This note develops a compact,
high-accuracy explicit approximation for #(&) by recasting the implicit equation through
a judicious change of variables and then applying a controlled asymptotic—Taylor
construction. The transformation introduces an auxiliary variable that renders the algebra
tractable, leading first to an implicit relation in the transformed space and, ultimately, to
a closed-form expression for # suitable for routine engineering use.

The resulting formula is not merely convenient; it is anchored in the correct physics across
limiting geometries. In the wide-channel limit, the approximation collapses to the
classical rectangular-channel expression. In the opposite limit, vanishing bottom width,
i.e., triangular section, it recovers the well-known triangular-channel critical depth. These
asymptotes provide transparent checks on both the derivation and the implementation,
while the intermediate behaviour, relevant to real trapezoidal sections, is captured with
uniform accuracy over the practical range of 7.

A brief accuracy assessment against numerical (exact) solutions shows deviations on the
order of 7x107° %, which is more than adequate for design, sensitivity analyses, and
parametric studies. Because the final expression is explicit, it eliminates iterative solves
within larger workflows (e.g., rating-curve generation or optimization loops), thereby
reducing computational cost without sacrificing reliability. The remainder of this note
summarizes the transformation, states the explicit approximation, documents its limiting
forms, and reports the error characteristics relative to the numerical benchmark.
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Theoretical development
Let’s recall that the implicit Eq. (4) as follows:
3
2
(n+n°)
§=" )
1+2n

What is sought is the estimation of the dimensionless parameter # for a given ¢&, that allows
deriving the critical depth /¢ as defined in Eq. (3a).
It is clear that Eq. (4) is implicit in the sought parameter 7. A more suitable relationship

form for an analytical treatment can be set up with the help of a change of variables. Let’s
define the following dimensionless parameter X:

X =(1+27)" (25)
From Eq. (25), the following can be written:
_L(y3
n= E(X -1) (252)

Substituting Eq. (25a) into Eq. (4), and after some algebraic manipulations, the following
can be obtained:

1/6

X =(1+9X) (26)
where:

p=4g'" @7
Thus, Eq. (4) can be rewritten in the following form:

1/6

f(X)=X-(1+9pX) "=0 (28)

Expanding Eq. (28) in an asymptotic series of X, one may obtain what follows:
1/6 1 5
fX)~X-(pXx) " - 576 T et (29)
6(pX) 72(pX)
It can be observed the following.
As @ —> 0, Eq. (29) reduces to what follows:
1/6
F(X)~X —(pX) (30)
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At this stage, and under the condition ¢ —> o0, one can express the variable X as follows:
X =g /5 G1)
Substituting Eq. (31) in the last term of Eq. (36) yields what follows:
1/6
X=(1+(p6/5) (32)

Now, expanding Eq. (28) in a Taylor series around the approximation given by the Eq.
(32), the following can be written:

(33)

r(x)- 3 el 270

where :

6/5)1/6

a=(1+q) (34)

Thus, truncating Eq. (33) to the second order and solving for X, yields the following X
relationship:

5p(1+ (p6/5)1/6 +6

6[¢(1 N ¢6/5)1/6 N 1j|5/6 Y

Substituting Eq. (35) into the right-hand side of Eq. (26), the following final result can be
written:

X = 35)

1/6
5(p2(1+¢6/5) + 6@
X=1+ 576 (36)
6/5 1/6
6 go(l + @ ) +1 - @
Let’s recall Eq. (25a) as follows:
n = l(X3 - 1) (25a)

2

Thus, the explicit solution for the sought parameter # can be derived straightforwardly by
substituting Eq. (36) into Eq. (25a), and rearranging, as follows:
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1/2

1/6
1 Sp*(1+9°°) " +609 1
ne|—+ -~ (37)

6/51/6 5/6
24|:g0(1+¢) ) +1} —4g

This is the final approximate relationship for the implicit Eq. (4), where ¢ is solely
dependent on the known parameter ¢ as defined by Eq. (27), recalled below:

p=4¢&"3 27

Accuracy within the full range & € [0, 1000]

Table 4 provides the deviation (%) between exact-values of # according to Eq. (4), and
approximate 7-values computed using Eq. (37). This confirms what the authors stated
previously, i.e., the maximum deviation produced by the approximate Eq. (37) is only
about 7.1x 10~ %. This worst case occurs at ¢=50. Eq. (37) can be rightly considered
as a quasi-exact y-relationship. Fig. 4 depicts the distribution of the deviations according
to Table 4.

Table 4 audits the explicit depth formula #7(¢) in Eq. (37) against the exact benchmark
from Eq. (4) over 0 < ¢ <1000 at AE = 50. The errors are vanishingly small: the worst
relative deviation is 7.10x107® % at & = 50; the tails are even smaller, e.g., 6.53%x107 %
at £ = 1000, and the match is exact at £ = 0 by construction. This pattern, minute peak
near the mid-range and diminishing errors toward both ends, is exactly what one expects
from a well-conditioned, asymptotic-aware explicit mapping. The Table also makes the
result reproducible by listing the intermediate variable from Eq. (27), the exact n [Eq.
(4)], the explicit # [Eq. (37)], and the percentage deviation. In short: Eq. (37) is quasi-
exact across the full practical domain.

Table 4: Deviation (%) produced by the approximate Eq. (37)

£ QE@@T)  p(exact)Eq.@ 1(APProximaie) Deviation (%)
Eq. 37)

0 0 0 0 0

50 14736126 2.07068607 2.07068622 7.1041E-06
100 18.5663553 2.43677641 2.43677651 4.01E-06
150 212531714 2.67659179 2.67659187 3.0433E-06
200 233921419 2.85930601 2.85930608 2.4076E-06
250 25.198421 3.00865099 3.00865105 2.0951E-06
300 26777318 3.13584514 3.13584519 1.695E-06
350 28.1891949 3.24714876 3.24714881 1.6107E-06
400 29472252 3.34643784 3.34643789 1.3746E-06
450 30.6523773 3.43629069 3.43629073 1.2265E-06
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500 31.748021 3.51851534 3.51851538 1.242E-06
550 32.7728508 3.59443209 3.59443213 1.0516E-06
600 33.7373066 3.66503651 3.66503655 1.1195E-06
650 34.6495642 3.73109922 3.73109925 9.1037E-07
700 35.5161601 3.79322972 3.79322975 8.3903E-07
750 36.3424119 3.851919 3.85191903 7.9352E-07
800 37.1327107 3.90756879 3.90756882 6.951E-07
850 37.8907295 3.96051224 3.96051227 8.1173E-07
900 38.6195754 4.0110289%4 4.01102897 7.0613E-07
950 39.3219029 4.05935593 4.05935596 7.1666E-07
1000 40 4.10569608 4.10569611 6.5256E-07

Max. (%) 7.1041E-06

Fig. 4 visualizes the same deviations and confirms a smooth, single-hump residual with
no oscillatory behaviour, evidence that the explicit expression preserves monotonicity
and numerical conditioning. The dynamic range on the vertical axis is at the 107°% level,
so the curve is effectively flat at publication scale; nevertheless, the plot captures the
precise location of the worst-case point near & = 50.

Bottom line. Table 4 and Fig. 4 convincingly demonstrate that the explicit #(&)
relationship in Eq. (37) achieves quasi-exact performance across the full operating range,
with a tiny and well-behaved residual. This level of accuracy, together with the
documented worst-case location, provides strong assurance for deployment in routine
engineering calculations.

gx1078

Deviation in 1 (%)
7x107° ]

6x107° 3
5%10 %
4%107° {
3x107%
2x10 ¢

1x107%
;

¢
0 100 200 300 400 500 600 700 800 900 1000

Figure 4: Distribution of the deviation (%) produced by the approximate Eq. (37)
within the full range & € [0, 1000]
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Asymptotic

It is interesting at this stage to pass to the limiting cases of Eq. (37). The first asymptote
forms the case of a very wide trapezoidal channel base width, i.e., b — o, corresponding
to the following, according to Eq. (3b):

E—>0

Also, in this case, the critical flow depth asymptotically tends to that of a rectangular
shaped channel, according to Eq. (3b), corresponding to the following:

m—0

For that, if we substitute ¢ =4¢& " in Eq. (37) and expand in McLaurin series, around

& =0, one may obtain the following:

173 .2 55,413 392
n=¢&"7 —=¢+ =577 ——

5/3
4o 38
3 81 2435 9

It is easy to show that that the expansion of Eq. (38) converges to the following limit:

1/3
hc aQZ
=l (9)
b b gcosé

As it can be seen, Eq. (39) corresponds to the expression of the critical flow depth in a
rectangular channel.

The other limiting case forming the second asymptote of the problem is when the
following is reached:

b—0

or equivalently to what Eq. (3b) provides as follows:
g
Expanding now Eq. (37) in an asymptotic series, one obtains:

4N/ 27333/
1 1/5 312 5183 (| 2
SIS S U S A [ N LS e o)
2 40( ¢ 691200( ¢

This case is related to the triangular cross-section channel for which the critical depth is
explicitly given by the following:
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BS 200°

5 (41)
m-gcosé

which forms the limit of the convergent series in Eq. (40). To show simply the

convergence of the series (38) and (40), let us operate a change of variables such that we

denote 77* and & " as follows:

n =— (42)
and

* an

¢ = b gcosd @)
Then, from the critical flow condition expressed by Eq. (4), the following can be written:
. (mn mn*2)3
&= e (44)
From that, it is straightforward to show that the two limiting cases, i.e.:
&E—0
and
£
correspond respectively to what follows:
my=¢"" (45)
. D) 5 1/5
NNoo = ( . j (46)

which correspond to the first term of the series in Eqgs. (15) and (17). Operating in this
way, the formal convergence analysis of the aforementioned series, in a classical way, is
shifted to a simpler fact of checking only the correspondence of the first term of the series.

370



Exact, quasi-exact, and explicit unified solution for critical flow depth in trapezoidal
channels

MAIN FINDINGS OF THE STUDY
Exact foundation and uniqueness

The critical-depth problem is recast as an exact mapping n = z(¢) [Eq. (5)], with the
physical solution characterized as the unique positive root of a trinomial sextic [Eq. (5a)]
or via exact inverse-function representations, i.c., residue integral and Lagrange—
Biirmann/hypergeometric—Appell forms. These provide a machine-precision reference
and explain why a simple radical form is unavailable.

Normalized one-unknown route (computational backbone)

A fifth-root scaling reduces the problem to a strictly monotone scalar equation in a single
unknown [Eqs. (51) — (5k)], from which a reduced form is obtained [Egs. (5n) — (50)].
The authors construct a closed-form rational seed uo(C), Eq. (5p) with coefficients in Eq.
(59), delivering a worst-case deviation < 0.002 % over the broad range ¢ € [0.001,1000];
the worst case occurs at & = 0.001. A one-step Newton/Halley update [Eq. (5r)] then
achieves near machine precision across the full range of &.

Single explicit (blended) formula for z($)

For non-iterative, spreadsheet-ready use, a blended approximation merges rigorously
matched small- and large-¢ branches with a smooth Hill-type switch [Egs. (6) — (9)]. On
the practical interval & € [0.001, 100] it achieves uniform, sub-6.5x107 deviations; on
[100, 1000] it remains highly accurate, with a minimal deep-branch enrichment further
flattening the tail.

Direct explicit #(S) relationship

A well-conditioned change of variables and controlled asymptotic—Taylor construction
yields a closed-form 7(¢) [Eq. (37)] that is quasi-exact on & € [0, 1000], with a worst-case
relative deviation = 7.1x107% % at & = 50.

Traceable error propagation

An analytic mapping quantifies how errors in z transfer to # and design variables [Eq.
(17)], ensuring that reported numerical accuracy is meaningful hydraulically.

Implementation guidance and verification
Beyond formulas, the manuscript supplies practical guidance: how to pick robust starting

values, how to bracket safely, and how to evaluate the exact integral representation when
desired. The accompanying Tables and Figures certify monotonicity, identify the worst-

371



Achour B. & Amara L. | Larhyss Journal, 64 (2025), 343-375

case location and magnitude, and demonstrate the absence of spurious oscillations across
the range.

CONCLUSION

This study delivers a complete, verification-driven solution to the critical-depth problem
in trapezoidal channels by connecting exact analysis with deployable formulas that are
both fast and exceptionally accurate. At the theoretical core is the exact mapping 7 = z(&)
[Eq. (5)], which establishes existence, uniqueness, and a machine-precision benchmark
through its sextic characterization [Eq. (5a)] and analytic inversions. This “ground truth”
explains why a simple radical form is unavailable and anchors everything that follows.

Building on that foundation, the paper introduces a normalized one-unknown route that
collapses the computation to a strictly monotone scalar equation [Egs. (51) — (5k)]. From
this normalized form, the authors construct a closed-form rational seed uo(C) [Eq. (5p),
coefficients in Eq. (5q)] with a worst-case deviation below 0.002% over ¢ € [0.001, 1000];
a single Newton/Halley update [Eq. (5r)] then attains near machine precision across the
entire range. This yields a quasi-exact “one-step” workflow that requires neither charts
nor special functions, and is robust in both the shallow- and deep-¢ limits.

For non-iterative use, i.e., hand calculations, spreadsheets, embedded design tools, a
single explicit blended approximation for z(¢) merges rigorously matched small- and
large-¢ branches with a smooth Hill-type switch [Egs. (6) — (9)]. On £ € [0.001, 100] it
maintains uniform, sub-6.5x1073 % deviations; on [100, 1000], it remains highly accurate,
with a minimal deep-branch enrichment available to flatten the far-tail if needed. The
residuals are smooth and single-humped, confirming good conditioning and the absence
of spurious oscillations.

The manuscript also provides a direct explicit relationship #(¢) [Eq. (37)], obtained via a
well-conditioned change of variables and controlled asymptotic—Taylor construction.
This closed-form expression is quasi-exact over & € [0, 1000], with a worst-case relative
deviation of about 7.1x107° %, at &= 50.

Together with a transparent error-propagation mapping from z to # and design variables
[Eq. (17)], the paper ensures that numerical accuracy is meaningful hydraulically and
traceable in downstream calculations.
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