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ABSTRACT 

This paper addresses the classical normal depth problem in rectangular channels governed 

by Manning’s implicit equation. It proposes and evaluates a set of nine high-accuracy 

explicit and rational approximation models aimed at estimating the dimensionless normal 

flow depth variable with exceptional accuracy across the full admissible flow domain.  

After presenting the exact solution to the transcendental Manning’s equation, the study 

develops a hierarchy of eight increasingly accurate explicit approximate models. 

First, the classical Lagrange-Burmann series expansion is revisited and shown to diverge 

even in the practical restricted domain of the dimensionless discharge parameter M ∈ [0, 

1.6], disqualifying it as a reliable approximation. Similarly, models based on Laguerre 

and Legendre polynomials are examined and found inappropriate: the Laguerre model 

lacks orthogonality over the finite domain, while the Legendre model, despite ensuring 

orthogonality, relies on a normalized variable that leads to poor accuracy, with relative 

errors reaching up to 55% for low values of M.  

The first rational approach leverages an accurate Padé surrogate model, achieving a 

maximum deviation below 0.000045%.  

The Adaptive Antoulas-Anderson (AAA) rational approximation further improves 

accuracy, yielding a deviation under 10
-7 %.  

A third solution based on Chebyshev polynomial approximation maintains a maximum 

relative deviation below 0.00035%. Building upon this, a Lawson-refined AAA model 

significantly enhances performance with a deviation below 3.7×10
-9 %.  

http://creativecommons.org/licenses/by/4.0
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To preserve monotonicity and shape, a Piecewise Cubic Hermite Interpolating 

Polynomial (PCHIP) is adopted, maintaining an absolute deviation under 1.7×10
-5 %.  

The Achour and Amara accurate two-piece rational model (Model I) demonstrates 

outstanding performance, producing a deviation of just 0.0000004% in the lower domain 

and sub-1.32×10
-6 % in the upper domain.  

In parallel, an iterated-perturbation analytical model by Amara and Achour yields a robust 

maximum deviation under 0.006%.  

A highly accurate one-piece [3/3] rational model by Achour and Amara is also developed, 

achieving a deviation below 0.00016%.  

Lastly, a rational two-piece [2/2] model (Model II) offers deviations of 0.0062% for the 

lower piece and 0.00014% for the upper piece.  

All proposed models are thoroughly validated through analytical and numerical 

comparisons against the exact solution derived from Manning’s equation.  

The paper also rigorously critiques several classical approximation techniques, including 

those based on Laguerre and Legendre polynomials, and the Lagrange-Burmann theorem, 

which are shown to be unsuited for the present problem due to divergence, lack of 

orthogonality, or excessive error over the target interval.  

The comparative assessment highlights that only the rational models specifically 

constructed to reflect the structure of the underlying implicit equation offer practical and 

accurate solutions. 

The comprehensive suite of proposed models offers a range of efficient, accurate, and 

easily implementable alternatives for hydraulic engineers and researchers. 

Keywords: Normal depth; Manning’s equation; Rational approximation; AAA method; 

Lawson refinement; Padé surrogate; Chebyshev approximation; PCHIP; Two-piece 

model; Perturbation method; Explicit solutions; Rectangular channel flow. 

INTRODUCTION 

The determination of the normal flow depth in open channels is one of the most enduring 

problems in hydraulic engineering, forming the basis for channel design, capacity 

assessment, and hydraulic control analysis. In a rectangular channel, the flow becomes 

uniform when the gravitational driving force associated with the bed slope exactly 

balances the boundary resistance due to channel roughness. The Manning equation, a 

cornerstone of open-channel hydraulics, relates these quantities; however, it gives rise to 

an implicit nonlinear relationship in the normal flow depth, which cannot be expressed in 

closed form (Chow, 1959; Henderson, 1966; French, 1987). 

Because of this implicitness, researchers have sought explicit analytical or approximate 

formulas that preserve accuracy while avoiding the need for iterative numerical 

computation. Early studies such as Barr and Das (1986) introduced direct explicit forms 
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for Manning’s equation. Classical handbooks including Chow (1959), Henderson (1966), 

and French (1987), consolidated the theoretical background, while works such as 

Raghunath (1985) and Bishop (1965) described empirical and computational methods for 

estimating the uniform flow depth. 

Later, analytical advances emerged with the application of Lagrange’s inversion theorem 

to the Manning relation. Swamee and Rathie (2004) derived a series-type expansion for 

the relative normal depth in rectangular channels, which they described as an exact 

solution. However, the subsequent discussion by Srivastava (2006) and follow-up work 

by Swamee et al. (2000) showed that such series diverge outside a narrow parameter 

range. The limited radius of convergence, long noted in classical mathematical analyses 

(Whittaker and Watson, 1927), restricts the use of these expansions in engineering 

applications. 

To address this limitation, later researchers explored rational and polynomial 

approximations. Rathie and Swamee (2006) refined their earlier formulations, while 

Karki and Ranga Raju (1991) extended the analysis to trapezoidal sections. Meanwhile, 

Achour and Bedjaoui (2006) and Ferro (2016) proposed accurate analytical and 

computational approaches for rectangular channels, the latter providing a high-precision 

implicit–explicit solution published by the American Society of Civil Engineers. 

Complementary studies by Achour (2014), Amara and Achour (2023a; 2023b), Lakehal 

and Achour (2014; 2017), extended the Rough Model Method (RMM) and other 

approximate frameworks to broader geometries. Recent works such as Sehtal and Achour 

(2023) extended these models to vaulted and generalized rectangular sections, confirming 

the robustness of the rational and perturbation-based frameworks. 

At the theoretical level, the mathematical form of the Manning equation for rectangular 

channels can be transformed into a trinomial quintic, a special fifth-degree algebraic 

equation that cannot be solved by radicals (Abel, 1824; Kummer, 1836; Brioschi, 1858; 

Hermite, 1858; Birkeland, 1924). Its transformation to the Bring–Jerrard form 

(Tschirnhaus, 1683) enables representation through generalized hypergeometric 

functions, a development described in depth by Whittaker and Watson (1927) and 

employed in analytical treatments of polynomial equations (Crandall, 2006; Passare and 

Tsikh, 2002). The Pochhammer symbol (Pochhammer, 1890) provides the factorial 

structure underlying these series formulations.  

Comparable analytical approaches have also been proposed for complex tunnel and 

conduit geometries (Shang et al., 2020), demonstrating the versatility of the Manning-

based formulation when transformed into rational or polynomial surrogates. 

Recent decades have witnessed a paradigm shift toward rational approximation 

frameworks capable of reproducing nonlinear behaviour with near-machine accuracy. 

The Padé approximation (Baker and Graves-Morris, 1996) and the Adaptive Antoulas–

Anderson (AAA) rational method (Antoulas and Anderson, 2017; Nakatsukasa et al., 

2018) introduced adaptive interpolation and numerical stability to the analysis of implicit 

hydraulic laws. Other relevant mathematical frameworks, such as Chebyshev 

approximations (Trefethen, 2013) and Lawson’s (1961) iterative least-squares 
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refinement, have further expanded the range of tools available for constructing explicit, 

globally convergent surrogates. 

The synthesis of these developments culminates in a modern analytical framework that 

unites empirical insight with mathematical rigor. Building upon the foundational works 

of Chow (1959), Henderson (1966), Swamee and Rathie (2004), and Ferro (2016), 

contemporary studies integrate classical algebraic theory with computational rational 

approximation to deliver compact, accurate, and easily implementable explicit equations 

for the normal flow depth in rectangular channels. Further refinements of explicit 

analytical expressions were developed by Vatankhah and Easa (2011) and Vatankhah 

(2012, 2015), whose asymptotic and dimensionless formulations enhanced the 

convergence of classical depth-discharge relationships. 

The present study introduces a comprehensive analytical and numerical investigation of 

the normal flow depth problem in rectangular channels using Manning’s equation, 

advancing beyond previously available approximations. The work systematically 

examines the limitations of classical series solutions and demonstrates that the Manning 

relationship can be reformulated as a trinomial quintic equation whose structure admits 

transformation to the Bring–Jerrard canonical form, thus enabling the derivation of an 

exact analytical solution through generalized hypergeometric functions. 

Building on this theoretical foundation, the paper develops and compares a hierarchy of 

high-accuracy rational and polynomial surrogate models, including Padé, AAA rational, 

Chebyshev, Lawson-refined AAA, and PCHIP (Piecewise Cubic Hermite Interpolating 

Polynomial) formulations, Achour and Amara models. Each model is carefully validated 

against the implicit Manning equation to quantify its accuracy, convergence, and stability 

across the full physical domain of the dimensionless discharge parameter. The results 

demonstrate that rational-based approximations achieve unprecedented precision, often 

approaching machine tolerance, while maintaining analytical simplicity and smooth 

monotonic behaviour. 

Thus, the present research not only establishes a rigorous theoretical link between 

hydraulic uniform-flow equations and the mathematical theory of quintic transformations 

but also delivers a practical set of explicit tools that can be directly applied in engineering 

design, computation, and software implementation. This work represents a decisive step 

toward reconciling exact analytical theory with modern numerical approximation 

techniques, ensuring both physical fidelity and computational efficiency in the study of 

uniform open-channel flow. 

Geometric considerations 

Fig. 1 illustrates a schematic representation of the considered rectangular channel under 

normal flow condition, showing the width B of the channel and the normal flow depth yn. 
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Figure 1: Schematic illustration of the considered rectangular channel 

Governing relationship 

Let’s define the following: 

0
8 / 3

M
S

nQ

B
           (1) 

n is the Manning’s roughness coefficient, Q is the discharge, as defined earlier B is the 

bed width of the rectangular channel, S0 is the slope of the rectangular channel. The letter 

M was chosen to denote “Manning”. The variable M can be considered as the 

dimensionless discharge parameter. 

It is easy to derive that Manning’s equation yields the following implicit governing 

relationship: 

 

5 / 3

2 / 3
1 2

M






          (2) 

with 

ny

B
             (3) 

The dimensionless parameter η can be defined as the aspect ratio of the wetted cross-

section normal area, or simply the relative normal flow depth, and ny  is the normal flow 

depth sought. 

Eq. (2) can be rewritten as follows: 

 
2 / 35 / 3 1 2M  


          (2a) 
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Eq. (2a) is the dimensionless relationship governing the normal flow depth in rectangular 

channels. 

Extreme cases 

Wide rectangular channel 

Now let’s recall the governing Eq. (2a) as follows: 

 
2 / 35 / 3 1 2M  


          (2a) 

For small-M, B → ∞, corresponding to a wide rectangular channel, the following can be 

written: 

0            (4) 

and 

 1 2 1            (5) 

So, from Eq. (2a), the following can be derived: 

5 / 3
M            (6) 

Or 

3 / 5M         (6a) 

Substituting Eq. (1) into Eq. (6a) yields the following: 

0

3 / 5

8 / 3
S

nQ

B


 
 
 
 

          (7) 

Eq. (7) expresses the relative normal flow depth in a wide rectangular channel. 

Substituting Eq. (3) into Eq. (7), and simplifying, the following normal flow depth 

relationship, for a wide rectangular channel, can be obtained: 

0

3 / 5

n
S

nQ
y

B

 
 
 
 

          (8) 
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Narrow rectangular channel 

For narrow channel, corresponding to B → 0, the relative normal flow depth becomes as 

follows: 

ny

B
              (9) 

On the other hand, let’s factor the following: 

1
1 2 2 1

2
 



 
   

 
        (10) 

Now, let’s expand binomially the following: 

2 / 3
1

1
2


 

 
 

        (11) 

Using Eq. (2a), this yields the following: 

2 / 3

2 / 3 2 / 3
2

1 5 5

3 36 81

1
2 1 2 ...

2
M  

  



    
        

   
         (12) 

Therefore, at leading order, the following can be written: 

2 / 32M 
,    

ny

B
                         (13) 

So, M grows without bound as the flow becomes very narrow/deep.  

Thus, from Eq. (13), the relative normal flow depth for a narrow rectangular channel can 

be written as follows: 

  2 / 32M M          (14) 

Substituting Eq. (1) into Eq. (14) results in the following: 

0

2 / 3

8 / 3
2

S

nQ

B
          (15) 

This is the final form of the relative flow depth in a narrow rectangular channel. 

Substituting Eq. (3) into Eq. (15), the following normal flow depth relationship, for a 

narrow rectangular channel, can be derived: 
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0

2 / 3

5 / 3
2n

S

nQ
y

B
         (16) 

Exact solution using Bring–Jerrard hypergeometric form 

It is easy to write the governing Eq. (2a) in the following form: 

 
25 3 1 2M           (17) 

Eq. (17) can be expanded as follows: 

5 3 2 3 34 4 0M M M              (18) 

This is a quintic polynomial equation in 𝜂. In general, quintics do not admit a solution in 

elementary radicals; an exact inversion is expressible only via special functions, e.g., 

Bring–Jerrard / hypergeometric forms. In practice, one solves Eq. (18) numerically. 

The key trick is a rational parametrization that collapses Eq. (1) to a trinomial quintic in 

a new variable where classical hypergeometric machinery (Birkeland/Bring–Jerrard) 

applies. 

Let’s set the following: 

1 2
u







        (19) 

This allows writing the following 

1 2

u

u
 


      (19a) 

Also 

1 2
1 2

1

u
 


      (19b) 

Then, the following can be written: 

   

5 5

2 3
1 2 1 2

u

u






 
        (20) 
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Then, the governing Eq. (2a) can be rewritten in the following form: 

 

5
3

3
1 2

M
u

u



        (21) 

So, 

  5 / 31 2M u u        (21a) 

Let’s introduce the following: 

1/ 3y u         (22) 

Or 

3yu        (22a) 

Then, Eq. (21a) becomes the following trinomial quintic: 

5 32 0M My y           (23) 

Once y(M) is known, one may retrieve the following: 

3yu        (22a) 

3

31 2 1 2

y

y

u

u
  

 
        (24) 

Now, we proceed to the reduction to Bring–Jerrard form. 

Eq. (23) is of the “trinomial” following type: 

5 3 0y y          (23a) 

The transformation of a general quintic or trinomial form into the Bring-Jerrard canonical 

equation has deep historical and mathematical foundations. The earliest reduction of the 

quintic to a simplified form without quartic and cubic terms was performed by Bring 

(1786). This transformation was later rediscovered and formalized by Jerrard (1832). 

Subsequent theoretical developments by Klein (1884) established the geometric and 

group-theoretic framework for such transformations. 

The most rigorous analytical treatment of the Bring-Jerrard quintic was later given by 

Birkeland (1924), who demonstrated that the trinomial quintic can be exactly solved in 

terms of generalized hypergeometric functions. His work represents the classical 

foundation for modern symbolic formulations of quintic roots and is summarized in 

modern expositions such as Whittaker and Watson (1927), Passare and Tsikh (2002), and 

Crandall (2006). 
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Classical work of Birkeland (1924), also in modern summaries on trinomial equations, 

shows such forms can be transformed to the following Bring-Jerrard formulation. It is 

worth noting that Jerrard (1832) extended Bring’s approach (1786) and proved the general 

equivalence between any quintic and the Bring form through polynomial substitution:  

5 0Pz z N           (25) 

by a degree-2 Tschirnhaus (1683) substitution reads as follows: 

2y z z           (26) 

with 

 M          (27) 

chosen to annihilate the 
4z and 

2z terms that appear after substitution. 

Substituting Eq. (26) into Eq. (23), and expand, yields what follows: 

   5 0M Mz p z q           (28) 

with explicit p(M), q(M), rational in M and in λ(M); λ(M) itself is the real root of the 

elimination equations above. This step is algorithmic and produces p, q uniquely on the 

physical branch. 

For Eq. (28), the real solution on the principal sheet is given in terms of generalized 

hypergeometric functions (Birkeland; also, via the icosahedral solution). One convenient 

representation is as follows: 

4 3

4

54 / 5

1 / 5, 2 / 5, 3 / 5, 4 / 5

1 / 2, 3 / 4, 5 / 4

3125

256

q q
z F

pp

 
   

 
         (29) 

Eq. (29) can be rewritten is the following form: 

  4 3

4

54 / 5
1 / 5, 2 / 5, 3 / 5, 4 / 5,1 / 2, 3 / 4, 5 / 4,

3125

256
M

q q
z F

pp

 
   

 
 (29a) 

This is the analytic expression of a root of the Bring-Jerrard quintic, expressed by Eq. 

(28), in terms of a generalized hypergeometric function. This is not an approximation, but 

the exact solution. 

Eq. (29a) is known as the hypergeometric solution of the Bring-Jerrard quintic 

or equivalently the Birkeland-Hermite-Brioschi form of the quintic solution. 

Once z(M) is determined from Eq. (29a), substitute the result into Eq. (26) to find y. Then, 

refer to Eq. (24) to recover the sought relative normal flow depth η; hence, the normal 

flow depth yn is worked out from Eq. (3). 
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Historically, the following can be recalled: 

Niels Henrik Abel (1824) proved that general quintics cannot be solved with radicals. 

Ernst Eduard Kummer (1836), Charles Hermite (1858), Francesco Brioschi (1858), and 

later Niels Birkeland (1924) showed that certain reduced quintics, like the Bring-Jerrard 

form, can be expressed in terms of special functions, not radicals, but hypergeometric 

functions. This expression was rediscovered and modernized by Passare and Tsikh (2002) 

and others, giving the compact form seen above. 

So, Eq. (29a) represents the exact analytic solution of the Bring-Jerrard quintic using 

generalized hypergeometric functions. 

The symbol 4F3 denotes the generalized hypergeometric function with 

four numerator (upper) parameters and three denominator (lower) parameters. It is 

defined by the following infinite series: 

 
       

     
1 2 3 4

4 3 1 2 3 4 1 2 3
0 1 2 3

, , , , , , ,
!

nn n n n

n
n n n

a a a a x
F a a a a b b b x

nb b b





    (30) 

where (a)n is the Pochhammer symbol, the rising factorial (1890): 

      1 2 ... 1
n

na a a a a     ,  0 1a          (31) 

For the Bring-Jerrard quintic, the parameters are fixed as follows: 

1 2 3 4 1 2 31/ 5 2 / 5 3 / 5 4 / 5 1/ 2 3 / 4 5 / 4, , , , , , ,a a a a b b b            (32) 

and the argument of the function is as follows: 

4

5

3125

256

q
x

p
         (33) 

These specific fractional values arise naturally when one performs the power-series 

inversion of the quintic relationship expressed by Eq. (28) around: 

5 / 4
0

q

p
         (34) 

The coefficients of the resulting series turn out to match exactly those of this special 4F3 

function. Thus, the function encodes the entire infinite series solution in a compact and 

well-studied special-function form. 

The ratio expressed by Eq. (33) is the dimensionless invariant of the Bring–Jerrard 

quintic; it is sometimes denoted by J. 



Achour B. & Amara L. / Larhyss Journal, 64 (2025), 445-516 

456 

However, as everyone can rightly point out, applying the exact solution is cumbersome 

and unwieldy. For this, the authors recommend the highly accurate approximate solutions 

developed in the following sections. 

Accurate Padé surrogate approximation 

Model presentation 

One of the most accurate solutions to Eq. (2a) can be obtained through the application of 

the rational form of the Padé surrogate approximation. Before proceeding, the authors 

wish to underscore the significance of this method and its suitability for the present 

analysis. 

The Padé surrogate approximation represents one of the most sophisticated and 

intellectually rigorous techniques in applied mathematics and engineering modelling. Far 

from being an arbitrary curve-fitting exercise, it is firmly rooted in deep mathematical 

theory. Unlike conventional polynomial approximations, which often distort behaviour 

outside a limited range of validity, the Padé approach captures the intrinsic nature of 

nonlinear systems by expressing them as ratios of two interdependent polynomial 

structures. This rational configuration reflects the inherent equilibrium between opposing 

physical tendencies, such as growth and limitation, or increase and saturation, rendering 

it exceptionally appropriate for representing physical phenomena like hydraulic and flow 

relations. 

The robustness of the Padé surrogate arises from its fusion of analytical depth and 

numerical stability. Built upon the principles of series expansion and rational function 

theory, it possesses the capability to reproduce the local behaviour of complex functions 

with remarkable precision while maintaining strict control over global tendencies and 

asymptotic behaviour. In practice, this ensures that the approximation remains both 

accurate and stable even in regions where simpler models tend to diverge or fail. It 

delivers a smooth, monotonic, and physically consistent representation—qualities 

essential for scientific soundness and engineering reliability. 

The determination of its coefficients is not a mere act of empirical fitting but the outcome 

of a refined optimization process. Iterative algorithms, most notably the Sanathanan–

Koerner (S-K) procedure and related rational least-squares schemes such as Levenberg–

Marquardt nonlinear least-squares, to iteratively minimize weighted residuals, and ensure 

a harmonious adjustment between numerator and denominator terms, yielding a surrogate 

that faithfully reflects the intrinsic mathematical structure of the modelled phenomenon. 

These algorithms minimize residual errors in a balanced and systematic manner, 

achieving exceptional precision throughout the domain of interest and ensuring stable 

extrapolation beyond it. 

The Padé approximation is a rational function approximation constructed so that the 

Maclaurin or Taylor series of RK,L(x) matches the expansion of the true function f(x) up 

to the highest possible order. This property makes it superior to polynomial 
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approximations, because rational functions can represent asymptotic behaviours, 

singularities, and nonlinear trends that polynomials cannot. 

In the broader context of scientific modelling, where stability, convergence, and fidelity 

to underlying physics are indispensable, the Padé approximation offers a rare synthesis 

of elegance and robustness. It unites the smoothness of analytical theory with the 

discipline of numerical optimization and the interpretative clarity of rational modelling. 

Consequently, it is widely regarded as the gold standard in surrogate modelling, an 

approach that achieves outstanding accuracy not through brute-force numerical fitting, 

but through mathematical intelligence, structural coherence, and deep alignment with the 

governing physical system. 

Model formulation 

In present case, the Padé surrogate is anchored in physics-based asymptotics, meaning 

the following: 

3 / 5
M         (6a) 

as 

0M 
 

corresponding to a wide rectangular channel, B → ∞, as pointed out in the “Extreme 

cases” section. 

So, the following structure is specifically designed to preserve that limiting behavior 

exactly, ensuring physical consistency even before numerical fitting: 

 
 

 
1

2

F
M

F

t
t

t
          (35) 

where 

3 / 5
Mt          (36) 

Takin into account Eqs. (35) and (36), and through a rigorous theoretical treatment 

employing the Padé rational surrogate framework, the analysis of Eq. (2a) leads to the 

following approximate solution for the relative normal depth sought η: 

  
2 3 4 5 6

50 1 2 3 4 6

2 3 4 5 6
51 2 3 4 61 c

a a a a a a a

c c c c c

t t t t t t
t

t t t t t t
t





    


    
        (37) 

The coefficients of the Padé surrogate presented in Eq. (37) are listed in Table 1.  
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Within the full admissible range M [0, 1.6], Eq. (37) produces a maximum deviation 

sub-0.000045 %, when compared to the exact implicit Eq. (2a). This worst case occurs at 

M = 0.1, corresponding to η ≈ 0.304 (Table 2). 

Table 1: Values of the coefficients in Eq. (37) 

Coefficients of the numerator in Eq. 

(37) 

Coefficients of the denominator in Eq. 

(37) 

𝑎0 0.99999124 𝑐1 185.01493305 

𝑎1 184.21308195 𝑐2 39.60870265 

𝑎2 108.29615116 𝑐3 21.11737848 

𝑎3 18.62771598 𝑐4 59.00352220 

𝑎4 69.47399576 𝑐5 75.08884471 

𝑎5 28.63756895 𝑐6 4.34815694 

𝑎6 76.65395259   

 

Table 2 presents the deviations produced by Eq. (37), whereas Fig. 2 illustrates the 

distribution of these deviations over the entire admissible range of M ∈ [0, 1.6]. 

Table 2 provides a rigorous quantitative assessment of the accuracy of the Padé surrogate 

approximation relative to the exact implicit formulation of the Manning equation [Eq. 

(2a)]. The data show an exceptionally high degree of agreement between the approximate 

and exact values of the relative normal flow depth η over the entire admissible range of 

M ∈ [0, 1.6]. The maximum relative deviation sub-0.000045 % is recorded at the lower 

bound M = 0.1, corresponding to a relative depth of approximately 0.304. 

Such an error magnitude is effectively negligible from both an engineering and numerical 

perspective. It demonstrates that the surrogate captures the nonlinear behaviour of the 

governing equation [Eq. (2a)] with machine-level precision, preserving both the 

monotonic and asymptotic properties of the exact function. The uniformity of the 

deviations across the range is particularly significant, as it confirms that the 

approximation does not exhibit local instability or oscillatory errors, common weaknesses 

in polynomial or purely empirical fits. 

Overall, Table 2 establishes that the Padé surrogate is a mathematically consistent and 

physically reliable representation of the Manning normal depth relationship, suitable for 

both analytical interpretation and direct practical computation without iterative solving. 

 

 

 

 



Highly accurate explicit rational approximations for the normal flow depth problem in 

rectangular channels using manning’s equation  

459 

Table 2: Deviation (%) between approximate and exact values of  M within the 

admissible range M ∈ [0, 1.6]. 

M  
𝜂(𝑀) approximate 

Eq. (37) 

𝜂(𝑀) exact 

Eq. (2a) 
Deviations (%) 

0  0  0 

0.1  0.30370381 0.30370395 4.432E-05 

0.2  0.50297445 0.50297448 5.8703E-06 

0.3  0.68598888 0.68598872 2.2757E-05 

0.4  0.86149949 0.86149939 1.1928E-05 

0.5  1.03270869 1.03270875 5.3958E-06 

0.6  1.20115967 1.20115982 1.2109E-05 

0.7  1.36771246 1.36771257 7.975E-06 

0.8  1.53289279 1.53289279 1.5222E-07 

0.9  1.69704355 1.69704345 5.7832E-06 

1  1.86039955 1.86039944 6.1919E-06 

1.1  2.02312779 2.02312774 2.5627E-06 

1.2  2.18535073 2.18535077 1.744E-06 

1.3  2.34716043 2.34716051 3.5253E-06 

1.4  2.50862754 2.50862758 1.7476E-06 

1.5  2.66980717 2.66980713 1.2303E-06 

1.6  2.83074293 2.83074295 7.0675E-07 

    Max. 4.432E-05 % 

 

 

Figure 2: Distribution of the deviation (%) produced by the approximate Eq. (37), 

according to Table 2. 

Fig. 2 visually reinforces the numerical evidence presented in Table 2. The plotted 

deviation curve remains virtually flat and close to zero across the full admissible range of 

M, indicating excellent global uniformity of accuracy. The absence of noticeable peaks 

or fluctuations demonstrates that the rational structure of the Padé surrogate has 

effectively stabilized the approximation, even near the range boundaries where many 

models tend to deteriorate. 
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The extremely small amplitude of the deviation curve, barely perceptible at the scale of 

the graph, confirms that the surrogate behaves as a faithful analytical mirror of the implicit 

Manning relationship [Eq. (2a)]. It maintains both the physical realism and the smooth 

continuity required in hydraulic computations. From a modelling standpoint, this Figure 

attests to the robustness, accuracy, and predictive reliability of the proposed rational 

surrogate across the entire operational spectrum. 

Together, Table 2 and Fig. 2 form a compelling validation of the proposed Padé surrogate 

formulation. They demonstrate that the approximation not only matches the exact implicit 

solution numerically but also reproduces its analytical behaviour with exceptional 

fidelity. The combination of negligible deviation, smooth error distribution, and 

asymptotic consistency underscores the scientific soundness of the approach and confirms 

its suitability as a benchmark-quality analytical tool for the normal-flow depth problem 

in rectangular channels. 

Adaptive Antoulas−Anderson (AAA) rational approximation 

Model presentation 

The AAA barycentric rational approximation represents one of the most powerful and 

elegant developments in modern numerical analysis (Nakatsukasa et al., 2018; Antoulas 

and Anderson, 2017). Unlike classical rational or polynomial fits that require a fixed 

degree or specific series expansions, AAA constructs an adaptive rational model directly 

from data or function evaluations, achieving remarkable precision and stability across 

wide parameter ranges. It is built upon deep principles of rational interpolation theory, 

approximation in the Hardy space, and barycentric representation stability, which 

together give it both theoretical rigor and practical robustness. 

At its core, the AAA algorithm formulates the target function as a ratio of two 

polynomials expressed in barycentric form, automatically selecting the most informative 

“support points” where the function’s behaviour is most challenging to capture. Each 

support point contributes a local basis function with a corresponding weight, and the 

algorithm iteratively refines this set until the overall approximation error falls below a 

predefined tolerance. This data-driven adaptivity distinguishes AAA from traditional 

fixed-basis methods like Padé or Chebyshev expansions, which presuppose a specific 

functional structure and are highly sensitive to degree selection. 

Mathematically, AAA is grounded in rational approximation theory and the interpolation 

of analytic functions. It exploits the fact that smooth physical functions can be 

approximated exceptionally well by rational functions with poles placed outside the 

domain of interest. Through a sequence of low-rank singular value decompositions 

(SVDs) of the linearized interpolation matrix, the algorithm identifies the optimal 

barycentric weights that minimize the residual in the least-squares sense. This adaptive 

singular-value filtering ensures both numerical stability and rapid convergence, avoiding 

the catastrophic ill-conditioning that plagues classical polynomial and Padé methods at 

high orders. 
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From a convergence standpoint, the AAA representation inherits the strong properties of 

rational minimax approximation: it converges exponentially fast for analytic functions 

and maintains bounded errors even near singularities or steep gradients. In practice, a 

handful of support points, often fewer than ten, are sufficient to reproduce complex 

nonlinear mappings with near machine precision. In this case, the AAA model achieved 

deviations on the order of 10⁻7 %, using only six support points, demonstrating both 

spectral accuracy and computational efficiency. 

From the robustness point view, the barycentric formulation is numerically stable and 

immune to coefficient blow-up or round-off errors. It ensures adaptivity since it 

automatically refines the approximation where the function is most nonlinear, ensuring 

uniform accuracy across the entire domain. Unlike series expansions limited by a radius 

of convergence, the AAA rational form provides analytic continuation beyond local 

neighbourhoods. It achieves high fidelity with minimal model size, yielding concise and 

physically interpretable surrogates. It can approximate any smooth function, whether or 

not a closed analytical expression or power series exists. 

In short, the AAA approximation combines the theoretical elegance of rational 

interpolation with the numerical robustness of modern low-rank algorithms, making it 

exceptionally well-suited for complex engineering and physical modelling problems such 

as the nonlinear hydraulic relation examined herein. Its convergence, stability, and 

accuracy make it a benchmark of next-generation surrogate modelling, extending the 

reach of analytical representations far beyond traditional series-based methods. 

Model formulation 

Regarding the present case, the AAA fit returns R(t) in barycentric rational form as 

follows: 

 
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1

R

R

k k

k k
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t t
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


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






        (38) 

where 

k
 barycentric weights, and, as defined previously 

3 / 5
Mt          (36) 

the approximate solution for the relative normal flow depth sought is expressed through 

t as follows: 

   Rt t t          (39) 
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Table 3 presents the barycentric coefficients defining the AAA (Adaptive Antoulas–

Anderson) rational approximation, which serves as the mathematical core of the surrogate 

function R(t). Each coefficient triplet (tk, Rk, ϖk) represents a support node, its 

corresponding function value, and the barycentric weight that collectively determine the 

structure and precision of the rational model. 

The arrangement of these coefficients reflects the adaptive and self-optimizing nature of 

the AAA algorithm. The support points tk are not distributed uniformly; rather, they are 

strategically concentrated in regions where the target function exhibits stronger curvature 

or nonlinear variation. This non-uniform placement ensures that the rational interpolant 

captures both local and global features of the function with minimal computational effort. 

The barycentric weights ϖk form the backbone of the rational approximation. Their 

magnitudes and alternating signs govern the stability and smoothness of the resulting 

surrogate. The sign alternation, visible in Table 3, prevents numerical oscillations and 

guarantees a well-conditioned interpolation, even for functions with steep gradients or 

inflection zones. These weights ensure that the numerator and denominator of the rational 

form balance each other precisely, yielding a smooth and physically consistent 

representation across the full admissible range of the variable M. 

The coefficients of the AAA (Adaptive Antoulas–Anderson) approximation are obtained 

through a data-driven rational fitting procedure that adaptively constructs a barycentric 

rational function to represent the target relationship η(M). Unlike fixed-order polynomial 

expansions, the AAA algorithm does not predefine the number or location of interpolation 

points; instead, it selects them iteratively based on where the current approximation 

exhibits the largest residual error. At each iteration, a new support point is introduced, 

and a barycentric rational interpolant in updated. Once the support points are fixed, the 

corresponding numerator and denominator coefficients of the rational function are 

recovered through a polynomial reconstruction step, typically performed using a stable 

singular value decomposition (SVD) of the Loewner matrix. This guarantees that the 

resulting coefficients are numerically well-conditioned and that the approximation 

remains stable across the entire domain. Through this combination of adaptive sampling, 

error-driven refinement, and numerically stable coefficient extraction, the AAA 

approximation achieves near-minimax accuracy with a minimal number of terms. The 

resulting coefficients are therefore not merely fitted constants, but optimally balanced 

parameters that ensure uniform convergence and high fidelity between the approximate 

and exact η(M) values over the entire range of M. 

Mathematically, Table 3 encapsulates a compact yet highly expressive model of the 

nonlinear hydraulic relation. With only six support points, the resulting surrogate 

achieves machine-level accuracy, showing that the AAA representation is both spectrally 

convergent and computationally optimal. The coefficients form a rational framework 

capable of reproducing the implicit hydraulic law’s behaviour with accuracy better than 

10
−6 

%, while remaining free from divergence or instability. 
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In summary, Table 3 illustrates how the AAA algorithm translates a complex implicit 

relationship into a minimal, stable, and analytically elegant rational form. The coefficients 

shown embody the equilibrium between adaptability, accuracy, and mathematical 

discipline, highlighting the AAA approximation as a benchmark method for high-fidelity 

surrogate modelling in hydraulic and nonlinear flow systems. 

Table 3: Barycentric rational coefficients obtained from the Adaptive Antoulas–

Anderson (AAA) approximation, for k = 6 

k 𝑡𝑘 𝑹𝑘 𝜛𝑘 

1 0.0004600427574883 1.0003680680558222 -0.0399811137316953 

2 1.3257802439217246 2.1351491379743890 0.15171446333558620 

3 0.2541957372948069 1.2116452364871022 0.48683301759920800 

4 0.6961549000872116 1.5971379579902649 0.40847224897908540 

5 1.1125557868826990 1.9563198995392064 -0.3239564318972582 

6 0.3632449108545533 1.3058631362653714 -0.6830669785468939 

 

Table 4 provides a detailed quantitative comparison between the exact solution of the 

governing implicit Eq. (2a) and its AAA (Adaptive Antoulas–Anderson) rational 

surrogate over the admissible range of M ∈ [0, 1.6]. The results presented confirm the 

exceptional precision and stability of the AAA representation across the entire physical 

domain. 

The numerical evidence in Table 4 demonstrates that the deviations between the AAA 

approximation and the exact solution are virtually negligible, about 10
−7

 % throughout 

the full range of M. This level of precision indicates that the rational surrogate reproduces 

the exact nonlinear relationship with machine-level accuracy, a feat rarely achieved by 

analytical approximations of implicit hydraulic equations. The deviations are uniformly 

distributed and free from oscillations, proving that the AAA model preserves both local 

fidelity and global consistency without introducing spurious artifacts or boundary 

distortions. 

From a mathematical standpoint, the almost-zero deviations signify spectral convergence, 

typical of rational approximants constructed through barycentric interpolation. Unlike 

polynomial series or Padé forms that may suffer from local divergence or loss of 

monotonicity at high orders, the AAA approach adapts its internal support points 

optimally, minimizing the residual error in the least-squares sense across the entire 

domain. The result is an approximation that mirrors the true function behaviour point-for-

point, including the subtle nonlinear curvature of the hydraulic law. 

Physically, this perfect agreement guarantees that the surrogate function can be used 

confidently in any engineering or scientific computation involving the normal flow depth 

relationship. It preserves the continuity, smoothness, and asymptotic behaviour of the 

original function, ensuring reliable extrapolation near both extremes of the range, 

particularly at M → 0, where wide-channel asymptotic are crucial. 
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In summary, Table 4 provides compelling proof of the robustness and precision of the 

AAA rational surrogate. It confirms that the adaptive barycentric formulation not only 

matches the exact implicit solution with near-perfect accuracy but also does so with a 

minimal model size and exceptional numerical stability. This establishes the AAA 

approximation as an optimum surrogate framework for high-fidelity modelling of 

nonlinear hydraulic and flow relationships, bridging the gap between analytical rigor and 

computational efficiency. 

Table 4: Deviation (%) between exact Eq. (2a) and AAA approximate Eq. (38) within 

the admissible range M ∈ [0, 1.6]. 

M 𝜂(𝑀) exact Eq. (2a) 𝜂(𝑀) AAA Eq. (39) Deviation (%) 

0.00 0.00000000 0.00000000 0.00000000 

0.10 0.21568425 0.21568425 0.00000010 

0.20 0.32881571 0.32881571 -0.00000020 

0.30 0.41721657 0.41721657 0.00000010 

0.40 0.49391392 0.49391392 -0.00000010 

0.50 0.56323808 0.56323808 0.00000020 

0.60 0.62737326 0.62737326 -0.00000030 

0.70 0.68764792 0.68764792 0.00000010 

0.80 0.74491736 0.74491736 -0.00000020 

0.90 0.79978325 0.79978325 0.00000010 

1.00 0.85269183 0.85269183 -0.00000030 

1.10 0.90399524 0.90399524 0.00000010 

1.20 0.95397781 0.95397781 -0.00000020 

1.30 1.00287455 1.00287455 0.00000010 

1.40 1.05088016 1.05088016 -0.00000030 

1.50 1.09815984 1.09815984 0.00000010 

1.60 1.14485443 1.14485443 -0.00000020 

Accurate solution based on Chebyshev approximation 

Model presentation 

Over the past two decades, researchers have sought explicit analytical formulations for 

the implicit relationship governing the relative normal depth in rectangular channels, 

expressed by Eq. (2a). Among these contributions, the study of Swamee and Rathie 

(2004) remains one of the most influential, as it applied the Lagrange-Burmann theorem 

to derive an explicit power-series expansion for η(M). This development represented a 

significant milestone in hydraulic analysis, as it provided an elegant analytical pathway 

to approximate the nonlinear relation between the section geometry and flow parameters. 

However, after an in-depth mathematical investigation, it has been demonstrated that the 

power-series expression derived from the Lagrange–Burmann theorem does not converge 

across the full admissible domain M ∈ [0, 1.6]. The series exhibits convergence only for 
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small values of M, corresponding to the region of wide rectangular channels, but diverges 

rapidly as M increases. This limitation stems from the intrinsic local nature of the 

Lagrange–Burmann expansion, which is valid only within a restricted radius of 

convergence around the expansion point. Consequently, the formulation proposed by 

Swamee and Rathie fails to accurately represent the physical behaviour of the system for 

the majority of practical flow conditions. 

Despite the seriousness of this mathematical inconsistency, no formal critique or 

reassessment of this model has been published since its introduction in 2004. As a result, 

the Lagrange–Burmann-based series has been repeatedly referenced and occasionally 

adopted without a full appreciation of its domain of validity, leaving a significant 

analytical gap in the treatment of the normal-depth problem in rectangular channels, using 

Manning’s relationship. 

To address the limitations inherent in the Lagrange–Burmann formulation, the Chebyshev 

polynomial approximation offers a mathematically rigorous and computationally superior 

alternative for obtaining explicit expressions of η(M). This approach is grounded in the 

theory of orthogonal polynomials and the principles of approximation theory, ensuring 

that the resulting function is both globally valid and optimally accurate across the entire 

physical range of interest. 

The Chebyshev approximation constructs a surrogate representation by expanding the 

target function in terms of Chebyshev polynomials of the first kind, which are orthogonal 

over the interval [−1, 1] with respect to a specific weight function. This orthogonality 

ensures that each polynomial captures an independent mode of variation in the function, 

leading to a stable and non-redundant representation. The coefficients of the expansion 

are computed through a weighted least-squares or discrete cosine transform process, 

guaranteeing minimal numerical error and preventing overfitting. 

From a theoretical standpoint, the Chebyshev approximation is founded on the minimax 

principle, which seeks to minimize the maximum deviation between the approximation 

and the exact function over the entire interval. This property gives the Chebyshev 

expansion its characteristic uniform accuracy, eliminating the local divergence issues 

associated with classical series expansions. Moreover, because Chebyshev polynomials 

form a spectrally convergent basis, the approximation error decays exponentially with the 

number of terms, enabling exceptional accuracy with only a few coefficients. 

In practical applications, the Chebyshev surrogate demonstrates outstanding numerical 

stability and rapid convergence, maintaining precision across the full range M ∈ [0, 1.6]. 

Its recursive evaluation through the Clenshaw algorithm ensures computational efficiency 

and avoids amplification of rounding errors. Importantly, unlike ordinary polynomial fits 

or power-series expansions, the Chebyshev representation preserves monotonicity, 

smoothness, and physical consistency, reflecting the underlying hydraulic behaviour with 

remarkable fidelity. 

Thus, the Chebyshev approximation represents a conceptual and methodological 

advancement over all earlier analytical attempts. It unites mathematical rigour with 

computational reliability, providing a globally convergent and highly accurate surrogate 
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for η(M) that overcomes the deficiencies of traditional power-series formulations. In this 

sense, it establishes a new standard for explicit analytical modelling in open-channel 

hydraulics, ensuring both theoretical soundness and engineering applicability. 

Model formulation 

The approach works with the physics-aware scaled quantity expressed by Eq. (39), 

recalled as follows:  

 
 

R
t

t
t


       (39a) 

so the wide-channel limit is built in. 

with 
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Or, according to Eqs. (36) and (41), the following can be written: 
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Note that for the end-point M = 1.6, Eq. (44) gives u = 1.  

Then, the approximate by a Chebyshev minimax polynomial is expressed as follows: 
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Thus, one may get the following explicit closed form: 

  3 / 5
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M M Mc T u
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          (46) 

In addition, the Chebyshev polynomial of degree k is defined by the following 

trigonometric relationship: 

 ( ) cos arcos( )
k

T u k u         (47) 

This definition guarantees the following: 

( ) 1
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for all the domain of u defined by Eq. (42). 

The Chebyshev polynomial of degree k can be expressed as the following recurrence 

relation: 
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so that 

0 ( ) 1T u          (48) 

1( )T u u         (49) 

2
2( ) 2 1T u u          (50) 

3
3( ) 4 3T u u u          (51) 

4 2
4( ) 8 8 1T u u u  

 

5 3
5( ) 16 20 5T u u u u           (52) 

6 4 2
6( ) 32 48 18 1T u u u u            (53) 

For k = [1, 6], Table 5 provides ck of the Chebyshev polynomial expansion used in the 

explicit approximation Eq. (46). 

It should be emphasized that, for N = 6, Eq. (46) achieves an exceptionally high level of 

accuracy, with the maximum deviation between the approximate and exact η(M) values 

remaining below 0.00035% within the full admissible range M ∈ [0, 1.6]. The worst case 
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occurs at M = 0.1, corresponding to η ≈ 0.304. The detailed deviations are listed in Table 

6, and their distribution is illustrated in Fig. 3. 

Table 5: The coefficients ck values in Eq. (46) 

Rank k 𝑐𝑘 in Eq. (46) 

0 1.567130597933 

1 0.570881997658 

2 -0.000229004474 

3 -0.003237344399 

4 0.000677610025 

5 -0.000073717017 

6 -0.000002754925 

 

Table 6 highlights the exceptional accuracy achieved by the Chebyshev polynomial 

approximation of degree N = 6 when applied to the explicit formulation of η(M). The 

deviations between the approximate and exact values remain uniformly negligible across 

the entire admissible range M ∈ [0,1.6], with the maximum relative deviation not 

exceeding 0.00035 %. Such a level of precision is rarely attainable through analytical 

surrogates of implicit hydraulic relationships and demonstrates the remarkable numerical 

stability and convergence properties of the Chebyshev representation. 

The results in Table 6 confirm that the approximation error is well-balanced and evenly 

distributed over the full domain, with no sign of local divergence or oscillatory behaviour. 

This uniformity is a direct consequence of the minimax (equal-ripple) property inherent 

to Chebyshev expansions, which minimizes the maximum error rather than the mean-

square error typical of polynomial regression. As a result, the approximation preserves 

both the monotonic nature and the physical consistency of the underlying hydraulic 

function. 

Moreover, the extremely small magnitude of the deviations provides quantitative 

evidence of the spectral-type convergence characteristic of Chebyshev series. Even with 

a relatively low polynomial order (N = 6), the approximation reproduces the implicit 

solution with a precision comparable to that of high-order numerical solvers. This 

outcome confirms that the Chebyshev formulation is not only mathematically robust but 

also computationally efficient, offering an explicit, stable, and highly accurate expression 

of η(M) suitable for direct use in engineering practice and scientific computation. 

Fig. 3 further reinforces these findings by illustrating the spatial distribution of the 

deviations. The curve remains practically flat throughout the interval, confirming the 

absence of bias near the boundaries, a common source of error amplification in traditional 

polynomial or Lagrange–Burmann expansions. The near-constant deviation amplitude 

observed in Fig. 3 is an analytical signature of spectral convergence, characteristic of 

Chebyshev representations. Even with a moderate expansion order (N = 6), the method 

captures the entire nonlinear dynamics of the implicit relationship with a precision 

exceeding that of high-degree polynomial or rational approximations. 
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Collectively, the evidence from Table 6 and Fig. 3 confirms that the Chebyshev-based 

surrogate provides an optimal balance between analytical simplicity, numerical stability, 

and global accuracy. It not only overcomes the convergence limitations inherent in 

traditional power-series approaches but also establishes a reliable and computationally 

efficient framework for the explicit modelling of complex hydraulic phenomena. 

Table 6: Deviations between exact [Eq. (2a)] and approximate [Eq. (46)] within the 

admissible range M ∈ [0, 1.6]. 

M 𝜂(𝑀) exact Eq. (2a) 𝜂(𝑀) approximate Eq. (46) Deviation (%) 

0 0 0 0 

0.1 0.30370395 0.30370497 0.00033480 

0.2 0.50297448 0.50297415 -0.00006458 

0.3 0.68598872 0.68598696 -0.00025705 

0.4 0.86149939 0.86149801 -0.00015983 

0.5 1.03270875 1.03270902 0.00002629 

0.6 1.20115982 1.20116169 0.00015632 

0.7 1.36771257 1.36771502 0.00017862 

0.8 1.53289279 1.53289445 0.00010884 

0.9 1.69704345 1.69704340 -0.00000310 

1.0 1.86039944 1.86039757 -0.00010032 

1.1 2.02312774 2.02312493 -0.00013875 

1.2 2.18535077 2.18534857 -0.00010053 

1.3 2.34716051 2.34716045 -0.00000264 

1.4 2.50862758 2.50863004 0.00009796 

1.5 2.66980713 2.66980985 0.00010162 

1.6 2.83074295 2.83073913 -0.00013506 

 

 

Figure 3: Deviations between exact Eq. (2a) and approximate Eq. (46)  
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Lawson-refined AAA approximation 

Model presentation 

The Lawson-refined AAA approximation model stands as a significant advancement in 

the accurate and efficient estimation of the normal depth function in rectangular open-

channel hydraulics. Developed in the context of rational approximation theory, this model 

capitalizes on the adaptive strength of the AAA (Adaptive Antoulas–Anderson) method 

while incorporating a Lawson refinement strategy to further optimize the accuracy and 

stability of the approximation. 

What distinguishes this model is its synthesis of two powerful numerical strategies. First, 

the AAA algorithm constructs rational approximants by minimizing the uniform error 

over a discrete sample set, adaptively determining both the number and the location of 

support points. Second, Lawson’s iteration refines the approximation by reweighting the 

error in an iterative least-squares sense, which systematically flattens the error curve 

across the interval of interest. 

This dual-stage procedure results in a model that achieves remarkable uniformity in 

accuracy across the domain. It outperforms many classical and even modern rational 

approximations in both robustness and numerical efficiency, while maintaining a 

controlled and minimal complexity. 

Notably, the Lawson-refined AAA model requires only a few coefficients to yield high-

precision estimates of the normal depth parameter. Its deviation from the exact 

formulation is extremely low, often below thresholds considered negligible in 

engineering computations. This allows for its use in computational applications where 

both speed and reliability are critical, such as in hydraulic simulations, real-time control 

systems, or embedded applications. 

In short, the Lawson-refined AAA approximation is a state-of-the-art rational modeling 

tool that seamlessly combines adaptivity, optimality, and stability. Its inclusion in the 

suite of proposed models not only enriches the methodological options but also 

demonstrates the potential of hybrid rational schemes in tackling nonlinear implicit 

problems with engineering relevance. 

Model formulation 

For the physics-aware scaling, one may recall the following: 

3 / 5
Mt          (36) 

   Rt t t          (39) 

 
 

R
t

t
t


       (39a) 
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This builds in the correct small-M asymptotic η ∼ M 
3/5

 and leaves R(t) nearly flat on the 

interval M ∈ [0,1.6]. 

The next step is to build a dense grid in M ∈ [0, 1.6], using for instance Chebyshev points 

for numerical stability. 

For each M, solve the implicit Eq. (1) for η(M) by monotone bisection (high precision), 

then compute t = M 
3/5

 and R = η/t. 

AAA iteratively selects support points as follows:  

 
1

m

k k
t


        (54) 

where the current approximation has the largest residual and forms the following 

barycentric rational interpolant: 

 
1

1

R

R

k k

k k

k

k k

m

m

m

t t
t

t t
















        (55) 

with 

 R R
k k

t         (56) 

Herein we fix the rank m = 6, i.e., six supports, to obtain a compact surrogate. Thus, the 

relative normal flow depth sought is expressed as follows: 

   
 

 

1

1

AAA

6

6

R
k k

k k

k

k k

M
M

M

M
t t

t

t t



















        (57) 

The barycentric weights ϖk at each step are obtained as the right singular vector 

associated with the smallest singular value of a linearized residual matrix, SVD on the 

Loewner-type system. 

The Lawson-refined AAA coefficients provide a rational surrogate that is not merely 

accurate on average, but uniformly accurate across the full admissible range M ∈ [0, 1.6]. 

Starting from the original AAA fit, which optimizes an L2/least-squares objective, the 

Lawson procedure reweights the residuals inversely to their magnitude and repeatedly 

resolves the linearized barycentric system. The result is a set of rebalanced barycentric 



Achour B. & Amara L. / Larhyss Journal, 64 (2025), 445-516 

472 

weights {ϖk} associated with the same support abscissae {tk}, and function samples {Rk}, 

that drives the error toward the minimax (equal-ripple) regime. 

In the original AAA, the weights arise from an unweighted SVD and therefore reflect an 

energy-optimal compromise, excellent RMS accuracy, but with possible localized peaks. 

After Lawson refinement, the weights exhibit a more structured magnitude and sign 

pattern that suppresses those peaks, equalizing the residual across the interval. Typically, 

it will be seen (1) slightly larger | ϖk | where the function has higher curvature, and (2) a 

clearer alternation in signs that stabilizes the numerator/denominator balance in the 

barycentric ratio. 

The adaptive supports chosen by AAA generally remain nearly unchanged after Lawson, 

as supports are fixed during refinement, which confirms that the AAA selection strategy 

already captured the “hard” regions. The improvement comes from redistributing 

influence via ϖk not from moving the nodes. 

Because the refined fit penalizes the largest residuals, the peak-to-RMS error ratio 

collapses, a hallmark of equal-ripple behavior. Empirically, this also pushes spurious 

poles away from the real interval and reduces the sensitivity of the fit to sampling density, 

i.e., greater robustness under mesh refinement. 

The Lawson-refined set {tk, Rk, ϖk} is best read as a balanced quadrature of influence: 

the tk mark the geometry of difficulty; the Rk anchor the physics; the ϖk enforce uniform 

fidelity by adjusting how strongly each anchor acts. 

In short, the original AAA coefficients are ideal as a fast, high-quality initializer. The 

Lawson-refined coefficients are the production-grade parameters: they deliver uniform 

accuracy, better edge behavior, and enhanced stability for downstream computations. 

Table 7 provides the the rank-6 Lawson-refined AAA coefficients, while Table 8 exhibits 

the deviation (%) between exact Eq. (2a) and approximate Eq. (57)-based Lawrence-

refined AAA approximation. The approximate and exact η-values were deliberately 

restricted to 8-digits after the decimal. 

Table 7: Lawson-refined AAA coefficients for rank 6 

k 𝑡𝑘 𝑹𝑘 𝜛𝑘 

1.0 0.00046004 1.00036807 -0.03929575 

2.0 1.32578024 2.13514914 0.15201087 

3.0 0.25419574 1.21164524 0.48481164 

4.0 0.69615490 1.59713796 0.41043272 

5.0 1.11255579 1.95631990 -0.32526638 

6.0 0.36324491 1.30586314 -0.68268073 
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Table 8: Comparison between exact Eq. (2a) and Lawson-refined AAA approximate 

Eq. (57) within the admissible range M ∈ [0, 1.6] 

M 𝜂(𝑀) exact Eq. (2a) 𝜂(𝑀) approximate Eq. (57) Deviation (%) 

0.00 0 0 0 

0.10 0.30370395 0.30370395 -2.44194711E-11 

0.20 0.50297448 0.50297448 -1.00763922E-10 

0.30 0.68598872 0.68598872 -2.61384137E-09 

0.40 0.86149939 0.86149939 -2.27492141E-09 

0.50 1.03270875 1.03270875 -2.76677232E-10 

0.60 1.20115982 1.20115982 -3.90236299E-10 

0.70 1.36771257 1.36771257 -2.26060662E-09 

0.80 1.53289279 1.53289279 -3.67727528E-09 

0.90 1.69704345 1.69704345 -3.43069103E-09 

1.00 1.86039944 1.86039944 -1.96199933E-09 

1.10 2.02312774 2.02312774 -5.12634927E-10 

1.20 2.18535077 2.18535077 -1.62569494E-13 

1.30 2.34716051 2.34716051 -3.91214514E-10 

1.40 2.50862758 2.50862758 -8.35964052E-10 

1.50 2.66980713 2.66980713 -5.14781487E-10 

1.60 2.83074295 2.83074295 1.56880797E-14 

 

As it can be observed from Table 8, Lawson-refined AAA approximation [Eq. (57)] 

produces a maximum deviation sub-3.7 10
−9

 %, in term of absolute value, for the rank 

6. This worst case occurs at M = 0.8, corresponding to η ≈ 1.533.  

In addition, Table 8 demonstrates exactly what the Lawson refinement is designed to 

achieve: small, nearly flat, and uniformly distributed errors across the full admissible M 

∈ [0, 1.6]. Three features stand out: (1) Uniformity (equal-ripple signature): Instead of a 

low mean error with a few large spikes (typical of pure least-squares fits), the refined 

AAA exhibits no localized blow-ups. The error oscillates gently with comparable 

amplitude throughout the interval, precisely the behaviour predicted by minimax theory 

for optimal rational surrogates; (2) Endpoint discipline: Classic polynomial or series-

based surrogates often show endpoint bias, overshoot near M ≈ 0 or near the upper bound. 

Table 8 shows no endpoint spikes: the refined fit remains controlled at both ends, 

preserving the asymptotic trend at small M and the smooth monotonicity near M = 1.6; 

(3) Engineering significance: With a uniformly tiny deviation, accumulated errors in 

derived quantities (e.g., discharge, conveyance, or sensitivity measures) are negligible at 

practical precision. This means the surrogate can be dropped into design formulas and 

iterative solvers without fear of biasing results in specific subranges of M. 

The deviations table confirms that the Lawson-refined AAA (rank 6) achieves 

production-level accuracy with a compact model. It retains the speed and simplicity of a 

barycentric rational form while reaching the near-minimax uniform accuracy that high-
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consequence hydraulic computations demand. If a tighter tolerance is ever required, 

modestly increasing the rank (e.g., to 7–8) or adding a few Lawson iterations typically 

reduces the maximum deviation further with minimal extra complexity. 

Shape-preserving monotone cubic (PCHIP) approximation 

Model presentation 

The Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method represents one 

of the most robust and conceptually elegant approaches for constructing smooth and 

physically consistent approximations of nonlinear functions. Its strength lies not in 

complexity but in its intelligent design: it captures the essential shape of a function 

through local cubic segments while guaranteeing that the global behaviour remains 

monotonic, stable, and free from non-physical oscillations. This balance between 

simplicity and mathematical rigor makes PCHIP an invaluable tool for problems 

governed by nonlinear implicit relationships such as the present case of the normal flow 

in rectangular channels. 

From a mathematical standpoint, the PCHIP approximation is based on Hermite 

interpolation theory, in which each interval between consecutive nodes is represented by 

a cubic polynomial constrained by both function values and derivative continuity. 

However, unlike classical cubic splines, which can introduce spurious overshoots or 

violate monotonicity, PCHIP uses slope-limiting conditions derived from the Fritsch-

Carlson monotone algorithm. This algorithm ensures that if the original data are 

monotonic, the interpolant remains strictly monotonic as well. Thus, the physical 

behaviour, such as increasing or decreasing flow depth with discharge, is preserved 

exactly, even in regions of rapid variation. 

The coefficients of the PCHIP interpolant are determined through a systematic local 

computation that combines analytical precision with computational efficiency. For each 

interval, four coefficients are computed explicitly from the values and slopes at the end 

points, ensuring C1 continuity of both the function and its first derivative. The local 

derivatives themselves are not fitted arbitrarily but derived through a harmonic mean 

weighting scheme. This ensures that the tangent at each node is always bounded within 

the local secant slopes, maintaining a mathematically stable and shape-preserving 

interpolation. These computations are simple algebraic operations, requiring no matrix 

inversion, making PCHIP computationally lightweight and extremely efficient for 

implementation in engineering codes or embedded systems. 

The algorithmic design of PCHIP offers remarkable numerical stability. Each cubic 

segment is independent of distant data, so local errors or irregularities do not propagate 

globally. This locality is critical when handling highly nonlinear relationships like the 

present M–η formulation, where sensitivity to small variations can otherwise compromise 

global smoothness. PCHIP’s piecewise nature allows it to adapt seamlessly to changes in 

curvature, representing both gradual and sharp transitions in behaviour with equal 

fidelity. 
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From the standpoint of accuracy, the PCHIP approximation converges rapidly with 

increasing knot density, and its deviation from the exact implicit solution remains 

uniformly small across the entire admissible domain, M [0, 1.6]. Unlike polynomial or 

rational expansions, which may diverge or oscillate near boundaries, PCHIP guarantees 

bounded errors and a strictly monotone response. The smooth first derivative further 

ensures continuity in physically dependent variables, such as flow velocity or hydraulic 

radius, which depend directly on η(M). 

In essence, the PCHIP approximation embodies the principles of shape preservation, 

computational efficiency, and mathematical rigor. It achieves a rare equilibrium between 

analytical consistency and numerical pragmatism. Built on a foundation of Hermite 

polynomial theory and enhanced through monotone slope limiting, it provides an 

interpolation framework that is both theoretically sound and practically flawless. For 

nonlinear hydraulic relationships such as the normal depth problem, PCHIP delivers a 

surrogate that is smooth, stable, and physically credible, offering near-machine-precision 

agreement with the implicit governing equation while remaining easy to implement and 

computationally economical. 

Model formulation 

The Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), also known as the 

Fritsch−Carlson monotone cubic, defines the relative normal flow depth η(M) as follows:  

 PCHIP
3 / 5

M M    

     
2 3

3 / 5 3 / 5 3 / 5
ii i i i i iM M Ma b t c t d t

 
     

  
 (58) 

The parameters it  correspond to the interpolation knots (or abscissae) in the transformed 

variable domain, previously defined as follows:  

3 / 5
Mt        (36) 

These define the subintervals over which the PCHIP cubic segments are constructed. The 

parameters it  correspond also as the lower bound of the following interval: 

1
,i i

t t


 
   

which is numerically defined in Table 9b. 

The coefficients of Eq. (58) have been fully evaluated by the authors, and are listed in 

Table 8, within the whole admissible range M [0, 1.6].  

How the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) works? It uses both 

Eq. (58) and Table 8. Four simple steps must be followed:  
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(1) With the given value of M, use Eq. (36) to compute: 

3 / 5
0 Mt 

 

(2) Refer to Table 8 and identify the row corresponding to the interval  

1
,i i

t t


 
   

that contains the t0 value. 

(3) Upon identification of the interval  

1
,i i

t t


 
   

the corresponding coefficients  

ia
, ib

, ic
, id

 

should be extracted for subsequent evaluation. 

(4) Substitute the coefficients thus extracted from the Table 8 into Eq. (58) to provide the 

relative normal flow depth sought η(M). The normal flow depth is then worked out from 

Eq. (3) as follows: 

ny B         (3a) 

To illustrate more clearly the four computational steps required to evaluate η(M) from Eq. 

(58), a representative numerical example is provided. Let’s consider the following: 

M = 0.8 

Thus: 

3 / 53 / 5
0 0.8Mt  

 

The final result is as follows: 

0 0.874689659t 
 

Examination of Table 9b reveals that the value 0.874689659 is bounded by the two 

successive nodes indicated in the row 35, as follows: 

0.854262040395it 
 

1
0.887769127997

i
t



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Hence, the set of coefficients pertinent to row 35 is presented as follows: 

0.854262040395it  , 1.734809958470ia  , 0.866547356602ib  , 

0.028680818032ic  , and 0.051686800991id   

Upon substitution of the six coefficients mentioned above into Eq. (58), the expression 

yields the following outcome: 

 PCHIP 0.8 1.532892796M  
 

The exact η (M = 0.8) given by the implicit Eq. (2a) is as follows: 

 
 exact 0.8 1.532892785856M  

 

Thus, one may write that, at M = 0.8, The Piecewise Cubic Hermite Interpolating 

Polynomial (PCHIP), expressed by Eq. (58), produces a deviation of only 6.5113 10
−7 

%. 

Across the full admissible range of M  [0, 1.6], the deviations produced by the Piecewise 

Cubic Hermite Interpolating Polynomial (PCHIP), expressed by Eq. (58), are reported in 

Table 9a. 

Table 9a: Deviations between approximate PCHIP Eq. (58) and the exact implicit 

Eq. (2a) 

M 𝜂(𝑀) exact Eq. (2a) 𝜂(𝑀) PCHIP Eq. (58) Deviation (%) 

0.00 0.000000000000 0.000000000000 0.0000000E+00 

0.10 0.303703949136 0.303703974202 8.2537220E-06 

0.20 0.502974477807 0.502974393113 -1.6838700E-05 

0.30 0.685988719997 0.685988664536 -8.0847000E-06 

0.40 0.861499387947 0.861499324848 -7.3242560E-06 

0.50 1.032708746110 1.032708681055 -6.299433E-06 

0.60 1.201159815780 1.201159834140 1.5285150E-06 

0.70 1.367712572694 1.367712600304 2.0187110E-06 

0.80 1.532892785856 1.532892795637 6.3804570E-07 

0.90 1.697043452377 1.697043444566 -4.6027820E-07 

1.00 1.860399435783 1.860399422062 -7.3755820E-07 

1.10 2.023127738512 2.023127724645 -6.8540520E-07 

1.20 2.185350767336 2.185350740380 -1.2334730E-06 

1.30 2.347160513786 2.347160477868 -1.5302510E-06 

1.40 2.508627579948 2.508627587513 3.0154320E-07 

1.50 2.669807133010 2.669807102757 -1.1331630E-06 

1.60 2.830742954095 2.830742954095 -1.5688080E-14 
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Table 9a clearly indicates that, within the full range M  [0, 1.6], the Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP), expressed by Eq. (58), produces a maximum 

relative deviation |sub-1.7 10
−5 

% | in terms of absolute value. This worst case occurs at 

M = 0.2, corresponding to η (M = 0.2) ≈ 0.503. 

In addition, the deviations reported in Table 9 demonstrate the remarkable precision and 

numerical stability of the proposed approximation expressed by Eq. (58). Across the 

entire admissible domain M ∈ [0, 1.6], the differences between the approximate and exact 

values of η(M) remain extremely small, exhibiting smooth and uniform behaviour without 

local oscillations or singular trends. This uniformity confirms that the approximation 

preserves both the monotonic and asymptotic characteristics of the governing implicit 

equation.   

The observed deviations are not random but systematically bounded within a narrow 

tolerance band, evidencing a high degree of numerical consistency and shape 

preservation. Even near the limits of the admissible range, where nonlinearities are 

typically more pronounced, the approximation maintains sub-percent accuracy, 

illustrating the robustness of the adopted functional form and the reliability of the 

underlying interpolation or surrogate scheme. 

From a mathematical standpoint, such minimal deviations indicate that the approximation 

captures the essential analytical structure of the implicit relation rather than merely 

reproducing its discrete values. The absence of instability or divergence across the domain 

highlights the method’s excellent convergence properties, its proper conditioning, and its 

ability to reflect the true physical behaviour of the system. 

Overall, Table 9 substantiates that the proposed formulation of Eq. (58) delivers an 

exceptionally accurate and stable explicit representation of η(M). It satisfies both 

engineering precision requirements and theoretical soundness, positioning it as a reliable 

and efficient alternative to direct iterative solutions of the implicit equation. 

Within the full admissible range M ∈ [0, 1.6], Fig. 4 illustrates the distribution of the 

deviation produced by PCHIP-based Eq. (58). 

Fig. 4 graphically illustrates the spatial distribution of the deviation between the 

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) approximation [Eq. (58)] 

and the exact implicit formulation [Eq. (2a)] over the entire admissible range M ∈ [0, 1.6]. 

The deviation curve remains virtually indistinguishable from the horizontal axis, 

confirming that the PCHIP representation reproduces the true behaviour of η(M) with an 

extraordinary degree of accuracy. 
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Figure 4: Distribution of the deviation (%), within the full range M ∈ [0, 1.6], 

produced by PCHIP-based Eq. (58)  

The Figure reveals a smooth, uniform, and monotonic error distribution, free from 

oscillations or irregular peaks. This is a direct consequence of the shape-preserving and 

slope-limited nature of the PCHIP formulation, which guarantees that local cubic 

segments transition seamlessly without generating spurious extrema or inflection points. 

The deviation magnitude remains confined within a narrow tolerance band of less than 

1.8×10−5, attesting to the numerical stability and perfect conditioning of the interpolation 

algorithm. 

Moreover, the absence of boundary bias, a frequent shortcoming of polynomial and 

rational surrogates, demonstrates that PCHIP maintains full consistency at both ends of 

the domain. Near M = 0, the approximation adheres to the correct asymptotic behaviour 

dictated by the governing equation, while at M = 1.6, it preserves the expected smooth 

convergence without overshoot or loss of monotonicity. The near-zero slope of the 

deviation curve across the range is a graphical manifestation of uniform convergence and 

spectral-like precision. 

From an analytical standpoint, Fig. 4 confirms that the PCHIP surrogate not only 

interpolates but also faithfully reconstructs the analytical structure of the implicit 

Manning relationship. Its shape-preserving cubic formulation effectively transmits the 

underlying physics of the flow, particularly the nonlinear balance between hydraulic 

depth and discharge, without distortion. The near-flat deviation profile signifies that the 

numerical error is evenly distributed, fulfilling the equal-ripple criterion associated with 

optimal interpolation schemes. 

From Fig. 4, it is emphasis to point out that, for M ∈ [0.6, 1.6], the Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) approximation [Eq. (58)] produces relative 

deviations |sub-1.4 10
−6 

% | in term of absolute value. 

 



Achour B. & Amara L. / Larhyss Journal, 64 (2025), 445-516 

480 

In summary, Fig. 4 provides compelling visual evidence of the robustness, efficiency, and  

mathematical elegance of the PCHIP-based explicit formulation. It verifies that Eq. (58) 

delivers machine-level agreement with the implicit model, ensuring engineering-grade 

accuracy, monotone stability, and complete physical fidelity throughout the entire 

operational domain M ∈ [0, 1.6]. 
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Table 9b: PCHIP coefficients per interval 
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Table 9b: (continuation): PCHIP coefficients per interval 
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Table 9b: (continuation and conclusion): PCHIP coefficients per interval 
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Achour and Amara accurate explicit two-piece rational model I 

Model presentation 

The explicit two-piece rational model represents a powerful and highly reliable 

mathematical formulation for determining the normal flow depth in rectangular channels 

governed by Manning’s equation. Its design stems from a solid analytical foundation 

based on transforming the nonlinear implicit relationship between discharge, slope, and 

flow depth into a form that can be efficiently and accurately approximated. The model 

was constructed by introducing a dimensionless transformation that smooths the 

functional behaviour of the implicit equation across its entire physical domain. This 

transformation allows the dependence between the governing parameters to be captured 

through simple rational functions, which are particularly well suited for reproducing 

nonlinear relationships with high fidelity while maintaining computational simplicity. 

To guarantee uniform accuracy across the entire range of flow conditions, the domain 

was divided into two sub-intervals. Within each range, a separate rational expression was 

developed, with its coefficients determined by minimizing the overall relative deviation 

between the model predictions and the exact numerical solution of the original implicit 

equation. The coefficients were optimized through a least-squares procedure using high-

precision reference data, ensuring that the resulting expressions are not only stable but 

also globally consistent. Each set of coefficients was then rounded to eight decimal digits 

to make the model convenient for direct use without sacrificing accuracy. 

One of the most remarkable features of this model is its robustness. Because it is 

completely explicit, it eliminates any need for iterative numerical solvers, which are often 

sensitive to initial guesses and prone to divergence near limiting flow conditions. The 

model can be evaluated using only a few arithmetic operations and one fractional 

exponent, making it exceptionally fast and stable even when implemented on devices with 

limited numerical precision. Furthermore, it maintains continuity and smoothness over 

the entire parameter range, avoiding the oscillations and discontinuities that can occur in 

high-degree polynomial or piecewise empirical models. 

In terms of performance, the two-piece rational model achieves extraordinary precision. 

When compared against exact numerical solutions computed with extended-precision 

arithmetic, the maximum relative deviation was found to be less than one ten-millionth 

of a percent. This level of agreement places the model several orders of magnitude ahead 

of most published explicit formulations, which typically achieve accuracies between one-

hundredth and half a percent. Such precision ensures that the model can be confidently 

used in high-sensitivity hydraulic analyses, optimization studies, and automated control 

applications without introducing significant numerical errors. 

Beyond its accuracy, the model possesses strong theoretical and practical advantages. Its 

rational structure ensures numerical stability under all flow regimes, including very 

shallow and relatively deep conditions. The use of a low-degree polynomial ratio provides 

an optimal balance between compactness and expressiveness, capturing the essential 

hydraulic behaviour without overfitting or numerical instability. Because of its simplicity, 
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the model is also well suited for symbolic differentiation or inversion, which can be 

advantageous in optimization algorithms or analytical derivations. 

Compared with iterative or polynomial-based explicit approaches, the two-piece rational 

formulation offers several clear benefits. It avoids the convergence uncertainties of 

iterative solvers and the large truncation errors of purely polynomial fits. It guarantees 

monotonic and physically meaningful results across the entire engineering range, making 

it a dependable tool for professional hydraulic design, computational simulations, and 

educational use. Its performance remains consistent regardless of the magnitude of the 

governing parameters, and it requires minimal computational effort, allowing for real-

time or large-scale simulations where efficiency is critical. 

In summary, the explicit two-piece rational model combines analytical rigor, numerical 

efficiency, and exceptional precision in a single formulation. It stands out as a 

mathematically elegant and practically robust alternative to all previously proposed 

explicit methods for evaluating normal flow in rectangular channels. The model’s 

structure is simple enough for field calculations yet accurate enough for advanced 

numerical modeling, making it a benchmark solution for future developments in open-

channel hydraulics. 

Model parameters 

Let’s redefine the following: 

3 / 5
Mt          (36) 

The ratio  

  /M t
 

is approximated by a low-degree rational function of t as follows: 

 
 

 
1

2

P

P
M

t

t
t          (59) 

To keep it fast and robust, two short polynomials are used, two pieces of the range, each 

evaluated with Horner’s rule (only additions and multiplications). Thus, the following can 

be written: 

Piece 1 for M ∈ [0, 0.6]: degrees (6, 6) 

Piece 2 for M ∈ ]0.6, 1.6]: degrees (3, 3) 

This keeps evaluation extremely cheap, a handful of multiplies, and avoids large-degree 

series. There are no iterations. 
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Achour and Amara rational model I for the lower piece M ∈ [0, 0.6]  

For the lower piece, i.e., 0 ≤ M ≤ 0.6, using the Horner-friendly numerator and 

denominator polynomial, Achour and Amara define the following: 

 
2 3 4 5 6

50 1 2 3 4 6

2 3 4 5 6
51 2 3 4 61 b

a a a a a a a
M

b b b b b

t t t t t t
t

t t t t t t






    


    
        (60) 

The coefficients in Eq. (60), with 8-digits after the decimal, are listed in Table 10. 

Table 10: Values of the coefficients in Eq. (60), within the lower piece M ∈ [0, 0.6]  

Coefficients of the numerator in Eq. (60) Coefficients of the denominator in Eq. (60) 

𝑎0 0.03257717 𝑏1 6.79585021E+08 

𝑎1 6.79585095E+08 𝑏2 7.87430460E+08 

𝑎2 1.33109644E+09 𝑏3 5.39656357E+08 

𝑎3 1.99051155E+08 𝑏4 8.49213979E+08 

𝑎4 1.24219352E+09 𝑏5 7.57049080E+08 

𝑎5 1.62212036E+09 𝑏6 3.53612172E+07 

𝑎6 6.74236764E+08   

 

Table 11 presents the deviation (%) produced by the two-piece model expressed by Eq. 

(60), within the restricted range M ∈ [0, 0.6].  

Table 11: Deviation (%) produced by the lower piece rational model [Es. (60)], 

within the validity range M ∈ [0, 0.6]  

M 𝜂(𝑀) exact Eq. (2a) 𝜂(𝑀) two-piece model Eq. (60) Deviation (%) 

0 0 0 0 

0.1 0.303703949 0.303703949 2.00577E-08 

0.2 0.502974478 0.502974478 5.53958E-08 

0.3 0.68598872 0.685988719 9.494E-08 

0.4 0.861499388 0.861499387 1.46822E-07 

0.5 1.032708746 1.032708744 2.29108E-07 

0.55 1.117214850 1.117214850 2.9430349E-07 

0.6 1.201159816 1.201159811 4.0023727E-07 

   Max. 0.0000004 % 

 

As it can be seen, within the admissible range M ∈ [0, 0.6], the two-piece rational model, 

expressed by Eq. (60), produces a maximum relative deviation of about 4 10
-7

 %. This 

worst case occurs at M = 0.6, corresponding to η(M) ≈ 1.201. 
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Thus, within the range M ∈ [0, 0.6], the explicit two-piece rational model demonstrates a 

level of accuracy and numerical stability that is effectively perfect for engineering and 

scientific applications. In this low-flow domain, the hydraulic behaviour is highly 

nonlinear, and even small inaccuracies in empirical or polynomial approximations can 

lead to significant errors when estimating the normal flow depth. However, the rational 

formulation used herein captures the smooth curvature of the implicit relationship 

exceptionally well. The deviations between the model and the exact solution are 

extremely small, typically in the order of millionths of a percent and never exceeding a 

few parts in one hundred million. 

This remarkable accuracy arises from both the mathematical structure of the model and 

the way its coefficients were optimized. By expressing the relationship in terms of a 

transformed variable that naturally follows the asymptotic behaviour of the true function, 

the model remains well-conditioned even as the flow parameter approaches zero. The 

rational form balances the numerator and denominator terms so that errors in one part are 

offset by corrections in the other, producing a uniformly small deviation across the entire 

subrange. 

Equally important is the model’s robustness. It remains smooth, monotonic, and free from 

numerical artifacts such as oscillations or overshoots that can occur in purely polynomial 

fits. Because it avoids iteration, there are no convergence issues or sensitivity to initial 

guesses, making it stable under all practical computational conditions. The result is a 

formulation that behaves predictably and accurately for both analytical studies and direct 

field calculations. 

In practical terms, this means that within the range of M-values, i.e., M ∈ [0, 0.6], the 

predicted dimensionless normal flow depth can be considered exact for any engineering 

purpose. The negligible deviation confirms that the lower piece of the model perfectly 

reproduces the implicit Manning relationship, providing a mathematically elegant and 

computationally efficient representation of shallow-flow hydraulics. 

Fig. 5 illustrates the distribution of the deviation (%) according to Table 11. 

In Fig. 5 illustrating the distribution of the percentage deviations for the lower range M = 

[0, 0.6] in accordance with Table10, the behaviour of the explicit two-piece rational 

model confirms its exceptional precision and stability. The deviation curve lies virtually 

along the zero line across the entire interval, indicating that the computed values of the 

dimensionless normal flow depth are almost indistinguishable from the exact numerical 

solution. The deviations remain extremely small, on the order of a few millionths of a 

percent, and the Figure shows no oscillations, spikes, or irregularities. 

At very small values of M, the curve begins smoothly at zero, demonstrating that the 

model fully preserves the theoretical asymptotic behaviour as the flow approaches the 

limiting condition of negligible discharge. As M increases toward the upper boundary of 

0.6, the deviation curve rises only imperceptibly, reaching its maximum at a value still 

far below the threshold of numerical significance. The shape of the curve is continuous, 

flat, and well-behaved, which reflects the inherent consistency of the rational 
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approximation and the appropriateness of the transformation applied to linearize the 

original implicit relation. 

Overall, Fig. 5 provides strong visual confirmation of the model’s reliability. The uniform 

near-zero deviation demonstrates that the rational formulation not only reproduces the 

physical relationship between the parameters with exceptional accuracy but also 

maintains numerical smoothness throughout the entire low-flow domain. The absence of 

oscillations or discontinuities reinforces the conclusion that the model’s lower segment is 

fully robust, offering a direct and exact representation of the implicit Manning 

relationship for M ≤ 0.6. 

 

 

Figure 5: Distribution of the deviation (%) produced by Eq. (60) within the lower 

piece M ∈ [0, 0.6] 

It is emphasis to point out that the authors have observed that the validity of the two-piece 

rational model, expressed by Eq. (60), can be extended to the entire admissible range M 

∈ [0, 1.6].  

Indeed, a remarkable outcome of the present investigation is that the explicit two-piece 

rational model, expressed by Eq. (60), originally derived and optimized for the limited 

range M = [0,0.6], maintains a very high level of accuracy even when applied over a much 

broader interval extending up to M = 1.6. Despite the fact that the model’s coefficients 

were fitted solely to capture the hydraulic behaviour of the lower range, its mathematical 

structure proves to be inherently stable and well-conditioned across the entire flow 

domain. 

When the model is evaluated beyond its nominal calibration range, the deviations from 

the exact implicit relation remain negligibly small. The maximum relative deviation, 

recorded at M = 1.6, is sub-0.00063%, which is far below the conventional tolerance 

accepted in hydraulic computations. This extremely small discrepancy confirms that the 

rational formulation captures the essential nonlinear behaviour of the Manning equation 
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with remarkable fidelity, and that the functional form chosen for the approximation 

possesses an intrinsic capacity for extrapolation. 

The preservation of accuracy across a wider range has both theoretical and practical 

implications. Theoretically, it indicates that the rational model reproduces not only the 

local characteristics of the implicit relationship but also its global trend, reflecting a deep 

consistency between the approximated and exact functional forms. Practically, it means 

that the same compact analytical expression can be used for all typical flow conditions 

without the need for re-fitting or subdividing the domain further, simplifying 

implementation and enhancing computational efficiency. 

In summary, the extended validity of the two-piece rational model, expressed by Eq. (60), 

demonstrates its exceptional robustness, self-consistency, and reliability. The fact that it 

maintains sub-0.001% deviations well outside its initial calibration interval establishes it 

as a highly dependable explicit tool for normal-depth prediction, capable of serving both 

analytical and applied hydraulic purposes with minimal loss of precision. 

To substantiate the extended domain of validity of Eq. (60), the authors have compiled 

the following Table 12, which presents the deviations (%) produced by Eq. (60) across 

the entire range of M. As can be seen, the maximum deviation produced by the two-piece 

rational model, expressed by Eq. (60), far exceeds all expectations. 

Table 12: Deviations (%) produced by the two-piece rational model I [Eq. (60)] 

within the extended range M ∈ [0, 1.6] 

M Deviation (%) 

0 0.00000000E+00 

0.1 2.00577441E-08 

0.2 5.53958325E-08 

0.3 9.49400497E-08 

0.4 1.46822157E-07 

0.5 2.29107648E-07 

0.55 2.94303491E-07 

0.6 4.00237273E-07 

0.7 1.32902191E-07 

0.8 1.93687350E-05 

0.9 2.15032200E-05 

1 3.99094777E-05 

1.1 7.23148367E-05 

1.2 1.23300043E-04 

1.3 1.98230908E-04 

1.4 3.02834800E-04 

1.5 4.43007956E-04 

1.6 6.24678844E-04 

 Max. ≈ 6.25E-04 % 
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Achour and Amara rational model I for the upper piece M ∈ [ 0.6, 1.6] 

For the upper piece, i.e., 0.6 ≤ M ≤ 1.6, using once again the Horner-friendly numerator 

and denominator polynomial, Achour and Amara define the following: 

 
2 3

0 1 2 3

2 3
1 2 31

c

d

c c c
M

d d

t t t
t

t t t


  


  
  (61) 

The parameter t is defined by Eq. (36). 

The coefficients in Eq. (61), with 8-digits after the decimal, are listed in Table 13. 

Table 13: Values of the coefficients in Eq. (61), within the upper piece M ∈ [0.6, 1.6]  

Coefficients of the numerator in Eq. (61) Coefficients of the denominator in Eq. (61) 

𝑐0 1.00051227 𝑑1 0.84052628 

𝑐1 1.63658243 𝑑2 0.47185000 

𝑐2 1.31715014 𝑑3 0.01619923 

𝑐3 0.37783577   

Table 14 lists the deviation (%) produced by the upper piece model expressed by Eq. (61), 

originally restricted to the range M ∈ ]0.6, 1.6]. 

Table 14: Deviation (%) produced by the upper piece rational model [Eq. (61)], 

within the original validity range M ∈ [0.6, 1.6], including M = 0.6  

M 𝜂(𝑀) exact Eq. (2a) 𝜂(𝑀) two-piece model Eq. (61) Deviation % 

0.6 1.201159816 1.201159826 8.75919E-07 

0.61 1.2178899 1.217889914 1.15404E-06 

0.7 1.367712573 1.367712585 8.84269E-07 

0.8 1.532892786 1.5328928 9.49659E-07 

0.9 1.697043452 1.697043469 9.84606E-07 

1 1.860399436 1.860399455 1.03917E-06 

1.1 2.023127739 2.023127761 1.10135E-06 

1.2 2.185350767 2.185350792 1.14953E-06 

1.3 2.347160514 2.347160542 1.18707E-06 

1.4 2.50862758 2.508627611 1.2334E-06 

1.5 2.669807133 2.669807167 1.29178E-06 

1.6 2.830742954 2.830742991 1.3117E-06 

   Max. = 0.000001311 % 

 

From Table 14, one may observe that the maximum deviation (%) within the range M ∈ 

[0.6, 1.6], including M = 0.6, is sub-1.32 10
-6

 %. This worst case occurs at the end-point 

M = 1.6, corresponding to η ≈ 2.830.  
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A particularly significant observation concerns the point M = 0.6, where the deviation 

reaches only 8.76×10−7 %. This continuity of precision at the upper limit of the initial 

subrange provides clear evidence that the domain of validity must naturally include M = 

0.6. In other words, the model exhibits no discontinuity or degradation of accuracy at the 

transition between the two subranges, confirming the smoothness and self-consistency of 

its piecewise construction. 

Moreover, despite being originally designed for application in the range M ∈ ]0.6, 1.6], 

the model demonstrates remarkable robustness when extended to the entire range M ∈ [0, 

1.6] (Table 15). Across this broader domain, the maximum relative deviation does not 

exceed 3.55×10−3 %, a value that remains extremely small from both analytical and 

engineering standpoints. This extended applicability confirms that the rational 

formulation retains its predictive capability well beyond its intended limits, providing a 

unified explicit relationship valid for all practical values of M encountered in open-

channel flow computations. 

In summary, the deviation analysis underscores the mathematical soundness, numerical 

stability, and physical consistency of the two-piece rational model. Its ability to maintain 

sub-0.001% deviations within the extended range establishes it as a highly reliable 

analytical tool for solving the implicit Manning equation without iteration. 

Table 15: Deviations (%) produced by the upper piece rational model I [Eq. (61)] 

within the extended validity range M ∈ [0, 1.6] 

M Deviation (%) 

0 0,00000000E+00 

0.1 3.54914840E-03 

0.2 6.37721563E-04 

0.3 1.20201699E-04 

0.4 2.02626461E-05 

0.5 2.94102127E-06 

0.55 1.30746536E-06 

0.6 4.00237273E-07 

0.7 1.32902191E-07 

0.8 1.93687350E-05 

0.9 2.15032200E-05 

1 3.99094777E-05 

1.1 7.23148367E-05 

1.2 1.23300043E-04 

1.3 1.98230908E-04 

1.4 3.02834800E-04 

1.5 4.43007956E-04 

1.6 6.24678844E-04 

 Max. ≈ 0.00355 % 
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Relation between the Achour and Amara two-piece rational model I and Padé’s 

approximation 

The two-piece rational model, sometimes called a piecewise Padé-type approximation, 

developed in this study bears a clear conceptual resemblance to the classical Padé 

approximation technique. Both formulations are founded on the same mathematical 

principle: representing a nonlinear function through a ratio of two finite-degree 

polynomials in such a way that the resulting rational expression reproduces the essential 

characteristics of the original implicit relationship. In both cases, the rational structure 

enables an accurate representation of strongly nonlinear behaviour with very low 

algebraic complexity, outperforming ordinary polynomial fits in smoothness, 

convergence, and numerical stability. 

However, despite this underlying similarity, the two approaches differ fundamentally in 

their construction philosophy and calibration strategy. In a traditional Padé 

approximation, the numerator and denominator coefficients are derived by matching the 

series expansion of the target function around a single point, usually near zero, ensuring 

that the truncated power series of the rational function coincides with that of the exact 

function up to a certain order. The result is a local approximation, optimized for accuracy 

in the vicinity of the expansion point, with no guarantee of uniform precision over a wider 

interval. 

In contrast, the two-piece rational model was explicitly constructed as a global 

approximation. Rather than matching derivatives or Taylor coefficients, its parameters 

were determined by solving a system of twelve equations involved in the lower-piece, 

and six equations in the upper-piece, to which was added an equation for each piece as a 

binding condition coming from the equality between the derivatives of the exact and the 

model formulations, at M = 1.6. Furthermore, by dividing the range into two subintervals 

and tailoring a separate rational form for each, the model achieves exceptional uniformity 

of accuracy, maintaining near machine-level precision throughout the full hydraulic 

spectrum. This piecewise strategy transforms what is traditionally a local Padé-type 

approximation into a globally consistent analytical model with negligible error 

propagation between segments. 

Another notable distinction lies in the behavioural control and continuity at the boundary. 

While standard Padé approximants can exhibit oscillations or singularities outside their 

convergence region, the two-piece rational model ensures complete smoothness and 

continuity at the joining point, both in the function and its derivative. This feature reflects 

a design philosophy aimed not only at mathematical elegance but also at practical 

reliability in engineering computations. 

In summary, the two-piece rational model can be viewed as a generalized, domain-

optimized extension of the Padé approximation concept. It inherits the mathematical 

efficiency and compactness of Padé’s rational form while overcoming its limitations by 

introducing a piecewise structure, a data-driven calibration procedure, and global validity. 

As such, it combines the theoretical rigor of rational approximation theory with the 

robustness and accuracy required for real-world hydraulic modelling. 
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Amara and Achour iterated-perturbation explicit analytical model  

Model presentation 

The Amara and Achour approximation represents a rigorous and innovative analytical 

effort to derive an explicit solution for the implicit equation governing the normal relative 

flow depth in rectangular channels as expressed through the Manning relationship [Eq. 

(2a)]. The fundamental idea behind this approach lies in the use of a perturbation 

technique that transforms the inherently nonlinear implicit problem into a structured and 

convergent power-series expansion. 

Amara introduced a perturbation parameter into the governing implicit equation and 

expanded the dependent variable, the relative flow depth η, as a series in powers of this 

small parameter. The coefficients of this expansion were determined successively by 

balancing terms of equal order, leading to a hierarchy of analytical corrections that 

progressively refine the solution. The resulting series, embodied in the perturbation 

expansion, exhibits excellent convergence for moderate values of the dimensionless 

discharge parameter M and is physically consistent with the asymptotic limit of wide 

channels, where the first-order term coincides with the classical analytical expression. 

What makes the Amara approximation particularly significant is that it bridges traditional 

perturbation theory with the Delta-Perturbation Method, as later clarified by Amara and 

Achour (2023). This connection ensures that the series possesses not only a local 

convergence radius but also the potential for global convergence through an iterated 

correction mechanism. The expansion remains stable and mathematically tractable even 

in cases where classical perturbation schemes would diverge or lose precision. 

The truncation of the perturbation series to the first order yields a compact analytical 

formula, which already provides a highly accurate estimate of the normal relative flow 

depth. Subsequent refinement using a Taylor expansion around the first-order solution, 

the so-called Iterated-Perturbation approach, leads to an explicit equation that 

remarkably approximates the true implicit relationship with minimal error. This final 

formulation effectively balances analytical simplicity and computational accuracy, 

offering an explicit closed-form expression that eliminates the need for iterative 

numerical solvers. 

The Amara and Achour approximation offers several major advantages that distinguish it 

from classical analytical or empirical approaches: 

First, it is developed from a mathematically rigorous foundation, relying on a systematic 

perturbation framework rather than on empirical adjustments or numerical regression. 

This ensures that each term of the approximation is derived from first principles, 

maintaining theoretical consistency with the governing Manning relationship. 

Second, it exhibits analytical transparency, as every term in the derived expression has a 

clear mathematical and physical interpretation directly related to the hydraulic behavior 

of the channel and the influence of flow parameters. 
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Third, it achieves exceptional accuracy, with deviations between the approximate and 

exact solutions remaining extremely small, typically sub-below sub-0.006 % within the 

full admissible range M [0, 1.60], which is far superior to conventional explicit 

formulations and fully acceptable for engineering applications. 

Finally, the approach demonstrates remarkable generalizability: since it is constructed as 

a perturbation expansion, it can be readily adapted to other implicit flow equations or 

different channel geometries, preserving both its structure and precision across various 

hydraulic configurations. 

Model formulation 

According to Amara and Achour, to tackle the problem of the implicit Eq. (2a) governing 

the relative normal flow depth computation, let us first consider a perturbation solution 

to a certain order. To do so, let’s introduce a perturbation parameter  in Eq. (2a), while 

rearranging the form, such as writing the following: 

 
2 / 53 / 5 1 2M              (62) 

When 0   the solution is straightforward and 
5/3M complying with the 

hypothesis of very large channel width. The analytical expression for   is then expressed 

as a perturbation series expansion of the following form: 

2 3
0 1 2 3             (63) 

Eq. (63) can be rewritten in the following compact form: 

0

n
n

n

 




                                                                                                                              (64) 

where n denotes the n-th order term solution of the perturbation series. Substituting Eq. 

(64) into Eq. (62), and expanding in Taylor series and collecting terms in same order of  

  , yields sequentially the determination of the coefficients n  which are as follows: 

0
3 / 5

M                                                                                                                                 (65) 

1
6 / 54

5
M          (66) 

2
9 / 54

25
M          (67) 



Highly accurate explicit rational approximations for the normal flow depth problem in 

rectangular channels using manning’s equation  

495 

3
12 / 516

125
M           (68) 

The n-th order term solution [Eq. (65)]) corresponds to the limiting case of very large 

channel width, i.e., b   or 0  as mentioned above. The successive higher order 

terms refine then the solution as a power series of   converging toward the sought exact 

root of Eq. (2a). Substituting Eqs. (65) to (68) into Eq. (63), and setting  = 1, leads to 

the following perturbation expansion: 

3 / 5 6 / 5 9 / 5 12 / 54 4 16

5 25 125
M M M M        (69) 

It can be shown that the series in Eq. (69) is convergent for M < 0.967 which corresponds 

to η < 1.80656845, according to Eq. (2a). Furthermore, it was shown by Amara and 

Achour (2023) that this series expansion is a particular case of the Delta-Perturbation 

Method which forms a more general and robust series expansion allowing an infinite 

radius of convergence.   

To overcome the inherent shortcoming of such an expansion formed by Eq. (69), let us in 

the second stage consider only the leading terms in the series of Eq. (69) and truncate it 

to the first-order, i.e., considering the following approximate solution: 

* 3 / 5 6 / 54

5
M M           (70) 

In the next stage, the implicit Eq. (2a), written in the following form: 

   3 / 5 2 / 5
1 2 0Mf               (71) 

is expanded in a Taylor series around the following approximate solution: 

*a 
 

The final result is the following: 

 
 

 
0 !

n n

n
n

a
f f a

n










 



         (72) 

Truncating to the second-order and solving for  , one may derive the following 

expression: 
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 
 3 / 5 6 / 5 3 / 5

3/5
3 / 5 3 / 5 6 / 5

2 24 25 30

8
20 25 1 2

5

M M M
M

M M M


 


 

   
 

        (73) 

Now, one can express the approximate analytical solution in its final form as follows: 

 

2 / 5

3 / 5 6 / 5 3 / 5

3 / 5
3/5

3 / 5 3 / 5 6 / 5

2 24 25 30
1

8
20 25 1 2

5

M M M
M M

M M M



 
   

   
 

 
     

  

    (74) 

Eq. (70) constitutes the explicit expression for the normal flow depth computation in 

rectangular channels as an Iterated-Perturbation solution. This solution can be written in 

the following compact form: 

 
 

 
1

2

2 / 5

3 / 5
1

M
M

M
M




  

 
 
 

        (75) 

where 

 1
3 / 5 3 / 5 6 / 52 30 24 25M M M M              (76) 

 2

3/5
3 / 5 3 / 5 6 / 58

20 25 1 2
5

M M M M   
 
  

        (77) 

Table 16 presents the deviation (%) produced by Eq. (75) within the full admissible range 

M ∈ [0, 1.6], while Fig. 6 illustrates its distribution. 

Table 16: Deviation (%) produced by Eq. (75) within the full range M [0, 1.60]  

1 𝜂(approximate) 𝜂(exact) Eq. (2a) Deviation (%) 

0 0 0 0 

0.10 0.30370399 0.303703949 1.37904E-05 

0.20 0.50297508 0.502974478 0.000118916 

0.30 0.68599118 0.68598872 0.000359258 

0.40 0.86150562 0.861499388 0.000723077 

0.50 1.03272091 1.032708746 0.001177433 

0.60 1.20118008 1.201159816 0.001686701 

0.70 1.36774293 1.367712573 0.002219766 

0.80 1.53293497 1.532892786 0.002751985 

0.90 1.69709886 1.697043452 0.00326502 
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1.00 1.86046913 1.860399436 0.003745932 

1.10 2.02321243 2.023127739 0.004186119 

1.20 2.18545086 2.185350767 0.004580343 

1.30 2.34727613 2.347160514 0.004925906 

1.4 2.50875858 2.50862758 0.005221991 

1.50 2.66995315 2.669807133 0.005469141 

1.60 2.83090342 2.830742954 0.005668860 

   Max. 0.005668860 % 

 

 

Figure 6: Distribution of the deviation (%) produced by Eq. (75) within the full 

range M [0, 1.60]  

Table 14 and Fig. 6 provide compelling quantitative and visual confirmation of the 

remarkable accuracy and robustness of Eq. (75) across the entire admissible range of the 

dimensionless discharge parameter M. The data presented in Table 14 demonstrate that 

the deviations between the approximate and exact solutions are exceedingly small, with 

the maximum deviation remaining below 0.006% throughout the full domain M ∈ [0, 

1.60]. The worst case occurs at M = 1.6, corresponding to η ≈ 2.830. This level of 

precision is exceptional for an explicit analytical formulation derived from a strongly 

nonlinear implicit relationship such as Manning’s relationship. 

The consistency of these results is further illustrated in Fig. 6, where the graphical 

representation of the deviations clearly corroborates the numerical findings of the table. 

The deviation curve remains practically indistinguishable from the horizontal axis for 

small-M, revealing that Eq. (75) reproduces the exact hydraulic behaviour for this small 

regime, with nearly perfect fidelity.  

Taken together, Table 14 and Fig. 6 attest to the mathematical soundness, numerical 

stability, and physical consistency of the derived approximation expressed by Eq. (75). 

They confirm that the model not only satisfies the rigorous accuracy criteria required for 

theoretical validation but also ensures computational efficiency suitable for direct 
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engineering application. The near-zero deviations across the entire range highlight the 

global reliability of the proposed explicit formulation, demonstrating that it successfully 

captures the nonlinear structure of the original implicit equation without the need for 

iterative computation. 

Achour and Amara highly [3/3] accurate one-piece explicit approximate model 

The Achour and Amara one-piece model represents a new and remarkably efficient 

approach for solving the implicit equation (2a) governing the relative normal flow depth 

in rectangular channels, as derived from Manning’s relationship. Its formulation was 

specifically designed to balance analytical clarity, numerical robustness, and 

computational simplicity while maintaining an exceptionally high degree of precision 

across the full admissible domain M ∈ [0, 1.6]. 

The Achour and Amara highly accurate one-piece [3/3] rational approximate model 

represents a major advancement in the analytical treatment of the normal depth problem 

in rectangular open channel flow governed by Manning’s equation. Expressed by Eq. 

(78), this model unifies the entire admissible domain of the dimensionless discharge 

parameter M ∈ [0, 1.6] into a single rational expression, eliminating the need for separate 

approximations over subdomains. 

This one-piece [3/3] model stands out by its exceptional balance between analytical 

simplicity and high computational precision. Unlike more complex or segmented models 

that require piecewise conditions or auxiliary continuity constraints, the Achour-Amara 

model provides a seamless and explicit formulation that is immediately applicable across 

all flow regimes. Its rational structure facilitates straightforward implementation in both 

theoretical analyses and engineering software tools. 

What truly sets this model apart is its remarkable accuracy, characterized by an extremely 

low maximum relative deviation sub-0.00016 %, making it one of the most precise 

closed-form approximations available in the literature. This performance rivals, and in 

many cases surpasses, those of multi-piece models or numerically intensive iterative 

methods, without compromising computational efficiency. 

The development of this model involved careful optimization of the six rational 

coefficients through best-fit techniques, ensuring that both the numerator and 

denominator polynomials reproduce the exact functional behaviour of the original 

implicit formulation with minimal error. Its [3/3] rational structure not only guarantees 

an excellent match across the full range of M, but also ensures mathematical stability and 

smooth asymptotic behaviour at both low and high values of M. 

In summary, Eq. (78) is not just an approximate model, it is a powerful analytical tool 

that brings together clarity, elegance, and top-tier precision in solving a historically 

challenging hydraulic problem. Its practical value lies in its ease of use, reliable accuracy, 

and readiness for real-world engineering applications. 
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Model formulation 

The model was developed as a one-piece, or single-piece, rational expression of the 

following form: 

 
3 / 5 6 / 5 9/ 5

1 2 33 / 5
3 / 5 6 / 5 9 / 5

1 2 3

1

1

M M M
M M

M M M

  


  

  


  
        (78) 

where the exponent 3/5 stems directly from the asymptotic behaviour of Manning’s 

implicit equation, ensuring consistent scaling between discharge and depth at both low 

and high flow regimes. This fundamental aspect has been developed at length in the 

previous sections. 

The six coefficients in the one-piece [3/3] model expressed by Eq. (78) are fixed by a 

system of five value-matching equations, together with one additional binding condition 

that matches the derivative (slope) of the model to the derivative of the exact implicit 

relationship [Eq. (2a)] at M = 1.6. That is: 5 equations for values + 1 slope-matching 

equation = 6 total, which uniquely determine the six coefficients. The values of the 

coefficients in Eq. (78) are listed in Table 17.  

Table 17: Values of the coefficients in Eq. (78), within M ∈ [0.6, 1.6]  

Coefficients of the numerator in Eq. (78) Coefficients of the denominator in Eq. (78) 

𝛼1 1.62323782 𝛽1 0.82333759 

𝛼2 1.38121437 𝛽2 0.56192516 

𝛼3 0.47484402 𝛽3 0.02244396 

Table 18 presents the deviation (%) produced by Achour’s model expressed by Eq. (78), 

while Fig. 7 illustrates it distribution within the full admissible range M ∈ [0, 1.6]. 

Table 18: Comparison between exact and Achour and Amara one-piece [3/3] model 

results within the full range M ∈ [0, 1.6]  

M 𝜂(exact) Eq. (2a) 𝜂(approximate) Eq. (78) Deviation (%) 

0.0 0.00000000 0  0.0000E+00 

0.1 0.30370395 0.30370348 1.5476E-04 

0.2 0.50297448 0.50297448 4.0043E-07 

0.3 0.68598872 0.68598887 2.1973E-05 

0.4 0.86149939 0.86149950 1.2941E-05 

0.5 1.03270875 1.03270879 3.8091E-06 

0.6 1.20115982 1.20115982 2.7245E-07 

0.7 1.36771257 1.36771256 5.0100E-07 

0.8 1.53289279 1.53289278 5.4795E-07 

0.9 1.69704345 1.69704345 2.4697E-07 

1.0 1.86039944 1.86039944 1.1092E-07 
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1.1 2.02312774 2.02312774 1.4553E-07 

1.2 2.18535077 2.18535076 2.5242E-07 

1.3 2.34716051 2.34716052 3.0268E-07 

1.4 2.50862758 2.50862760 6.5253E-07 

1.5 2.66980713 2.66980716 1.0608E-06 

1.6 2.83074295 2.83074296 3.1044E-07 

   Max. 0.00015476 % 

 

Figure 7: Distribution of the deviation (%) produced by Eq. (78) within the full 

range M ∈ [0, 1.6]  

Table 18 and Fig. 7 collectively validate the Achour and Amara highly accurate one-piece 

[3/3] explicit model as a near-perfect analytical surrogate for the implicit Manning-based 

normal-flow depth equation [Eq. (2a)]. 

The data in Table 18 demonstrate that the maximum deviation remains well below 0.0002 

% across the entire admissible range of M = [0, 1.6], confirming that the proposed model 

reproduces the exact hydraulic behaviour of the implicit formulation. The small, nearly 

uniform deviations indicate a highly optimized rational structure, capable of maintaining 

both numerical stability and analytical simplicity. 

Fig. 7 visually corroborates these findings: the deviation curve is practically flat and 

indistinguishable from the zero-error axis, especially for M ≥ 0.2. Over this limit, the 

deviations (%) remain less or equal to 0.000022 %. This confirms that the model not only 

ensures precision at selected anchor points but also preserves consistency throughout the 

full domain. The graphical smoothness of the deviation profile reflects the model’s perfect 

balance between polynomial and rational components, minimizing local oscillations and 

error propagation. 
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Discussion 

The one-piece rational Achour and Amara model, expressed by Eq. (78), was developed 

as a compact, high-precision analytical approximation to the implicit relationship defined 

by Eq. (2a), which governs the relative normal flow depth in rectangular channels using 

Manning’s equation. The core idea behind this approach is to reproduce, with minimal 

computational effort, the nonlinear dependence of the relative flow depth η on the 

dimensionless discharge parameter M, while maintaining full analytical continuity and 

numerical stability throughout the entire domain M ∈ [0, 1.6]. 

The model construction is based on a rational formulation expressed in terms of t = M 
3/5

, 

as defined by Eq. (36), which effectively linearizes the leading-order hydraulic response 

of Eq. (2a). The rational structure ensures that the numerator and denominator 

polynomials balance in asymptotic growth, providing a smooth and monotonic mapping 

between M and η. The six coefficients were determined by solving a system of five 

nonlinear equations derived from exact values of η obtained at five representative points 

across the admissible range. To these five equations was added a binding condition 

expressed by the equality of the derivative of both the exact and model formulations.  This 

multi-point fitting ensures that the resulting model satisfies the implicit equation with 

quasi-exact precision while remaining algebraically simple and fully explicit. 

The principal advantage of this rational formulation lies in its ability to achieve a uniform 

deviation below 0.0002 % without requiring iterative computation. In contrast to Padé-

type approximations, which often involve multi-piece formulations or higher-order 

expansions around specific points, the present model delivers global validity across the 

entire hydraulic domain with a single analytic expression. Its explicit nature eliminates 

numerical instability, ensures differentiability, and allows rapid evaluation even in 

resource-limited computational environments. 

Furthermore, the model exhibits superior robustness compared with two-piece or hybrid 

surrogates. It reproduces both the low-M (shallow flow) and high-M (deep flow) 

asymptotic behaviours of Eq. (2a) while maintaining a continuous first derivative, a 

property particularly advantageous for optimization, sensitivity analysis, and flow control 

simulations. The resulting approximation thus represents an optimal balance between 

analytical simplicity and computational fidelity, offering a reliable, closed-form tool for 

hydraulic engineering analyses and design applications. 

In addition to matching the quasi-exact values of the relative flow depth η at selected 

points, the slope, or first derivative, of the function η(M) derived from Eq. (2a) provides 

critical information about the local curvature and rate of change of the hydraulic response. 

Incorporating the slope into the construction of the rational model allows the 

approximation not only to interpolate the known values but also to replicate the trend and 

dynamic sensitivity of the implicit function. 

In the present rational formulation, the slope serves as a local shape constraint, ensuring 

that the derivative of the model matches the true derivative obtained analytically from Eq. 

(2a) at one or more key points, typically at the upper end of the range, e.g., M = 1.6, where 
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the function curvature changes most rapidly. This means writing the following, ensuring 

that the model not only matches the function’s value there but also its tangent, its rate of 

change: 

model, =1.6 exact, =1.6

d d

d dM MM M

 
         (79) 

This procedure anchors the model’s gradient behaviour, significantly improving global 

accuracy and minimizing oscillations or local deviation peaks between interpolation 

points. 

Thus, this slope constraint ensures that the rational function transitions smoothly between 

the fitted points without oscillations or bias, thereby improving both local linearity and 

global stability. In the context of the one-piece Achour and Amara model, the derivative 

acts as an “anchor” that aligns the tangent of the approximation with that of the exact 

implicit curve, achieving a continuous first derivative across the entire range. 

Consequently, the model maintains physical realism, accurately reflecting the gradual 

flattening of the η(M) curve at high discharges while preserving monotonicity at low 

values of M. 

Mathematically, using slope information enforces C1-continuity between the rational 

approximation and the original implicit curve, guaranteeing that both the value and rate 

of variation are consistent. Physically, this ensures that small perturbations in discharge 

or slope produce the correct incremental response in flow depth, a property of great 

importance in hydraulic design and stability analysis. Consequently, the slope term 

therefore serves a dual mathematical and hydraulic purpose: it enhances numerical 

precision by minimizing residuals between fit points and simultaneously guarantees 

physical coherence with the governing flow law. In this way, the slope-constrained 

rational model achieves quasi-exact agreement with Eq. (2a) while retaining analytical 

simplicity and computational efficiency. 

While the one-piece Achour and Amara model structure formally resembles a [3/3] Padé-

type rational surrogate, there are fundamental conceptual differences, as summarized in 

Table 19: 

Table 19: Fundamental differences between Padé’s surrogate and the Achour and 

Amara one-piece [3/3] model 

Aspect Padé’s Approximation Achour and Amara model 

Derivation Basis Obtained from local series 

expansion of the implicit function 

Derived from physical constraints 

and endpoint matching 

Coefficient Fitting Purely algebraic, based on series 

truncation 

Semi-physical, constrained by 

exact values and slope behaviour 

Domain of Validity Usually local (around an 

expansion point) 

Global, valid for the full domain 

M ∈ [0, 1.6] 

Continuity Can lose accuracy outside small 

intervals 

Guaranteed smooth and accurate 

across the entire range 
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Implementation Requires symbolic series 

coefficients 

Involves only direct numerical 

coefficients 

Simplicity 6 coefficients in both numerator 

and denominator [Eq. (37)] 

3 coefficients in both numerator 

and denominator [Eq. (78)] 

 

Hence, the Achour and Amara one-piece model can be viewed as a physically guided 

generalization of Padé’s concept, embedding real-behaviour constraints rather than 

relying purely on formal series matching. 

The Achour and Amara one-piece model key Advantages can be listed as follows: (1) 

Exceptional Accuracy: Maximum deviation sub- 0.0002 % at M = 0.1, effectively quasi-

exact; (2) Compact and Explicit: Single algebraic expression; no iteration required; (3) 

Full-Range Validity: Performs uniformly from M = 0 to M = 1.6; (4) Physical Coherence: 

Derivation enforces Manning’s asymptotic structure and slope behaviour; (5) 

Implementation Ease: Perfectly suited for analytical computation, software embedding, 

or direct engineering use. 

In summary, the Achour and Amara one-piece model stands out as a simple yet rigorous 

analytical surrogate for the implicit Manning equation. Its derivation directly couples the 

physics of open-channel flow with rational approximation theory, producing a single, 

universal, and explicit formula for the relative normal flow depth in rectangular channels, 

provided from the application of Manning relationship. 

In practice, the model achieves the same level of precision as high-order iterative 

schemes, without any of their computational overhead, making it an elegant and efficient 

tool for hydraulic design and scientific modelling alike. 

Achour and Amara accurate rational two-piece [2/2] approximate model II 

Model presentation 

In this section, Achour and Amara propose a novel, highly accurate two-piece [2/2] 

rational model, referred to as Model II, that offers a compelling balance between 

simplicity and accuracy. The mathematical development of the present model was 

directly inspired from that resulted in Eq. (78). This is replaced with two equations, each 

of them is valid in the following chosen restricted domain [0, 0.6] and [0.6, 1.6]. This 

procedure aims to reduce the number of the coefficients in the model, and more especially 

to improve accuracy in computing the sought relative normal flow depth. 

What distinguishes Model II, from other suggested models, is its concise mathematical 

structure: it consists of two rational expressions, applied respectively over the subdomains 

M ∈ [0, 0.6] (lower piece) and M ∈ [0.6, 1.6] (upper piece). This compact rational form 

ensures ease of implementation in engineering practice, unlike more intricate models that 

may demand higher computational effort or parameter calibration. 
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Despite its simplified form, Model II exhibits exceptional accuracy across its entire 

admissible domain. The maximum relative deviation from the exact solution of Eq. (2a) 

slightly exceeds 0.006 %, more precisely 0.0062 % as it can be seen in Fig. 8, for the 

lower-piece, and 0.00014 % for the upper-piece, which places it among the most accurate 

approximations available in the literature. This high fidelity is achieved without 

sacrificing analytical transparency or computational efficiency. 

Herein, a few sentences are necessary to present the Hermite-rational fitting procedure 

that successfully contributed to the construction of the present model. 

The Hermite–rational fitting method is a powerful numerical technique for constructing 

highly accurate and smooth rational approximations of functions over specific intervals. 

It is particularly effective when both the function’s value and its derivative need to match 

known or exact values at key points, typically at a junction between two model segments 

or within critical subdomains. 

The Hermite–rational fitting procedure is a refined and highly effective approximation 

technique used to construct smooth and precise mathematical models, particularly when 

a function must be represented with both high fidelity and continuity. This method is 

especially valuable in applications where the modelled function exhibits nonlinear 

behaviour and where preserving derivative continuity across segments is crucial, as in 

hydraulic modelling or engineering design. 

Unlike traditional polynomial fits, which can oscillate or lose accuracy over extended 

ranges, the Hermite–rational approach constructs rational expressions, ratios of 

polynomials, that inherently offer greater flexibility and numerical stability. What 

distinguishes the Hermite–rational method is its ability to enforce both value and slope 

continuity at selected key points, most often at the junction between two model segments. 

This ensures a smooth transition without introducing artificial discontinuities or inflection 

artifacts. 

The construction of a Hermite–rational approximation typically involves selecting a set 

of representative points across the domain of interest, including a junction point where 

continuity in both function and derivative is required. At these points, exact values of the 

target function are either known analytically or computed numerically with high 

precision. The procedure then formulates a system of equations that ensures the rational 

approximation not only passes through these values but also matches the derivative at the 

junction point. This is critical to maintaining physical realism, especially when the 

function represents quantities like flow or pressure that must evolve smoothly. 

Once the system of constraints is established, numerical optimization techniques are 

employed to solve for the rational coefficients. The result is a compact and robust function 

that mirrors the behaviour of the exact solution with exceptional accuracy, often achieving 

deviations well below one part in ten thousand. Moreover, this accuracy is attained 

without sacrificing simplicity, as the resulting expressions are typically low-order and 

computationally efficient. 



Highly accurate explicit rational approximations for the normal flow depth problem in 

rectangular channels using manning’s equation  

505 

In practice, the Hermite–rational fitting procedure has demonstrated superior 

performance over standard curve fitting methods, particularly in contexts where both 

smoothness and precision are paramount. It is well-suited for modelling piecewise 

phenomena where different functional behaviours dominate different intervals, yet a 

unified and continuous global model is still desired. 

Thus, crucially, the construction of this model is underpinned by a Hermite-rational fitting 

procedure. The coefficients in both segments of the piecewise function were determined 

by enforcing a smooth C1 continuity at the junction point M = M⁎ = 0.6, ensuring that 

both the function value and its first derivative are continuous. This continuity contributes 

significantly to the model’s robustness and its ability to mirror the behaviour of the exact 

implicit equation over the full domain. 

Compared to Padé-type surrogates and Achour and Amara two-piece polynomial–rational 

model II, the later achieves equivalent accuracy using a simpler analytic structure, since 

the number of involved coefficients is substantially reduced. In addition, it requires no 

symbolic series expansion, avoids sensitivity to high-order truncation, and maintains 

physical interpretability through the Hermite-rational fitting. These advantages make the 

Achour and Amara two-piece [2/2] rational model II a powerful yet computationally light 

analytical tool for evaluating the normal flow depth in rectangular channels. 

In short, Achour and Amara's rational two-piece [2/2] Model II stands out for its elegant 

simplicity, analytical clarity, and exceptional precision, making it a powerful and reliable 

tool for solving the normal flow depth problem in rectangular channels governed by 

Manning’s equation. 

Model formulation 

Achour and Amara two-piece rational [2/2] approximate model II can be expressed as 

follows: 

 

3 / 5 6 / 5
1 23 / 5

3 / 5 6 / 5
3 4

3 / 5 6 / 5
1 23 / 5

3 / 5 6 / 5
3 4

(a)

(b)

1
[0, 0.6]

1

1
[0.6, 1.6]

1

M M
M M

M M

M M
M M

M M

M

 

 

 

 



 


 

 


 





 



        (80) 

This new two-piece model II differs, in the mathematical form, from the Achour and 

Amara explicit two-piece rational model I, as it involves only four coefficients for each 

piece. It is then simpler, handier, and more elegant. 

The values of the coefficients in Eqs. (80a) and (80b), reported in Table 20, were obtained 

through a Hermite–rational fitting procedure ensuring C
1
 continuity at the junction point 

M = M⁎ = 0.6.  

On the other hand, Table 21 presents the deviations (%) produced by the lower-piece 

expressed by Eq. (80a), while the distribution of these deviations is illustrated in Fig. 8. 
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One may observe that, despite the simplified mathematical form of the lower-piece, it 

produces a maximum deviation of only 0.006%, occurring at M ≈ 0.42 (Fig. 8). In other 

words, the simplified mathematical form of the lower-piece model II has not affected its 

accuracy. Yet, it is well known that the more the form of an approximate model is 

simplified, the more the model loses accuracy. 

Table 20: Values of the lower-piece and the upper-piece coefficients in Eqs. (80a) 

and (80b), respectively.  

Lower-piece coefficients [Eq. (80a)] Upper-piece coefficients [Eq. (80b)] 

𝜎1 0.76711008 𝛿1 2.08378178 

𝜎2 0.19599852 𝛿2 1.38233298 

𝜎3 − 0.03700090 𝛿3 1.30041752 

𝜎4 0.09429985 𝛿4 0.10020727 

Table 21: Deviation (%) produced by the lower-piece model II expressed by Eq. 

(80a)  

M 𝜂(exact) Eq. (2a) 𝜂(approximate) Eq. (80a) Deviation (%) 

0 0 0 0 

0.1 0.30370395 0.30371208 0.00267853 

0.2 0.50297448 0.50295521 0.00383145 

0.3 0.68598872 0.68599290 0.00060978 

0.4 0.86149939 0.86155115 0.00600767 

0.5 1.03270875 1.03276388 0.00533822 

0.6 1.20115982 1.20108876 0.00591617 

   Max. ≈ 0.006 % 

 

Figure 8: Distribution of the deviation (%) produced by the lower-piece Achour and 

Amara rational [2/2] approximate model II, expressed by Eq. (80a), within 

the admissible range M  [0, 0.6]  
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Table 22 presents the deviations (%) produced by the upper-piece Achour and Amara 

rational [2/2] approximate model II, expressed by Eq. (80b). A maximum deviation of 

about 0.00014 % is exhibited, occurring at the end-point M = 1.6. Thus, as stated above, 

one may confirm that despite the fact that the upper-piece model II is built with the most 

simplified mathematical form, it produces a quasi-exact sought relative normal flow 

depth, since the maximum deviation is of about 0.00014 % only, within the validity range 

M  [0., 1.6], including the junction point M = M⁎ = 0.6. 

Table 22: Deviation (%) produced by the upper-piece model II expressed by Eq. 

(80b)  

M 𝜂(exact) Eq. (2a) 𝜂(approximate) Eq. (80b) Deviation (%) 

0.6 1.20115982 1.201158136 0.000140157 

0.7 1.36771257 1.367714484 0.000139916 

0.8 1.53289279 1.532893705 5.97125E-05 

0.9 1.69704345 1.697042197 7.38625E-05 

1 1.86039944 1.860396834 0.000140054 

1.1 2.02312774 2.023125444 0.000113479 

1.2 2.18535077 2.185350289 2.19907E-05 

1.3 2.34716051 2.347162462 8.31534E-05 

1.4 2.50862758 2.508631084 0.000139684 

1.5 2.66980713 2.669809411 8.5448E-05 

1.6 2.83074295 2.830738995 0.000139708 

   Max. ≈ 0.00014 % 

Based on Table 22, Fig. 9 illustrates the distribution of the deviation (%) produced by the 

upper-piece Achour and Amara rational [2/2] approximate model II, expressed by Eq. 

(80b), within the admissible range M  [0.6, 1.6] including the junction point M = M⁎ = 

0.6. 

 

Figure 9: Distribution of the deviation (%) produced by the upper-piece Achour and 

Amara [2/2] approximate model II, expressed by Eq. (80b), within the 

admissible range M  [0.6, 1.6]  
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Given the above findings, one may write the following: 

Table 21 displays the deviations (%) between the exact solution of Eq. (2a) and the 

approximate model expressed by Eq. (80a) over the interval M ∈ [0, 0.6]. The data in 

Table 19 reveal that the maximum deviation across the entire interval is only ≈ 0.006 %, 

with many values well below this mark. This level of accuracy is outstanding for an 

explicit model in hydraulic computation. The table also confirms a smooth and stable 

approximation as there are no abrupt spikes in deviation across the sampled values of M. 

This ensures not only a reliable mathematical model but also enhances confidence in 

numerical simulations using this formula. 

Fig. 8 graphically corroborates this accuracy by showing the almost complete overlap 

between the approximate and exact solutions. The curve representing the approximate 

η(M) follows the exact curve with imperceptible discrepancy, visually affirming the 

findings of Table 21. 

Table 22 reports the deviations (%) for the upper subdomain M ∈ [0.6, 1.6] as 

approximated by Eq. (80b). It mirrors the high fidelity observed in the lower-piece. The 

maximum deviation is capped at 0.00014%, confirming that the upper-piece is just as 

accurate and stable as the lower one. 

The uniformity of deviations across the upper range values of M suggests that the model 

retains its reliability even as the Manning number grows larger. Importantly, this is 

achieved with a minimalistic rational function, another testament to the power of the 

chosen [2/2] structure and the precision of the coefficient fitting. 

Fig. 9 supports this with a near-perfect alignment between the exact and modelled curves. 

The visual match demonstrates that no visual distortion or drift occurs over the extended 

range of M, reinforcing the model’s capacity to serve in practical engineering applications 

with confidence. 

Together, Tables 21 and 22 with Figs. 8 and 9 make a compelling case for the superiority 

of the Achour and Amara [2/2] rational two-piece model II. The combination of 

mathematical elegance, continuity at the junction, and extraordinarily low deviation 

percentage firmly establish it as a robust and efficient alternative to the implicit Eq. (2a). 

Discussion on the proposed models for the implicit Eq. (2a) 

The suite of suggested models presented in the manuscript aims to resolve a classic 

hydraulic challenge: accurately estimating the normal flow depth in a rectangular open 

channel using Manning's equation. This problem is characterized by its transcendental 

nature, which defies direct analytical solutions and traditionally requires iterative 

numerical approaches. The proposed models serve as explicit approximations to this 

problem and are designed with both accuracy and computational efficiency in mind. 

One of the most compelling aspects of the models, particularly the two-piece rational 

approximants, is their strategic simplicity. These formulations partition the domain of the 

dimensionless parameter into lower and upper sub-ranges, allowing each subdomain to 
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be captured by a tailored rational expression. This segmentation not only enhances 

approximation accuracy but also ensures that each piece can remain mathematically 

concise and easily evaluable. As a result, the derived models outperform many classical 

or empirical alternatives, particularly when benchmarked against the exact numerical 

integration of Manning’s equation. 

In terms of performance, the models strike an impressive balance between simplicity and 

accuracy. Despite their reduced mathematical form, the deviations introduced by the 

approximants remain exceptionally small, often on the order of thousandths or ten-

thousandths of a percent, well within engineering tolerances. The two-piece [2/2] rational 

model, in particular, exhibits an almost negligible deviation over the full domain, making 

it not only robust but also preferable for applications requiring high reliability. 

Another strength lies in how these models were constructed. The coefficient 

determination process, especially for the two-piece rational approximant, employed 

techniques such as Hermite-based fitting and constraint satisfaction at the junction point. 

These approaches ensure continuity in both value and slope, which is critical for 

preserving the physical fidelity of the model across the segmented range. 

In summary, the suggested models offer an elegant and efficient solution to a historically 

difficult hydraulic computation. Their simplicity promotes direct integration into 

engineering workflows, while their fidelity supports precision-critical tasks. The 

development process reflects a thoughtful balance of theoretical rigor and practical 

usability, positioning these approximants as a valuable contribution to computational 

hydraulics. 

Inappropriateness of certain approximate models for solving the implicit normal 

flow depth Eq. (2a) 

In the quest to derive efficient approximate solutions to the implicit Eq. (2a) governing 

normal flow depth in rectangular open channels, several classical mathematical strategies 

have been explored. However, not all of these approaches are well suited to the specific 

nature of the problem at hand. This discussion outlines the limitations and unsuitability 

of such models and highlights the consequences of their adoption. 

One such classical tool is the Lagrange–Bürmann theorem, which provides an inverse 

function expansion in terms of an infinite power series. While elegant in theory, its direct 

application to Eq. (2a) proves to be problematic. The series generated by this theorem 

exhibits divergence even within the practical working range of the dimensionless 

discharge parameter M ∈ [0, 1.6]. As a result, the approximation is not just ineffective but 

potentially misleading, with errors increasing as the value of M grows. The lack of 

convergence restricts its use and makes it ill-suited for hydraulic applications where 

numerical stability and bounded accuracy are crucial. 

Another candidate frequently used in approximation theory is the Laguerre polynomial 

expansion. Designed for functions defined over semi-infinite domains such as [0, ∞[, 

Laguerre polynomials enjoy orthogonality over such intervals. However, the domain of 
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interest for Eq. (2a) is strictly finite. Consequently, this class of polynomials loses its 

orthogonal properties within the bounded domain of M, diminishing its convergence and 

representational capacity. As a result, Laguerre-based models struggle to accurately 

capture the dynamics of the original equation within the finite bounds of engineering 

practice. 

On the other hand, Legendre polynomials, orthogonal over the normalized finite interval 

[−1, 1], might seem better adapted due to their bounded nature. However, their practical 

deployment for approximating Eq. (2a) introduces a critical drawback: the transformation 

to a normalized variable. This transformation distorts the physical meaning of the original 

problem and leads to severe degradation in accuracy. Even at high terms of the 

polynomials, such as the tested 14th term (N = 14), errors can soar up to 55% for lower 

values of M, rendering the approximation unreliable where precision is most needed, at 

shallow flows. Such behaviour invalidates the use of Legendre polynomials as a robust 

basis for approximating the solution to Eq. (2a). 

In summary, although classical approximation methods like Lagrange-Bürmann, 

Laguerre, and Legendre expansions are mathematically rich, they do not align with the 

specific constraints and characteristics of Eq. (2a). These limitations reinforce the need 

for tailored, structure-preserving approximation frameworks, such as those designed by 

Achour and collaborators, that are crafted not only for analytical elegance but also for 

practical hydraulic fidelity. 

Beyond these well-known series expansions, other heuristic or semi-empirical 

approximate models may also fall short of the precision required for practical hydraulic 

computations. Without structural alignment to the properties and asymptotics of Eq. (2a), 

these models often fail to preserve critical physical or mathematical features, such as 

asymptotic trends, continuity in higher-order derivatives, or monotonicity, leading to 

substantial deviations from the exact solution. 

In addition to the Lagrange–Bürmann series, Laguerre and Legendre polynomials, there 

are several other classes of approximate models or techniques that are not well suited to 

solving the implicit Eq. (2a) for normal flow depth in rectangular channels using 

Manning’s relationship. 

While Taylor series are foundational in approximation theory, they are inherently local. 

Expanding Eq. (2a) around a specific value of M, e.g., M = 0 or M = 1, produces an 

accurate estimate only in a narrow neighbourhood around that point. When applied across 

the full range M ∈ [0, 1.6], the Taylor series: (1) Shows rapid divergence or loss of 

precision as M moves away from the expansion point; (2) Requires a very high order to 

maintain global accuracy, which increases computational complexity without 

guaranteeing convergence or numerical stability. 

Chebyshev polynomials, type I and II, are powerful tools in approximation theory due to 

their minimax property. However: (1) They require the function to be projected onto the 

[−1, 1] interval, introducing the same transformation issue as with Legendre polynomials; 

(2) The approximation is typically best in a uniform sense but may lack the flexibility to 

precisely model non-polynomial behaviours, like the highly nonlinear nature of Eq. (2a), 
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across a physical range with varying sensitivity; (3) Without adaptive weighting, 

Chebyshev models type I and II may over-prioritize accuracy at extremes and 

underperform at critical intermediate values of M. 

Padé approximants unconstrained rational models extend Taylor series by providing 

rational functions that often approximate better than polynomials. However, they: (1) Are 

typically constructed by matching power series coefficients without guaranteeing shape 

preservation, i.e., monotonicity, convexity, etc; (2) Can introduce spurious poles or 

singularities in the finite domain, which are nonphysical and computationally 

undesirable; (3) Often lack a guaranteed maximum deviation bound, especially when not 

tailored to specific hydraulic behaviour. 

While Fourier expansions are excellent for periodic functions, they are highly 

inappropriate for Eq. (2a) because: (1) The function is not periodic, leading to the well-

known Gibbs phenomenon near domain boundaries; (2) The solution behaviour is smooth 

but not oscillatory; approximating it with sine and cosine terms introduces artificial 

artifacts. 

In modern practice, Machine Learning (ML)-based surrogates, e.g., Neural Networks that 

can approximate complex nonlinear functions but require training data and do not give 

explicit formulas, Symbolic Regression that uses algorithms like genetic programming to 

search for symbolic expressions (e.g., polynomials, rational forms) that best fit the data, 

Gaussian processes or kernel methods that build probabilistic models from observed data, 

seems to have experienced remarkable growth in recent years. Data-driven approaches 

may be trained to replicate Eq. (2a) numerically, but: (1) They often lack interpretability, 

analytical tractability, and guarantees on error bounds; (2) They require extensive data 

preparation and training, which is disproportionate given that Eq. (2a) admits well-

structured analytical approximations; (3) Unlike rational models or structured 

approximants, ML-based models may violate physical behaviour, e.g., monotonicity of η 

with respect to M, unless strictly constrained. 

These alternative techniques, though powerful in general approximation theory, are ill-

suited for the specific requirements of Eq. (2a), which demands: (1) High accuracy across 

a finite range; (2) Smoothness and monotonicity; (3) Physical fidelity and bounded 

deviation; (4) Numerical simplicity for practical hydraulic use. 

The most effective models, such as the Lawson-refined AAA, Achour−Amara [3/3], or 

Achour and Amara-based Hermite–rational structures, are explicitly constructed to meet 

these demands by respecting the structure of the original problem. 

CONCLUSION 

The present study has provided a comprehensive analytical, mathematical, and 

computational investigation of the normal flow depth problem in rectangular open 

channels using Manning’s equation. The work began by revisiting the classical implicit 

form of Manning’s law and demonstrating its equivalence to a trinomial quintic equation, 

thereby establishing a direct connection between hydraulic uniform-flow theory and the 
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algebraic theory of higher-order polynomials. This reformulation revealed that the 

Manning equation belongs to the class of quintic equations that cannot be solved in 

radicals, according to Adel's impossibility theorem (1824), yet it can be expressed in exact 

analytical form through transformation to the Bring-Jerrard canonical equation, a form 

historically treated by Tschirnhaus (1683), Kummer (1836), Hermite (1858), Brioschi 

(1858), and Birkeland (1924). 

The analysis confirmed that the so-called “exact solutions” previously proposed in the 

literature, such as those derived by Swamee and Rathie (2004) using the Lagrange-

Burmann inversion theorem, are in fact only approximate series representations, valid 

within a limited convergence radius of the dimensionless discharge parameter M. This 

clarification corrects a long-standing misconception in the literature and reaffirms that no 

finite polynomial expansion can globally reproduce the true Manning relationship for 

rectangular channels. 

Building upon this theoretical insight, the paper developed and compared a hierarchy of 

explicit analytical and numerical surrogate models derived from both classical and 

modern approximation frameworks. These include the Padé rational approximation, the 

Adaptive Antoulas-Anderson (AAA) algorithm, the Chebyshev polynomial formulation, 

Lawson’s least-squares iterative refinement, Amara and Achour’s model, Achour and 

Amara’s models, and the PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) 

method. Each approach was rigorously analyzed and benchmarked against the implicit 

Manning formulation, yielding high-accuracy rational representations capable of 

reproducing the true functional behaviour of the normal depth with errors approaching 

machine-level precision across the full hydraulic domain. 

From a methodological standpoint, the results highlight the superiority of rational 

approximations over power-series expansions, due to their extended convergence and 

stable monotonicity. In particular, the Padé and AAA rational models were shown to 

provide compact, continuous, and differentiable expressions that remain valid across the 

entire range of flow conditions. These models thus represent an optimal compromise 

between analytical tractability and numerical accuracy, bridging the gap between the 

purely theoretical solution, via hypergeometric formulation, and the practical needs of 

hydraulic computation. 

Furthermore, the study demonstrated that the proposed approach is not limited to the 

rectangular geometry but can be extended to other channel shapes, trapezoidal, circular, 

and even elliptic, by adopting similar rational-approximation strategies. This confirms the 

generality and robustness of the theoretical framework, positioning it as a unifying 

foundation for the analytical modelling of uniform flow in open channels. 

From a practical engineering perspective, the explicit equations presented herein 

eliminate the need for iterative trial-and-error procedures in determining the normal flow 

depth. The proposed formulations can be readily implemented in hydraulic software, 

spreadsheets, or design manuals, providing engineers with fast, accurate, and reliable 

computation tools. The methodology also ensures compatibility with existing 
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computational fluid dynamics (CFD) and symbolic-mathematics platforms, thereby 

facilitating integration into modern design environments. 

In short, this research advances both the theoretical understanding and computational 

practice of the normal-flow depth problem. It unifies classical algebraic theory, modern 

rational approximation, and hydraulic analysis within a single coherent framework. The 

main achievements can be summarized as follows: (1) Reformulation of Manning’s 

equation for rectangular channels as a trinomial quintic, revealing its exact algebraic 

structure; (2) Demonstration that previously reported “exact” solutions are approximate 

series expansions with limited validity; (3) Derivation and validation of new rational and 

polynomial surrogate models such as, Padé, AAA, Chebyshev, Lawson-refined, Amara 

and Achour, Achour and Amara, and PCHIP, that provide global, high-accuracy explicit 

solutions; (4) Establishment of a generalized mathematical framework that can be 

extended to other open-channel geometries; (5) Provision of explicit, implementable 

formulas suitable for design, computation, and educational use. 

Thus, the study represents a significant contribution to both hydraulic theory and applied 

computational hydraulics. By bridging rigorous mathematics and practical engineering 

application, it offers a definitive resolution to the long-standing challenge of determining 

normal flow depth in rectangular channels with Manning’s equation, delivering a quadi-

exact analytical foundation complemented by highly accurate explicit models for 

everyday use. 
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