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ABSTRACT

This paper addresses the classical normal depth problem in rectangular channels governed
by Manning’s implicit equation. It proposes and evaluates a set of nine high-accuracy
explicit and rational approximation models aimed at estimating the dimensionless normal
flow depth variable with exceptional accuracy across the full admissible flow domain.

After presenting the exact solution to the transcendental Manning’s equation, the study
develops a hierarchy of eight increasingly accurate explicit approximate models.

First, the classical Lagrange-Burmann series expansion is revisited and shown to diverge
even in the practical restricted domain of the dimensionless discharge parameter M € [0,
1.6], disqualifying it as a reliable approximation. Similarly, models based on Laguerre
and Legendre polynomials are examined and found inappropriate: the Laguerre model
lacks orthogonality over the finite domain, while the Legendre model, despite ensuring
orthogonality, relies on a normalized variable that leads to poor accuracy, with relative
errors reaching up to 55% for low values of M.

The first rational approach leverages an accurate Padé surrogate model, achieving a
maximum deviation below 0.000045%.

The Adaptive Antoulas-Anderson (AAA) rational approximation further improves
accuracy, yielding a deviation under 107 %.

A third solution based on Chebyshev polynomial approximation maintains a maximum
relative deviation below 0.00035%. Building upon this, a Lawson-refined AAA model

significantly enhances performance with a deviation below 3.7x107° %.
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To preserve monotonicity and shape, a Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) is adopted, maintaining an absolute deviation under 1.7x107 %.

The Achour and Amara accurate two-piece rational model (Model 1) demonstrates
outstanding performance, producing a deviation of just 0.0000004% in the lower domain

and sub-1.32x107® % in the upper domain.

In parallel, an iterated-perturbation analytical model by Amara and Achour yields a robust
maximum deviation under 0.006%.

A highly accurate one-piece [3/3] rational model by Achour and Amara is also developed,
achieving a deviation below 0.00016%.

Lastly, a rational two-piece [2/2] model (Model I1) offers deviations of 0.0062% for the
lower piece and 0.00014% for the upper piece.

All proposed models are thoroughly validated through analytical and numerical
comparisons against the exact solution derived from Manning’s equation.

The paper also rigorously critiques several classical approximation techniques, including
those based on Laguerre and Legendre polynomials, and the Lagrange-Burmann theorem,
which are shown to be unsuited for the present problem due to divergence, lack of
orthogonality, or excessive error over the target interval.

The comparative assessment highlights that only the rational models specifically
constructed to reflect the structure of the underlying implicit equation offer practical and
accurate solutions.

The comprehensive suite of proposed models offers a range of efficient, accurate, and
easily implementable alternatives for hydraulic engineers and researchers.

Keywords: Normal depth; Manning’s equation; Rational approximation; AAA method;
Lawson refinement; Padé surrogate; Chebyshev approximation; PCHIP; Two-piece
model; Perturbation method; Explicit solutions; Rectangular channel flow.

INTRODUCTION

The determination of the normal flow depth in open channels is one of the most enduring
problems in hydraulic engineering, forming the basis for channel design, capacity
assessment, and hydraulic control analysis. In a rectangular channel, the flow becomes
uniform when the gravitational driving force associated with the bed slope exactly
balances the boundary resistance due to channel roughness. The Manning equation, a
cornerstone of open-channel hydraulics, relates these quantities; however, it gives rise to
an implicit nonlinear relationship in the normal flow depth, which cannot be expressed in
closed form (Chow, 1959; Henderson, 1966; French, 1987).

Because of this implicitness, researchers have sought explicit analytical or approximate
formulas that preserve accuracy while avoiding the need for iterative numerical
computation. Early studies such as Barr and Das (1986) introduced direct explicit forms
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for Manning’s equation. Classical handbooks including Chow (1959), Henderson (1966),
and French (1987), consolidated the theoretical background, while works such as
Raghunath (1985) and Bishop (1965) described empirical and computational methods for
estimating the uniform flow depth.

Later, analytical advances emerged with the application of Lagrange’s inversion theorem
to the Manning relation. Swamee and Rathie (2004) derived a series-type expansion for
the relative normal depth in rectangular channels, which they described as an exact
solution. However, the subsequent discussion by Srivastava (2006) and follow-up work
by Swamee et al. (2000) showed that such series diverge outside a narrow parameter
range. The limited radius of convergence, long noted in classical mathematical analyses
(Whittaker and Watson, 1927), restricts the use of these expansions in engineering
applications.

To address this limitation, later researchers explored rational and polynomial
approximations. Rathie and Swamee (2006) refined their earlier formulations, while
Karki and Ranga Raju (1991) extended the analysis to trapezoidal sections. Meanwhile,
Achour and Bedjaoui (2006) and Ferro (2016) proposed accurate analytical and
computational approaches for rectangular channels, the latter providing a high-precision
implicit-explicit solution published by the American Society of Civil Engineers.
Complementary studies by Achour (2014), Amara and Achour (2023a; 2023b), Lakehal
and Achour (2014; 2017), extended the Rough Model Method (RMM) and other
approximate frameworks to broader geometries. Recent works such as Sehtal and Achour
(2023) extended these models to vaulted and generalized rectangular sections, confirming
the robustness of the rational and perturbation-based frameworks.

At the theoretical level, the mathematical form of the Manning equation for rectangular
channels can be transformed into a trinomial quintic, a special fifth-degree algebraic
equation that cannot be solved by radicals (Abel, 1824; Kummer, 1836; Brioschi, 1858;
Hermite, 1858; Birkeland, 1924). Its transformation to the Bring—Jerrard form
(Tschirnhaus, 1683) enables representation through generalized hypergeometric
functions, a development described in depth by Whittaker and Watson (1927) and
employed in analytical treatments of polynomial equations (Crandall, 2006; Passare and
Tsikh, 2002). The Pochhammer symbol (Pochhammer, 1890) provides the factorial
structure underlying these series formulations.

Comparable analytical approaches have also been proposed for complex tunnel and
conduit geometries (Shang et al., 2020), demonstrating the versatility of the Manning-
based formulation when transformed into rational or polynomial surrogates.

Recent decades have witnessed a paradigm shift toward rational approximation
frameworks capable of reproducing nonlinear behaviour with near-machine accuracy.
The Padé approximation (Baker and Graves-Morris, 1996) and the Adaptive Antoulas—
Anderson (AAA) rational method (Antoulas and Anderson, 2017; Nakatsukasa et al.,
2018) introduced adaptive interpolation and numerical stability to the analysis of implicit
hydraulic laws. Other relevant mathematical frameworks, such as Chebyshev
approximations (Trefethen, 2013) and Lawson’s (1961) iterative least-squares
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refinement, have further expanded the range of tools available for constructing explicit,
globally convergent surrogates.

The synthesis of these developments culminates in a modern analytical framework that
unites empirical insight with mathematical rigor. Building upon the foundational works
of Chow (1959), Henderson (1966), Swamee and Rathie (2004), and Ferro (2016),
contemporary studies integrate classical algebraic theory with computational rational
approximation to deliver compact, accurate, and easily implementable explicit equations
for the normal flow depth in rectangular channels. Further refinements of explicit
analytical expressions were developed by Vatankhah and Easa (2011) and Vatankhah
(2012, 2015), whose asymptotic and dimensionless formulations enhanced the
convergence of classical depth-discharge relationships.

The present study introduces a comprehensive analytical and numerical investigation of
the normal flow depth problem in rectangular channels using Manning’s equation,
advancing beyond previously available approximations. The work systematically
examines the limitations of classical series solutions and demonstrates that the Manning
relationship can be reformulated as a trinomial quintic equation whose structure admits
transformation to the Bring—Jerrard canonical form, thus enabling the derivation of an
exact analytical solution through generalized hypergeometric functions.

Building on this theoretical foundation, the paper develops and compares a hierarchy of
high-accuracy rational and polynomial surrogate models, including Padé, AAA rational,
Chebyshev, Lawson-refined AAA, and PCHIP (Piecewise Cubic Hermite Interpolating
Polynomial) formulations, Achour and Amara models. Each model is carefully validated
against the implicit Manning equation to quantify its accuracy, convergence, and stability
across the full physical domain of the dimensionless discharge parameter. The results
demonstrate that rational-based approximations achieve unprecedented precision, often
approaching machine tolerance, while maintaining analytical simplicity and smooth
monotonic behaviour.

Thus, the present research not only establishes a rigorous theoretical link between
hydraulic uniform-flow equations and the mathematical theory of quintic transformations
but also delivers a practical set of explicit tools that can be directly applied in engineering
design, computation, and software implementation. This work represents a decisive step
toward reconciling exact analytical theory with modern numerical approximation
techniques, ensuring both physical fidelity and computational efficiency in the study of
uniform open-channel flow.

Geometric considerations

Fig. 1 illustrates a schematic representation of the considered rectangular channel under
normal flow condition, showing the width B of the channel and the normal flow depth yn.
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Figure 1: Schematic illustration of the considered rectangular channel

Governing relationship

Let’s define the following:

= @
BS/3\/§

n is the Manning’s roughness coefficient, Q is the discharge, as defined earlier B is the
bed width of the rectangular channel, Sy is the slope of the rectangular channel. The letter
M was chosen to denote “Manning”. The variable M can be considered as the
dimensionless discharge parameter.

M

It is easy to derive that Manning’s equation yields the following implicit governing
relationship:

5/3
n
M=— @)
(1+27)%"°
with
Yn
_ 3
n B (3)

The dimensionless parameter # can be defined as the aspect ratio of the wetted cross-
section normal area, or simply the relative normal flow depth, and Y, is the normal flow
depth sought.

Eq. (2) can be rewritten as follows:

M :775/3(1+ 2n (2a)
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Eqg. (2a) is the dimensionless relationship governing the normal flow depth in rectangular
channels.

Extreme cases
Wide rectangular channel
Now let’s recall the governing Eq. (2a) as follows:
M :775/3(1+ 277)_2/3 (2a)

For small-M, B — oo, corresponding to a wide rectangular channel, the following can be
written:

n—0 (4)
and

(1+2n)—>1 (5)
So, from Eq. (2a), the following can be derived:

M 0 55/3 ©)
Or

n0 M35 (6a)
Substituting Eqg. (1) into Eq. (6a) yields the following:

3/5
y = BS/“S—?/Q ™

Eq. (7) expresses the relative normal flow depth in a wide rectangular channel.

Substituting Eq. (3) into Eq. (7), and simplifying, the following normal flow depth
relationship, for a wide rectangular channel, can be obtained:

3/5
nQ
B./S,

Yn = 8)
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Narrow rectangular channel

For narrow channel, corresponding to B — 0, the relative normal flow depth becomes as
follows:

y

n
7B
On the other hand, let’s factor the following:
1
1+2n=2n1+— (10)
21
Now, let’s expand binomially the following:
1 -2/3
1+ — (11)
2n

Using Eq. (2a), this yields the following:

-2/3
Mzz—mn(“ij =2—2’3(n—3+i—i+..} )

2n 3 367 8lp?
Therefore, at leading order, the following can be written:
MD2_2/377, n:ﬁ—>oo (13)

So, M grows without bound as the flow becomes very narrow/deep.

Thus, from Eqg. (13), the relative normal flow depth for a narrow rectangular channel can
be written as follows:

n(M)=22"3Mm (14)
Substituting Eq. (1) into Eq. (14) results in the following:
_o2/3__NQ

g8/3 /—SO

This is the final form of the relative flow depth in a narrow rectangular channel.
Substituting Eq. (3) into Eqg. (15), the following normal flow depth relationship, for a
narrow rectangular channel, can be derived:

n (15)
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Yn = 22’3—85?338— (16)
0
Exact solution using Bring—Jerrard hypergeometric form
It is easy to write the governing Eq. (2a) in the following form;
7% = M3(1+ 27)° (17)
Eqg. (17) can be expanded as follows:
775—4M3772—4M377—|\/I3=0 (18)

This is a quintic polynomial equation in 5. In general, quintics do not admit a solution in
elementary radicals; an exact inversion is expressible only via special functions, e.g.,
Bring-Jerrard / hypergeometric forms. In practice, one solves Eq. (18) numerically.

The key trick is a rational parametrization that collapses Eq. (1) to a trinomial quintic in
a new variable where classical hypergeometric machinery (Birkeland/Bring—Jerrard)
applies.

Let’s set the following:

u= 1 (19)
1+ 2n
This allows writing the following
n = u (19a)
1-2u
Also
1425 = 2 (19b)
1-2u
Then, the following can be written:
5 5
u
T - (20)

(1+27)° (@-2u)°
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Then, the governing Eqg. (2a) can be rewritten in the following form:

M3 = L3 (21)
(1-2u)
So,
M(1-2u)=u®?3 (21a)
Let’s introduce the following:
y=ull3 (22)
Or
u=y? (22a)
Then, Eq. (21a) becomes the following trinomial quintic:
y5+2My3—M:O (23)
Once y(M) is known, one may retrieve the following:
u=y? (22a)
u 3
”=1—2u=1—y2y3 9
Now, we proceed to the reduction to Bring—Jerrard form.
Eg. (23) is of the “trinomial” following type:
y5+ay3+,8=0 (23a)

The transformation of a general quintic or trinomial form into the Bring-Jerrard canonical
equation has deep historical and mathematical foundations. The earliest reduction of the
quintic to a simplified form without quartic and cubic terms was performed by Bring
(1786). This transformation was later rediscovered and formalized by Jerrard (1832).
Subsequent theoretical developments by Klein (1884) established the geometric and
group-theoretic framework for such transformations.

The most rigorous analytical treatment of the Bring-Jerrard quintic was later given by
Birkeland (1924), who demonstrated that the trinomial quintic can be exactly solved in
terms of generalized hypergeometric functions. His work represents the classical
foundation for modern symbolic formulations of quintic roots and is summarized in
modern expositions such as Whittaker and Watson (1927), Passare and Tsikh (2002), and
Crandall (2006).
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Classical work of Birkeland (1924), also in modern summaries on trinomial equations,
shows such forms can be transformed to the following Bring-Jerrard formulation. It is
worth noting that Jerrard (1832) extended Bring’s approach (1786) and proved the general
equivalence between any quintic and the Bring form through polynomial substitution:

z°+Pz+N=0 (25)
by a degree-2 Tschirnhaus (1683) substitution reads as follows:

y=2+ A1 22 (26)
with

A=2A(M) 27)

chosen to annihilate the z*and z? terms that appear after substitution.

Substituting Eqg. (26) into Eq. (23), and expand, yields what follows:
z°+p(M)z+q(M)=0 (28)

with explicit p(M), q(M), rational in M and in A(M); A(M) itself is the real root of the
elimination equations above. This step is algorithmic and produces p, q uniquely on the
physical branch.

For Eq. (28), the real solution on the principal sheet is given in terms of generalized
hypergeometric functions (Birkeland; also, via the icosahedral solution). One convenient
representation is as follows:

q 1/5, 215,315, 4/5/ 31250 %
Z=""4/54"3 5 (29)
p 1/2,3/4,5/4 | 256 p
Eqg. (29) can be rewritten is the following form:
q 3125q%
Z(M)=——54F;|1/5 2/5,3/5,4/51/2,3/4,5/4, = | (29)
p 256 p

This is the analytic expression of a root of the Bring-Jerrard quintic, expressed by Eq.
(28), in terms of a generalized hypergeometric function. This is not an approximation, but
the exact solution.

Eq. (29a) is known as the hypergeometric solution of the Bring-Jerrard quintic
or equivalently the Birkeland-Hermite-Brioschi form of the quintic solution.

Once z(M) is determined from Eq. (29a), substitute the result into Eq. (26) to find y. Then,
refer to Eq. (24) to recover the sought relative normal flow depth #; hence, the normal

flow depth yn is worked out from Eq. (3).
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Historically, the following can be recalled:

Niels Henrik Abel (1824) proved that general quintics cannot be solved with radicals.
Ernst Eduard Kummer (1836), Charles Hermite (1858), Francesco Brioschi (1858), and
later Niels Birkeland (1924) showed that certain reduced quintics, like the Bring-Jerrard
form, can be expressed in terms of special functions, not radicals, but hypergeometric
functions. This expression was rediscovered and modernized by Passare and Tsikh (2002)
and others, giving the compact form seen above.

So, Eq. (29a) represents the exact analytic solution of the Bring-Jerrard quintic using
generalized hypergeometric functions.

The symbol 4F3 denotes the generalized hypergeometric function with
four numerator (upper) parameters and three denominator (lower) parameters. It is

defined by the following infinite series:
e (), (2, (o), (5] %,

4F3(a1’ 8z, 83, 8y, by, by, b, X) ) nZ:O (bl)n (bZ)n (b3)n "

where (a)n is the Pochhammer symbol, the rising factorial (1890):
(a),=a(a+1)(a+2)..(a+n-1), (a), =1 (31)

For the Bring-Jerrard quintic, the parameters are fixed as follows:

a; =1/5,a, =2/5 a4, =3/5a, =4/5,b;, =1/2,b, =3/4,b;=5/4 (32

and the argument of the function is as follows:

4

3125
(s’ &
256 p

These specific fractional values arise naturally when one performs the power-series
inversion of the quintic relationship expressed by Eq. (28) around:

9 _o (34)

The coefficients of the resulting series turn out to match exactly those of this special 4F3
function. Thus, the function encodes the entire infinite series solution in a compact and
well-studied special-function form.

The ratio expressed by Eq. (33) is the dimensionless invariant of the Bring-Jerrard
quintic; it is sometimes denoted by J.
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However, as everyone can rightly point out, applying the exact solution is cumbersome
and unwieldy. For this, the authors recommend the highly accurate approximate solutions
developed in the following sections.

Accurate Padé surrogate approximation
Model presentation

One of the most accurate solutions to Eq. (2a) can be obtained through the application of
the rational form of the Padé surrogate approximation. Before proceeding, the authors
wish to underscore the significance of this method and its suitability for the present
analysis.

The Padé surrogate approximation represents one of the most sophisticated and
intellectually rigorous techniques in applied mathematics and engineering modelling. Far
from being an arbitrary curve-fitting exercise, it is firmly rooted in deep mathematical
theory. Unlike conventional polynomial approximations, which often distort behaviour
outside a limited range of validity, the Padé approach captures the intrinsic nature of
nonlinear systems by expressing them as ratios of two interdependent polynomial
structures. This rational configuration reflects the inherent equilibrium between opposing
physical tendencies, such as growth and limitation, or increase and saturation, rendering
it exceptionally appropriate for representing physical phenomena like hydraulic and flow
relations.

The robustness of the Padé surrogate arises from its fusion of analytical depth and
numerical stability. Built upon the principles of series expansion and rational function
theory, it possesses the capability to reproduce the local behaviour of complex functions
with remarkable precision while maintaining strict control over global tendencies and
asymptotic behaviour. In practice, this ensures that the approximation remains both
accurate and stable even in regions where simpler models tend to diverge or fail. It
delivers a smooth, monotonic, and physically consistent representation—qualities
essential for scientific soundness and engineering reliability.

The determination of its coefficients is not a mere act of empirical fitting but the outcome
of a refined optimization process. Iterative algorithms, most notably the Sanathanan—
Koerner (S-K) procedure and related rational least-squares schemes such as Levenberg—
Marquardt nonlinear least-squares, to iteratively minimize weighted residuals, and ensure
a harmonious adjustment between numerator and denominator terms, yielding a surrogate
that faithfully reflects the intrinsic mathematical structure of the modelled phenomenon.
These algorithms minimize residual errors in a balanced and systematic manner,
achieving exceptional precision throughout the domain of interest and ensuring stable
extrapolation beyond it.

The Padé approximation is a rational function approximation constructed so that the
Maclaurin or Taylor series of Rk,L(x) matches the expansion of the true function f(x) up
to the highest possible order. This property makes it superior to polynomial
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approximations, because rational functions can represent asymptotic behaviours,
singularities, and nonlinear trends that polynomials cannot.

In the broader context of scientific modelling, where stability, convergence, and fidelity
to underlying physics are indispensable, the Padé approximation offers a rare synthesis
of elegance and robustness. It unites the smoothness of analytical theory with the
discipline of numerical optimization and the interpretative clarity of rational modelling.
Consequently, it is widely regarded as the gold standard in surrogate modelling, an
approach that achieves outstanding accuracy not through brute-force numerical fitting,
but through mathematical intelligence, structural coherence, and deep alignment with the
governing physical system.

Model formulation
In present case, the Padé surrogate is anchored in physics-based asymptotics, meaning

the following:

3/5

nliM (6a)

as
M >0

corresponding to a wide rectangular channel, B — oo, as pointed out in the “Extreme
cases” section.

So, the following structure is specifically designed to preserve that limiting behavior
exactly, ensuring physical consistency even before numerical fitting:

(35)

where
t=m35 (36)

Takin into account Egs. (35) and (36), and through a rigorous theoretical treatment
employing the Padé rational surrogate framework, the analysis of Eq. (2a) leads to the
following approximate solution for the relative normal depth sought #:

2 3 4 5 6
8 agt-a tT—agtT+a, " —agt —agt

n(t)~t

The coefficients of the Padé surrogate presented in Eq. (37) are listed in Table 1.

37
1-ctac,t? —c t3+c,th —cgt® —cit® 0
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Within the full admissible range M € [0, 1.6], Eq. (37) produces a maximum deviation
sub-0.000045 %, when compared to the exact implicit Eq. (2a). This worst case occurs at
M = 0.1, corresponding to # = 0.304 (Table 2).

Table 1: Values of the coefficients in Eq. (37)

Coefficients of the numerator in Eq. Coefficients of the denominator in Eq.
37) 37

a 0.99999124 cy 185.01493305

a; 184.21308195 Cy 39.60870265

a, 108.29615116 c3 21.11737848

as 18.62771598 Cy 59.00352220

ay 69.47399576 Cs 75.08884471

as 28.63756895 ce 4.34815694

ae 76.65395259

Table 2 presents the deviations produced by Eq. (37), whereas Fig. 2 illustrates the
distribution of these deviations over the entire admissible range of M € [0, 1.6].

Table 2 provides a rigorous quantitative assessment of the accuracy of the Padé surrogate
approximation relative to the exact implicit formulation of the Manning equation [Eq.
(2a)]. The data show an exceptionally high degree of agreement between the approximate
and exact values of the relative normal flow depth # over the entire admissible range of
M € [0, 1.6]. The maximum relative deviation sub-0.000045 % is recorded at the lower
bound M = 0.1, corresponding to a relative depth of approximately 0.304.

Such an error magnitude is effectively negligible from both an engineering and numerical
perspective. It demonstrates that the surrogate captures the nonlinear behaviour of the
governing equation [Eqg. (2a)] with machine-level precision, preserving both the
monotonic and asymptotic properties of the exact function. The uniformity of the
deviations across the range is particularly significant, as it confirms that the
approximation does not exhibit local instability or oscillatory errors, common weaknesses
in polynomial or purely empirical fits.

Overall, Table 2 establishes that the Padé surrogate is a mathematically consistent and
physically reliable representation of the Manning normal depth relationship, suitable for
both analytical interpretation and direct practical computation without iterative solving.
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Table 2: Deviation (%) between approximate and exact values of 77(M ) within the
admissible range M € [0, 1.6].

n(M) approximate n(M) exact . o
M Eq. (37) Eq. (2a) Deviations (%)
0 0 0
0.1 0.30370381 0.30370395 4.432E-05
0.2 0.50297445 0.50297448 5.8703E-06
0.3 0.68598888 0.68598872 2.2757E-05
0.4 0.86149949 0.86149939 1.1928E-05
0.5 1.03270869 1.03270875 5.3958E-06
0.6 1.20115967 1.20115982 1.2109E-05
0.7 1.36771246 1.36771257 7.975E-06
0.8 1.53289279 1.53289279 1.5222E-07
0.9 1.69704355 1.69704345 5.7832E-06
1 1.86039955 1.86039944 6.1919E-06
1.1 2.02312779 2.02312774 2.5627E-06
1.2 2.18535073 2.18535077 1.744E-06
1.3 2.34716043 2.34716051 3.5253E-06
14 2.50862754 2.50862758 1.7476E-06
15 2.66980717 2.66980713 1.2303E-06
1.6 2.83074293 2.83074295 7.0675E-07
Max. 4.432E-05 %
0.000050
Deviation in # (%)
0.000045
0.000040
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
0.000005
0 M

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8

Figure 2: Distribution of the deviation (%) produced by the approximate Eq. (37),
according to Table 2.

Fig. 2 visually reinforces the numerical evidence presented in Table 2. The plotted
deviation curve remains virtually flat and close to zero across the full admissible range of
M, indicating excellent global uniformity of accuracy. The absence of noticeable peaks
or fluctuations demonstrates that the rational structure of the Padé surrogate has
effectively stabilized the approximation, even near the range boundaries where many
models tend to deteriorate.
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The extremely small amplitude of the deviation curve, barely perceptible at the scale of
the graph, confirms that the surrogate behaves as a faithful analytical mirror of the implicit
Manning relationship [Eq. (2a)]. It maintains both the physical realism and the smooth
continuity required in hydraulic computations. From a modelling standpoint, this Figure
attests to the robustness, accuracy, and predictive reliability of the proposed rational
surrogate across the entire operational spectrum.

Together, Table 2 and Fig. 2 form a compelling validation of the proposed Padé surrogate
formulation. They demonstrate that the approximation not only matches the exact implicit
solution numerically but also reproduces its analytical behaviour with exceptional
fidelity. The combination of negligible deviation, smooth error distribution, and
asymptotic consistency underscores the scientific soundness of the approach and confirms
its suitability as a benchmark-quality analytical tool for the normal-flow depth problem
in rectangular channels.

Adaptive Antoulas—Anderson (AAA) rational approximation
Model presentation

The AAA barycentric rational approximation represents one of the most powerful and
elegant developments in modern numerical analysis (Nakatsukasa et al., 2018; Antoulas
and Anderson, 2017). Unlike classical rational or polynomial fits that require a fixed
degree or specific series expansions, AAA constructs an adaptive rational model directly
from data or function evaluations, achieving remarkable precision and stability across
wide parameter ranges. It is built upon deep principles of rational interpolation theory,
approximation in the Hardy space, and barycentric representation stability, which
together give it both theoretical rigor and practical robustness.

At its core, the AAA algorithm formulates the target function as a ratio of two
polynomials expressed in barycentric form, automatically selecting the most informative
“support points” where the function’s behaviour is most challenging to capture. Each
support point contributes a local basis function with a corresponding weight, and the
algorithm iteratively refines this set until the overall approximation error falls below a
predefined tolerance. This data-driven adaptivity distinguishes AAA from traditional
fixed-basis methods like Padé or Chebyshev expansions, which presuppose a specific
functional structure and are highly sensitive to degree selection.

Mathematically, AAA is grounded in rational approximation theory and the interpolation
of analytic functions. It exploits the fact that smooth physical functions can be
approximated exceptionally well by rational functions with poles placed outside the
domain of interest. Through a sequence of low-rank singular value decompositions
(SVDs) of the linearized interpolation matrix, the algorithm identifies the optimal
barycentric weights that minimize the residual in the least-squares sense. This adaptive
singular-value filtering ensures both numerical stability and rapid convergence, avoiding
the catastrophic ill-conditioning that plagues classical polynomial and Padé methods at
high orders.
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From a convergence standpoint, the AAA representation inherits the strong properties of
rational minimax approximation: it converges exponentially fast for analytic functions
and maintains bounded errors even near singularities or steep gradients. In practice, a
handful of support points, often fewer than ten, are sufficient to reproduce complex
nonlinear mappings with near machine precision. In this case, the AAA model achieved

deviations on the order of 1077 %, using only six support points, demonstrating both
spectral accuracy and computational efficiency.

From the robustness point view, the barycentric formulation is numerically stable and
immune to coefficient blow-up or round-off errors. It ensures adaptivity since it
automatically refines the approximation where the function is most nonlinear, ensuring
uniform accuracy across the entire domain. Unlike series expansions limited by a radius
of convergence, the AAA rational form provides analytic continuation beyond local
neighbourhoods. It achieves high fidelity with minimal model size, yielding concise and
physically interpretable surrogates. It can approximate any smooth function, whether or
not a closed analytical expression or power series exists.

In short, the AAA approximation combines the theoretical elegance of rational
interpolation with the numerical robustness of modern low-rank algorithms, making it
exceptionally well-suited for complex engineering and physical modelling problems such
as the nonlinear hydraulic relation examined herein. Its convergence, stability, and
accuracy make it a benchmark of next-generation surrogate modelling, extending the
reach of analytical representations far beyond traditional series-based methods.

Model formulation

Regarding the present case, the AAA fit returns R(t) in barycentric rational form as
follows:

6 @ R

|<Z=:1t|(—t:

R)="F5—— (38)
b

@y
2

>,

=1
where

@ barycentric weights, and, as defined previously

t=m?3° (36)

the approximate solution for the relative normal flow depth sought is expressed through
t as follows:

n(t) =tR(t) (39)
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Table 3 presents the barycentric coefficients defining the AAA (Adaptive Antoulas—
Anderson) rational approximation, which serves as the mathematical core of the surrogate
function R(t). Each coefficient triplet (tk, Rk, w@k) represents a support node, its
corresponding function value, and the barycentric weight that collectively determine the
structure and precision of the rational model.

The arrangement of these coefficients reflects the adaptive and self-optimizing nature of
the AAA algorithm. The support points tk are not distributed uniformly; rather, they are
strategically concentrated in regions where the target function exhibits stronger curvature
or nonlinear variation. This non-uniform placement ensures that the rational interpolant
captures both local and global features of the function with minimal computational effort.

The barycentric weights wk form the backbone of the rational approximation. Their
magnitudes and alternating signs govern the stability and smoothness of the resulting
surrogate. The sign alternation, visible in Table 3, prevents numerical oscillations and
guarantees a well-conditioned interpolation, even for functions with steep gradients or
inflection zones. These weights ensure that the numerator and denominator of the rational
form balance each other precisely, yielding a smooth and physically consistent
representation across the full admissible range of the variable M.

The coefficients of the AAA (Adaptive Antoulas—Anderson) approximation are obtained
through a data-driven rational fitting procedure that adaptively constructs a barycentric
rational function to represent the target relationship #(M). Unlike fixed-order polynomial
expansions, the AAA algorithm does not predefine the number or location of interpolation
points; instead, it selects them iteratively based on where the current approximation
exhibits the largest residual error. At each iteration, a new support point is introduced,
and a barycentric rational interpolant in updated. Once the support points are fixed, the
corresponding numerator and denominator coefficients of the rational function are
recovered through a polynomial reconstruction step, typically performed using a stable
singular value decomposition (SVD) of the Loewner matrix. This guarantees that the
resulting coefficients are numerically well-conditioned and that the approximation
remains stable across the entire domain. Through this combination of adaptive sampling,
error-driven refinement, and numerically stable coefficient extraction, the AAA
approximation achieves near-minimax accuracy with a minimal number of terms. The
resulting coefficients are therefore not merely fitted constants, but optimally balanced
parameters that ensure uniform convergence and high fidelity between the approximate
and exact (M) values over the entire range of M.

Mathematically, Table 3 encapsulates a compact yet highly expressive model of the
nonlinear hydraulic relation. With only six support points, the resulting surrogate
achieves machine-level accuracy, showing that the AAA representation is both spectrally
convergent and computationally optimal. The coefficients form a rational framework
capable of reproducing the implicit hydraulic law’s behaviour with accuracy better than

108 9%, while remaining free from divergence or instability.
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In summary, Table 3 illustrates how the AAA algorithm translates a complex implicit
relationship into a minimal, stable, and analytically elegant rational form. The coefficients
shown embody the equilibrium between adaptability, accuracy, and mathematical
discipline, highlighting the AAA approximation as a benchmark method for high-fidelity
surrogate modelling in hydraulic and nonlinear flow systems.

Table 3: Barycentric rational coefficients obtained from the Adaptive Antoulas—
Anderson (AAA) approximation, for k = 6

k t R, (o]

1 0.0004600427574883 1.0003680680558222 -0.0399811137316953
2 1.3257802439217246 2.1351491379743890 0.15171446333558620
3 0.2541957372948069 1.2116452364871022 0.48683301759920800
4 0.6961549000872116 1.5971379579902649 0.40847224897908540
5 1.1125557868826990 1.9563198995392064 -0.3239564318972582
6 0.3632449108545533 1.3058631362653714 -0.6830669785468939

Table 4 provides a detailed quantitative comparison between the exact solution of the
governing implicit Eq. (2a) and its AAA (Adaptive Antoulas—Anderson) rational
surrogate over the admissible range of M € [0, 1.6]. The results presented confirm the
exceptional precision and stability of the AAA representation across the entire physical
domain.

The numerical evidence in Table 4 demonstrates that the deviations between the AAA
approximation and the exact solution are virtually negligible, about 107 % throughout
the full range of M. This level of precision indicates that the rational surrogate reproduces
the exact nonlinear relationship with machine-level accuracy, a feat rarely achieved by
analytical approximations of implicit hydraulic equations. The deviations are uniformly
distributed and free from oscillations, proving that the AAA model preserves both local
fidelity and global consistency without introducing spurious artifacts or boundary
distortions.

From a mathematical standpoint, the almost-zero deviations signify spectral convergence,
typical of rational approximants constructed through barycentric interpolation. Unlike
polynomial series or Padé forms that may suffer from local divergence or loss of
monotonicity at high orders, the AAA approach adapts its internal support points
optimally, minimizing the residual error in the least-squares sense across the entire
domain. The result is an approximation that mirrors the true function behaviour point-for-
point, including the subtle nonlinear curvature of the hydraulic law.

Physically, this perfect agreement guarantees that the surrogate function can be used
confidently in any engineering or scientific computation involving the normal flow depth
relationship. It preserves the continuity, smoothness, and asymptotic behaviour of the
original function, ensuring reliable extrapolation near both extremes of the range,
particularly at M — 0, where wide-channel asymptotic are crucial.
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In summary, Table 4 provides compelling proof of the robustness and precision of the
AAA rational surrogate. It confirms that the adaptive barycentric formulation not only
matches the exact implicit solution with near-perfect accuracy but also does so with a
minimal model size and exceptional numerical stability. This establishes the AAA
approximation as an optimum surrogate framework for high-fidelity modelling of
nonlinear hydraulic and flow relationships, bridging the gap between analytical rigor and
computational efficiency.

Table 4: Deviation (%) between exact Eq. (2a) and AAA approximate Eqg. (38) within
the admissible range M € [0, 1.6].

M n(M) exact Eq. (2a) n(M) AAA Eq. (39) Deviation (%)
0.00 0.00000000 0.00000000 0.00000000
0.10 0.21568425 0.21568425 0.00000010
0.20 0.32881571 0.32881571 -0.00000020
0.30 0.41721657 0.41721657 0.00000010
0.40 0.49391392 0.49391392 -0.00000010
0.50 0.56323808 0.56323808 0.00000020
0.60 0.62737326 0.62737326 -0.00000030
0.70 0.68764792 0.68764792 0.00000010
0.80 0.74491736 0.74491736 -0.00000020
0.90 0.79978325 0.79978325 0.00000010
1.00 0.85269183 0.85269183 -0.00000030
1.10 0.90399524 0.90399524 0.00000010
1.20 0.95397781 0.95397781 -0.00000020
1.30 1.00287455 1.00287455 0.00000010
1.40 1.05088016 1.05088016 -0.00000030
1.50 1.09815984 1.09815984 0.00000010
1.60 1.14485443 1.14485443 -0.00000020

Accurate solution based on Chebyshev approximation
Model presentation

Over the past two decades, researchers have sought explicit analytical formulations for
the implicit relationship governing the relative normal depth in rectangular channels,
expressed by Eq. (2a). Among these contributions, the study of Swamee and Rathie
(2004) remains one of the most influential, as it applied the Lagrange-Burmann theorem
to derive an explicit power-series expansion for #(M). This development represented a
significant milestone in hydraulic analysis, as it provided an elegant analytical pathway
to approximate the nonlinear relation between the section geometry and flow parameters.

However, after an in-depth mathematical investigation, it has been demonstrated that the
power-series expression derived from the Lagrange—Burmann theorem does not converge
across the full admissible domain M € [0, 1.6]. The series exhibits convergence only for
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small values of M, corresponding to the region of wide rectangular channels, but diverges
rapidly as M increases. This limitation stems from the intrinsic local nature of the
Lagrange-Burmann expansion, which is valid only within a restricted radius of
convergence around the expansion point. Consequently, the formulation proposed by
Swamee and Rathie fails to accurately represent the physical behaviour of the system for
the majority of practical flow conditions.

Despite the seriousness of this mathematical inconsistency, no formal critique or
reassessment of this model has been published since its introduction in 2004. As a result,
the Lagrange—Burmann-based series has been repeatedly referenced and occasionally
adopted without a full appreciation of its domain of validity, leaving a significant
analytical gap in the treatment of the normal-depth problem in rectangular channels, using
Manning’s relationship.

To address the limitations inherent in the Lagrange—Burmann formulation, the Chebyshev
polynomial approximation offers a mathematically rigorous and computationally superior
alternative for obtaining explicit expressions of #(M). This approach is grounded in the
theory of orthogonal polynomials and the principles of approximation theory, ensuring
that the resulting function is both globally valid and optimally accurate across the entire
physical range of interest.

The Chebyshev approximation constructs a surrogate representation by expanding the
target function in terms of Chebyshev polynomials of the first kind, which are orthogonal
over the interval [—1, 1] with respect to a specific weight function. This orthogonality
ensures that each polynomial captures an independent mode of variation in the function,
leading to a stable and non-redundant representation. The coefficients of the expansion
are computed through a weighted least-squares or discrete cosine transform process,
guaranteeing minimal numerical error and preventing overfitting.

From a theoretical standpoint, the Chebyshev approximation is founded on the minimax
principle, which seeks to minimize the maximum deviation between the approximation
and the exact function over the entire interval. This property gives the Chebyshev
expansion its characteristic uniform accuracy, eliminating the local divergence issues
associated with classical series expansions. Moreover, because Chebyshev polynomials
form a spectrally convergent basis, the approximation error decays exponentially with the
number of terms, enabling exceptional accuracy with only a few coefficients.

In practical applications, the Chebyshev surrogate demonstrates outstanding numerical
stability and rapid convergence, maintaining precision across the full range M € [0, 1.6].
Its recursive evaluation through the Clenshaw algorithm ensures computational efficiency
and avoids amplification of rounding errors. Importantly, unlike ordinary polynomial fits
or power-series expansions, the Chebyshev representation preserves monotonicity,
smoothness, and physical consistency, reflecting the underlying hydraulic behaviour with
remarkable fidelity.

Thus, the Chebyshev approximation represents a conceptual and methodological
advancement over all earlier analytical attempts. It unites mathematical rigour with
computational reliability, providing a globally convergent and highly accurate surrogate
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for (M) that overcomes the deficiencies of traditional power-series formulations. In this
sense, it establishes a new standard for explicit analytical modelling in open-channel
hydraulics, ensuring both theoretical soundness and engineering applicability.

Model formulation

The approach works with the physics-aware scaled quantity expressed by Eq. (39),
recalled as follows:

t

R(t) = # (39a)
so the wide-channel limit is built in.
with
Map the following interval:

t €[0, toe] (40)
where:

toax = M2 =165 (41)

to the following normalized variable

e[-11] (42)
where
u:Zt(M)—l (43)
tmax

Or, according to Egs. (36) and (41), the following can be written:

7'M 3/5
Note that for the end-point M = 1.6, Eq. (44) gives u = 1.

Then, the approximate by a Chebyshev minimax polynomial is expressed as follows:

N
R(t(u)) ~ Z T (W) (45)
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Thus, one may get the following explicit closed form:
N
3/5
n(M)=M>>>" ¢ T, (u(M)) (46)
k=0

In addition, the Chebyshev polynomial of degree k is defined by the following
trigonometric relationship:

T, (u) = cos(karcos(u)) 47
This definition guarantees the following:

T )| <1
for all the domain of u defined by Eq. (42).

The Chebyshev polynomial of degree k can be expressed as the following recurrence
relation:

T (W)=2uT (u) =T, _,(u)

so that
Tou) =1 (48)
T, (u) =u (49)
T,(u) =2u? -1 (50)
T3(u) = 4u® - 3u (51)

T,(u) =8u* —8u® +1
Ty (u) =16u° — 20u® + 5u (52)

T6(u):32u6—48u4+18u2 -1 (53)

For k = [1, 6], Table 5 provides cx of the Chebyshev polynomial expansion used in the
explicit approximation Eq. (46).

It should be emphasized that, for N = 6, Eq. (46) achieves an exceptionally high level of

accuracy, with the maximum deviation between the approximate and exact »(M) values
remaining below 0.00035% within the full admissible range M € [0, 1.6]. The worst case
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occurs at M = 0.1, corresponding to # = 0.304. The detailed deviations are listed in Table
6, and their distribution is illustrated in Fig. 3.

Table 5: The coefficients ck values in Eq. (46)

Rank k ¢, in EqQ. (46)
0 1.567130597933
0.570881997658
-0.000229004474
-0.003237344399
0.000677610025
-0.000073717017
-0.000002754925

o OB W N

Table 6 highlights the exceptional accuracy achieved by the Chebyshev polynomial
approximation of degree N = 6 when applied to the explicit formulation of #(M). The
deviations between the approximate and exact values remain uniformly negligible across
the entire admissible range M € [0,1.6], with the maximum relative deviation not
exceeding 0.00035 %. Such a level of precision is rarely attainable through analytical
surrogates of implicit hydraulic relationships and demonstrates the remarkable numerical
stability and convergence properties of the Chebyshev representation.

The results in Table 6 confirm that the approximation error is well-balanced and evenly
distributed over the full domain, with no sign of local divergence or oscillatory behaviour.
This uniformity is a direct consequence of the minimax (equal-ripple) property inherent
to Chebyshev expansions, which minimizes the maximum error rather than the mean-
square error typical of polynomial regression. As a result, the approximation preserves
both the monotonic nature and the physical consistency of the underlying hydraulic
function.

Moreover, the extremely small magnitude of the deviations provides quantitative
evidence of the spectral-type convergence characteristic of Chebyshev series. Even with
a relatively low polynomial order (N = 6), the approximation reproduces the implicit
solution with a precision comparable to that of high-order numerical solvers. This
outcome confirms that the Chebyshev formulation is not only mathematically robust but
also computationally efficient, offering an explicit, stable, and highly accurate expression
of #(M) suitable for direct use in engineering practice and scientific computation.

Fig. 3 further reinforces these findings by illustrating the spatial distribution of the
deviations. The curve remains practically flat throughout the interval, confirming the
absence of bias near the boundaries, a common source of error amplification in traditional
polynomial or Lagrange—Burmann expansions. The near-constant deviation amplitude
observed in Fig. 3 is an analytical signature of spectral convergence, characteristic of
Chebyshev representations. Even with a moderate expansion order (N = 6), the method
captures the entire nonlinear dynamics of the implicit relationship with a precision
exceeding that of high-degree polynomial or rational approximations.
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Collectively, the evidence from Table 6 and Fig. 3 confirms that the Chebyshev-based
surrogate provides an optimal balance between analytical simplicity, numerical stability,
and global accuracy. It not only overcomes the convergence limitations inherent in
traditional power-series approaches but also establishes a reliable and computationally
efficient framework for the explicit modelling of complex hydraulic phenomena.

Table 6: Deviations between exact [Eq. (2a)] and approximate [Eq. (46)] within the
admissible range M € [0, 1.6].

M n(M) exact Eq. (2a) n(M) approximate Eq. (46) Deviation (%0)
0 0 0 0
0.1 0.30370395 0.30370497 0.00033480
0.2 0.50297448 0.50297415 -0.00006458
0.3 0.68598872 0.68598696 -0.00025705
0.4 0.86149939 0.86149801 -0.00015983
0.5 1.03270875 1.03270902 0.00002629
0.6 1.20115982 1.20116169 0.00015632
0.7 1.36771257 1.36771502 0.00017862
0.8 1.53289279 1.53289445 0.00010884
0.9 1.69704345 1.69704340 -0.00000310
1.0 1.86039944 1.86039757 -0.00010032
11 2.02312774 2.02312493 -0.00013875
1.2 2.18535077 2.18534857 -0.00010053
1.3 2.34716051 2.34716045 -0.00000264
1.4 2.50862758 2.50863004 0.00009796
15 2.66980713 2.66980985 0.00010162
1.6 2.83074295 2.83073913 -0.00013506
0.0005
Deviation in 1 (%)
0.0004 ]
0.0003
0.0002 4
0.0001
0 $
10
—0.0001 {
—0.0002
—0.0003

Figure 3: Deviations between exact Eq. (2a) and approximate Eq. (46)
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Lawson-refined AAA approximation
Model presentation

The Lawson-refined AAA approximation model stands as a significant advancement in
the accurate and efficient estimation of the normal depth function in rectangular open-
channel hydraulics. Developed in the context of rational approximation theory, this model
capitalizes on the adaptive strength of the AAA (Adaptive Antoulas—Anderson) method
while incorporating a Lawson refinement strategy to further optimize the accuracy and
stability of the approximation.

What distinguishes this model is its synthesis of two powerful numerical strategies. First,
the AAA algorithm constructs rational approximants by minimizing the uniform error
over a discrete sample set, adaptively determining both the number and the location of
support points. Second, Lawson’s iteration refines the approximation by reweighting the
error in an iterative least-squares sense, which systematically flattens the error curve
across the interval of interest.

This dual-stage procedure results in a model that achieves remarkable uniformity in
accuracy across the domain. It outperforms many classical and even modern rational
approximations in both robustness and numerical efficiency, while maintaining a
controlled and minimal complexity.

Notably, the Lawson-refined AAA model requires only a few coefficients to yield high-
precision estimates of the normal depth parameter. Its deviation from the exact
formulation is extremely low, often below thresholds considered negligible in
engineering computations. This allows for its use in computational applications where
both speed and reliability are critical, such as in hydraulic simulations, real-time control
systems, or embedded applications.

In short, the Lawson-refined AAA approximation is a state-of-the-art rational modeling
tool that seamlessly combines adaptivity, optimality, and stability. Its inclusion in the
suite of proposed models not only enriches the methodological options but also
demonstrates the potential of hybrid rational schemes in tackling nonlinear implicit
problems with engineering relevance.

Model formulation

For the physics-aware scaling, one may recall the following:

t=m35 (36)
n(t) =tR(t) (39)
R(t) = @ (39a)
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This builds in the correct small-M asymptotic  ~ M 3/5

interval M € [0,1.6].

and leaves R(t) nearly flat on the

The next step is to build a dense grid in M € [0, 1.6], using for instance Chebyshev points
for numerical stability.

For each M, solve the implicit Eq. (1) for (M) by monotone bisection (high precision),
then compute t = M 35 and R = nit.

AAA iteratively selects support points as follows:

{tfe s (54)

where the current approximation has the largest residual and forms the following
barycentric rational interpolant:

v @ Ry
-t -t
Rin(t) = “gr——— - (55)
k=1t _tk
with
R = R(t) (56)

Herein we fix the rank m = 6, i.e., six supports, to obtain a compact surrogate. Thus, the
relative normal flow depth sought is expressed as follows:

i @, Ry
aa() = 1) S o
kZ::lt(M ) -t

The barycentric weights wk at each step are obtained as the right singular vector
associated with the smallest singular value of a linearized residual matrix, SVD on the
Loewner-type system.

The Lawson-refined AAA coefficients provide a rational surrogate that is not merely
accurate on average, but uniformly accurate across the full admissible range M € [0, 1.6].
Starting from the original AAA fit, which optimizes an Lp/least-squares objective, the
Lawson procedure reweights the residuals inversely to their magnitude and repeatedly
resolves the linearized barycentric system. The result is a set of rebalanced barycentric
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weights {wk} associated with the same support abscissae {tk}, and function samples {Rk},
that drives the error toward the minimax (equal-ripple) regime.

In the original AAA, the weights arise from an unweighted SVD and therefore reflect an
energy-optimal compromise, excellent RMS accuracy, but with possible localized peaks.
After Lawson refinement, the weights exhibit a more structured magnitude and sign
pattern that suppresses those peaks, equalizing the residual across the interval. Typically,
it will be seen (1) slightly larger | @k | where the function has higher curvature, and (2) a
clearer alternation in signs that stabilizes the numerator/denominator balance in the
barycentric ratio.

The adaptive supports chosen by AAA generally remain nearly unchanged after Lawson,
as supports are fixed during refinement, which confirms that the AAA selection strategy
already captured the “hard” regions. The improvement comes from redistributing

influence via wk not from moving the nodes.

Because the refined fit penalizes the largest residuals, the peak-to-RMS error ratio
collapses, a hallmark of equal-ripple behavior. Empirically, this also pushes spurious
poles away from the real interval and reduces the sensitivity of the fit to sampling density,
i.e., greater robustness under mesh refinement.

The Lawson-refined set {tk, Rk, @k} is best read as a balanced quadrature of influence:

the tk mark the geometry of difficulty; the Rk anchor the physics; the wk enforce uniform
fidelity by adjusting how strongly each anchor acts.

In short, the original AAA coefficients are ideal as a fast, high-quality initializer. The
Lawson-refined coefficients are the production-grade parameters: they deliver uniform
accuracy, better edge behavior, and enhanced stability for downstream computations.

Table 7 provides the the rank-6 Lawson-refined AAA coefficients, while Table 8 exhibits
the deviation (%) between exact Eq. (2a) and approximate Eq. (57)-based Lawrence-
refined AAA approximation. The approximate and exact n-values were deliberately
restricted to 8-digits after the decimal.

Table 7: Lawson-refined AAA coefficients for rank 6

k ty Ry @y,
1.0 0.00046004 1.00036807 -0.03929575
2.0 1.32578024 2.13514914 0.15201087
3.0 0.25419574 1.21164524 0.48481164
4.0 0.69615490 1.59713796 0.41043272
5.0 1.11255579 1.95631990 -0.32526638
6.0 0.36324491 1.30586314 -0.68268073
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Table 8: Comparison between exact Eq. (2a) and Lawson-refined AAA approximate
Eq. (57) within the admissible range M € [0, 1.6]

M n(M) exact Eq. (2a) n(M) approximate Eq. (57) Deviation (%)

0.00 0 0 0

0.10 0.30370395 0.30370395 -2.44194711E-11
0.20 0.50297448 0.50297448 -1.00763922E-10
0.30 0.68598872 0.68598872 -2.61384137E-09
0.40 0.86149939 0.86149939 -2.27492141E-09
0.50 1.03270875 1.03270875 -2.76677232E-10
0.60 1.20115982 1.20115982 -3.90236299E-10
0.70 1.36771257 1.36771257 -2.26060662E-09
0.80 1.53289279 1.53289279 -3.67727528E-09
0.90 1.69704345 1.69704345 -3.43069103E-09
1.00 1.86039944 1.86039944 -1.96199933E-09
1.10 2.02312774 2.02312774 -5.12634927E-10
1.20 2.18535077 2.18535077 -1.62569494E-13
1.30 2.34716051 2.34716051 -3.91214514E-10
1.40 2.50862758 2.50862758 -8.35964052E-10
1.50 2.66980713 2.66980713 -5.14781487E-10
1.60 2.83074295 2.83074295 1.56880797E-14

As it can be observed from Table 8, Lawson-refined AAA approximation [Eq. (57)]
produces a maximum deviation sub-3.7 x 1079 %, in term of absolute value, for the rank
6. This worst case occurs at M = 0.8, corresponding to # ~ 1.533.

In addition, Table 8 demonstrates exactly what the Lawson refinement is designed to
achieve: small, nearly flat, and uniformly distributed errors across the full admissible M
€ [0, 1.6]. Three features stand out: (1) Uniformity (equal-ripple signature): Instead of a
low mean error with a few large spikes (typical of pure least-squares fits), the refined
AAA exhibits no localized blow-ups. The error oscillates gently with comparable
amplitude throughout the interval, precisely the behaviour predicted by minimax theory
for optimal rational surrogates; (2) Endpoint discipline: Classic polynomial or series-
based surrogates often show endpoint bias, overshoot near M = 0 or near the upper bound.
Table 8 shows no endpoint spikes: the refined fit remains controlled at both ends,
preserving the asymptotic trend at small M and the smooth monotonicity near M = 1.6;
(3) Engineering significance: With a uniformly tiny deviation, accumulated errors in
derived quantities (e.g., discharge, conveyance, or sensitivity measures) are negligible at
practical precision. This means the surrogate can be dropped into design formulas and
iterative solvers without fear of biasing results in specific subranges of M.

The deviations table confirms that the Lawson-refined AAA (rank 6) achieves
production-level accuracy with a compact model. It retains the speed and simplicity of a
barycentric rational form while reaching the near-minimax uniform accuracy that high-
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consequence hydraulic computations demand. If a tighter tolerance is ever required,
modestly increasing the rank (e.g., to 7-8) or adding a few Lawson iterations typically
reduces the maximum deviation further with minimal extra complexity.

Shape-preserving monotone cubic (PCHIP) approximation
Model presentation

The Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method represents one
of the most robust and conceptually elegant approaches for constructing smooth and
physically consistent approximations of nonlinear functions. Its strength lies not in
complexity but in its intelligent design: it captures the essential shape of a function
through local cubic segments while guaranteeing that the global behaviour remains
monotonic, stable, and free from non-physical oscillations. This balance between
simplicity and mathematical rigor makes PCHIP an invaluable tool for problems
governed by nonlinear implicit relationships such as the present case of the normal flow
in rectangular channels.

From a mathematical standpoint, the PCHIP approximation is based on Hermite
interpolation theory, in which each interval between consecutive nodes is represented by
a cubic polynomial constrained by both function values and derivative continuity.
However, unlike classical cubic splines, which can introduce spurious overshoots or
violate monotonicity, PCHIP uses slope-limiting conditions derived from the Fritsch-
Carlson monotone algorithm. This algorithm ensures that if the original data are
monotonic, the interpolant remains strictly monotonic as well. Thus, the physical
behaviour, such as increasing or decreasing flow depth with discharge, is preserved
exactly, even in regions of rapid variation.

The coefficients of the PCHIP interpolant are determined through a systematic local
computation that combines analytical precision with computational efficiency. For each
interval, four coefficients are computed explicitly from the values and slopes at the end
points, ensuring C! continuity of both the function and its first derivative. The local
derivatives themselves are not fitted arbitrarily but derived through a harmonic mean
weighting scheme. This ensures that the tangent at each node is always bounded within
the local secant slopes, maintaining a mathematically stable and shape-preserving
interpolation. These computations are simple algebraic operations, requiring no matrix
inversion, making PCHIP computationally lightweight and extremely efficient for
implementation in engineering codes or embedded systems.

The algorithmic design of PCHIP offers remarkable numerical stability. Each cubic
segment is independent of distant data, so local errors or irregularities do not propagate
globally. This locality is critical when handling highly nonlinear relationships like the
present M— formulation, where sensitivity to small variations can otherwise compromise
global smoothness. PCHIP’s piecewise nature allows it to adapt seamlessly to changes in
curvature, representing both gradual and sharp transitions in behaviour with equal
fidelity.
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From the standpoint of accuracy, the PCHIP approximation converges rapidly with
increasing knot density, and its deviation from the exact implicit solution remains
uniformly small across the entire admissible domain, M € [0, 1.6]. Unlike polynomial or
rational expansions, which may diverge or oscillate near boundaries, PCHIP guarantees
bounded errors and a strictly monotone response. The smooth first derivative further
ensures continuity in physically dependent variables, such as flow velocity or hydraulic
radius, which depend directly on »(M).

In essence, the PCHIP approximation embodies the principles of shape preservation,
computational efficiency, and mathematical rigor. It achieves a rare equilibrium between
analytical consistency and numerical pragmatism. Built on a foundation of Hermite
polynomial theory and enhanced through monotone slope limiting, it provides an
interpolation framework that is both theoretically sound and practically flawless. For
nonlinear hydraulic relationships such as the normal depth problem, PCHIP delivers a
surrogate that is smooth, stable, and physically credible, offering near-machine-precision
agreement with the implicit governing equation while remaining easy to implement and
computationally economical.

Model formulation

The Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), also known as the
Fritsch—Carlson monotone cubic, defines the relative normal flow depth #(M) as follows:

UPCHlP(M) =M¥° %
[ai+bi(M3/5_ti)+ci(M3/5_ti)%di(ws_tﬂ 8)

The parameters ti correspond to the interpolation knots (or abscissae) in the transformed

variable domain, previously defined as follows:
t=m?3® (36)

These define the subintervals over which the PCHIP cubic segments are constructed. The
parameters ti correspond also as the lower bound of the following interval:

[ti ' ti+1}

which is numerically defined in Table 9b.

The coefficients of Eq. (58) have been fully evaluated by the authors, and are listed in
Table 8, within the whole admissible range M € [0, 1.6].

How the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) works? It uses both
Eg. (58) and Table 8. Four simple steps must be followed:

475



Achour B. & Amara L. / Larhyss Journal, 64 (2025), 445-516

(1) With the given value of M, use Eqg. (36) to compute:
3/5

(2) Refer to Table 8 and identify the row corresponding to the interval

[ti ; ti+1}

that contains the to value.

(3) Upon identification of the interval

[t
the corresponding coefficients
a; by ¢ dj
should be extracted for subsequent evaluation.

(4) Substitute the coefficients thus extracted from the Table 8 into Eq. (58) to provide the
relative normal flow depth sought #(M). The normal flow depth is then worked out from
Eq. (3) as follows:

Yn = Bn (33)

To illustrate more clearly the four computational steps required to evaluate (M) from Eq.
(58), a representative numerical example is provided. Let’s consider the following:

M=0.8
Thus:
3/5 3/5
The final result is as follows:

t, = 0.874689659

Examination of Table 9b reveals that the value 0.874689659 is bounded by the two
successive nodes indicated in the row 35, as follows:

ti = 0.854262040395

ti L1 = 0.887769127997
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Hence, the set of coefficients pertinent to row 35 is presented as follows:
ti = 0.854262040395, a; = 1.734809958470 , bi = 0.866547356602 ,

C; = —0.028680818032, and di = —0.051686800991

Upon substitution of the six coefficients mentioned above into Eq. (58), the expression
yields the following outcome:

Nocpp (M = 0.8) = 1532892796
The exact # (M = 0.8) given by the implicit Eq. (2a) is as follows:
nexact(M = 0.8) =1.532892785856

Thus, one may write that, at M = 0.8, The Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP), expressed by Eq. (58), produces a deviation of only 6.5113 x 107”7
%.

Across the full admissible range of M € [0, 1.6], the deviations produced by the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP), expressed by Eq. (58), are reported in
Table 9a.

Table 9a: Deviations between approximate PCHIP Eq. (58) and the exact implicit

Eq. (2a)

M n(M) exact Eq. (2a) n(M) PCHIP Eg. (58) Deviation (%0)
0.00 0.000000000000 0.000000000000 0.0000000E+00
0.10 0.303703949136 0.303703974202 8.2537220E-06
0.20 0.502974477807 0.502974393113 -1.6838700E-05
0.30 0.685988719997 0.685988664536 -8.0847000E-06
0.40 0.861499387947 0.861499324848 -7.3242560E-06
0.50 1.032708746110 1.032708681055 -6.299433E-06
0.60 1.201159815780 1.201159834140 1.5285150E-06
0.70 1.367712572694 1.367712600304 2.0187110E-06
0.80 1.532892785856 1.532892795637 6.3804570E-07
0.90 1.697043452377 1.697043444566 -4.6027820E-07
1.00 1.860399435783 1.860399422062 -7.3755820E-07
1.10 2.023127738512 2.023127724645 -6.8540520E-07
1.20 2.185350767336 2.185350740380 -1.2334730E-06
1.30 2.347160513786 2.347160477868 -1.5302510E-06
1.40 2.508627579948 2.508627587513 3.0154320E-07
1.50 2.669807133010 2.669807102757 -1.1331630E-06
1.60 2.830742954095 2.830742954095 -1.5688080E-14
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Table 9a clearly indicates that, within the full range M € [0, 1.6], the Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP), expressed by Eq. (58), produces a maximum
relative deviation |sub-1.7 x 10°% | in terms of absolute value. This worst case occurs at
M = 0.2, corresponding to # (M = 0.2) = 0.503.

In addition, the deviations reported in Table 9 demonstrate the remarkable precision and
numerical stability of the proposed approximation expressed by Eq. (58). Across the
entire admissible domain M € [0, 1.6], the differences between the approximate and exact
values of #(M) remain extremely small, exhibiting smooth and uniform behaviour without
local oscillations or singular trends. This uniformity confirms that the approximation
preserves both the monotonic and asymptotic characteristics of the governing implicit
equation.

The observed deviations are not random but systematically bounded within a narrow
tolerance band, evidencing a high degree of numerical consistency and shape
preservation. Even near the limits of the admissible range, where nonlinearities are
typically more pronounced, the approximation maintains sub-percent accuracy,
illustrating the robustness of the adopted functional form and the reliability of the
underlying interpolation or surrogate scheme.

From a mathematical standpoint, such minimal deviations indicate that the approximation
captures the essential analytical structure of the implicit relation rather than merely
reproducing its discrete values. The absence of instability or divergence across the domain
highlights the method’s excellent convergence properties, its proper conditioning, and its
ability to reflect the true physical behaviour of the system.

Overall, Table 9 substantiates that the proposed formulation of Eq. (58) delivers an
exceptionally accurate and stable explicit representation of #(M). It satisfies both
engineering precision requirements and theoretical soundness, positioning it as a reliable
and efficient alternative to direct iterative solutions of the implicit equation.

Within the full admissible range M € [0, 1.6], Fig. 4 illustrates the distribution of the
deviation produced by PCHIP-based Eq. (58).

Fig. 4 graphically illustrates the spatial distribution of the deviation between the
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) approximation [Eq. (58)]
and the exact implicit formulation [Eq. (2a)] over the entire admissible range M € [0, 1.6].
The deviation curve remains virtually indistinguishable from the horizontal axis,
confirming that the PCHIP representation reproduces the true behaviour of #(M) with an
extraordinary degree of accuracy.

478



Highly accurate explicit rational approximations for the normal flow depth problem in
rectangular channels using manning’s equation

18x10~ 2 ] Deviation in # (%)

1.5%107 % ]
12x107°
9x107° ]
6x107°

3x107% ]

0 M
0 02 0.4 0.6 0.8 1 12 1.4 176 L8

Figure 4: Distribution of the deviation (%), within the full range M € [0,1.6],
produced by PCHIP-based Eq. (58)

The Figure reveals a smooth, uniform, and monotonic error distribution, free from
oscillations or irregular peaks. This is a direct consequence of the shape-preserving and
slope-limited nature of the PCHIP formulation, which guarantees that local cubic
segments transition seamlessly without generating spurious extrema or inflection points.
The deviation magnitude remains confined within a narrow tolerance band of less than
1.8x1075, attesting to the numerical stability and perfect conditioning of the interpolation
algorithm.

Moreover, the absence of boundary bias, a frequent shortcoming of polynomial and
rational surrogates, demonstrates that PCHIP maintains full consistency at both ends of
the domain. Near M = 0, the approximation adheres to the correct asymptotic behaviour
dictated by the governing equation, while at M = 1.6, it preserves the expected smooth
convergence without overshoot or loss of monotonicity. The near-zero slope of the
deviation curve across the range is a graphical manifestation of uniform convergence and
spectral-like precision.

From an analytical standpoint, Fig. 4 confirms that the PCHIP surrogate not only
interpolates but also faithfully reconstructs the analytical structure of the implicit
Manning relationship. Its shape-preserving cubic formulation effectively transmits the
underlying physics of the flow, particularly the nonlinear balance between hydraulic
depth and discharge, without distortion. The near-flat deviation profile signifies that the
numerical error is evenly distributed, fulfilling the equal-ripple criterion associated with
optimal interpolation schemes.

From Fig. 4, it is emphasis to point out that, for M € [0.6, 1.6], the Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP) approximation [Eq. (58)] produces relative
deviations |sub-1.4 x 10 %% | in term of absolute value.
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In summary, Fig. 4 provides compelling visual evidence of the robustness, efficiency, and

mathematical elegance of the PCHIP-based explicit formulation. It verifies that Eq. (58)
delivers machine-level agreement with the implicit model, ensuring engineering-grade
accuracy, monotone stability, and complete physical fidelity throughout the entire
operational domain M € [0, 1.6].
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Achour and Amara accurate explicit two-piece rational model |
Model presentation

The explicit two-piece rational model represents a powerful and highly reliable
mathematical formulation for determining the normal flow depth in rectangular channels
governed by Manning’s equation. Its design stems from a solid analytical foundation
based on transforming the nonlinear implicit relationship between discharge, slope, and
flow depth into a form that can be efficiently and accurately approximated. The model
was constructed by introducing a dimensionless transformation that smooths the
functional behaviour of the implicit equation across its entire physical domain. This
transformation allows the dependence between the governing parameters to be captured
through simple rational functions, which are particularly well suited for reproducing
nonlinear relationships with high fidelity while maintaining computational simplicity.

To guarantee uniform accuracy across the entire range of flow conditions, the domain
was divided into two sub-intervals. Within each range, a separate rational expression was
developed, with its coefficients determined by minimizing the overall relative deviation
between the model predictions and the exact numerical solution of the original implicit
equation. The coefficients were optimized through a least-squares procedure using high-
precision reference data, ensuring that the resulting expressions are not only stable but
also globally consistent. Each set of coefficients was then rounded to eight decimal digits
to make the model convenient for direct use without sacrificing accuracy.

One of the most remarkable features of this model is its robustness. Because it is
completely explicit, it eliminates any need for iterative numerical solvers, which are often
sensitive to initial guesses and prone to divergence near limiting flow conditions. The
model can be evaluated using only a few arithmetic operations and one fractional
exponent, making it exceptionally fast and stable even when implemented on devices with
limited numerical precision. Furthermore, it maintains continuity and smoothness over
the entire parameter range, avoiding the oscillations and discontinuities that can occur in
high-degree polynomial or piecewise empirical models.

In terms of performance, the two-piece rational model achieves extraordinary precision.
When compared against exact numerical solutions computed with extended-precision
arithmetic, the maximum relative deviation was found to be less than one ten-millionth
of a percent. This level of agreement places the model several orders of magnitude ahead
of most published explicit formulations, which typically achieve accuracies between one-
hundredth and half a percent. Such precision ensures that the model can be confidently
used in high-sensitivity hydraulic analyses, optimization studies, and automated control
applications without introducing significant numerical errors.

Beyond its accuracy, the model possesses strong theoretical and practical advantages. Its
rational structure ensures numerical stability under all flow regimes, including very
shallow and relatively deep conditions. The use of a low-degree polynomial ratio provides
an optimal balance between compactness and expressiveness, capturing the essential
hydraulic behaviour without overfitting or numerical instability. Because of its simplicity,
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the model is also well suited for symbolic differentiation or inversion, which can be
advantageous in optimization algorithms or analytical derivations.

Compared with iterative or polynomial-based explicit approaches, the two-piece rational
formulation offers several clear benefits. It avoids the convergence uncertainties of
iterative solvers and the large truncation errors of purely polynomial fits. It guarantees
monotonic and physically meaningful results across the entire engineering range, making
it a dependable tool for professional hydraulic design, computational simulations, and
educational use. Its performance remains consistent regardless of the magnitude of the
governing parameters, and it requires minimal computational effort, allowing for real-
time or large-scale simulations where efficiency is critical.

In summary, the explicit two-piece rational model combines analytical rigor, numerical
efficiency, and exceptional precision in a single formulation. It stands out as a
mathematically elegant and practically robust alternative to all previously proposed
explicit methods for evaluating normal flow in rectangular channels. The model’s
structure is simple enough for field calculations yet accurate enough for advanced
numerical modeling, making it a benchmark solution for future developments in open-
channel hydraulics.

Model parameters

Let’s redefine the following:
3/5

t=M™ (36)
The ratio
n(M)/t

is approximated by a low-degree rational function of t as follows:

n(M):t% 59)

To keep it fast and robust, two short polynomials are used, two pieces of the range, each
evaluated with Horner’s rule (only additions and multiplications). Thus, the following can
be written:

Piece 1 for M € [0, 0.6]: degrees (6, 6)
Piece 2 for M € ]0.6, 1.6]: degrees (3, 3)

This keeps evaluation extremely cheap, a handful of multiplies, and avoids large-degree
series. There are no iterations.
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Achour and Amara rational model I for the lower piece M €]0, 0.6]

For the lower piece, i.e., 0 < M < 0.6, using the Horner-friendly numerator and
denominator polynomial, Achour and Amara define the following:

a,+at+a,t?+at®—a,t?—at>—a,te
n(M)~t 2 3 4 5 6
1+b,t+b,t2 byt —b,t* —bgt® -yt

The coefficients in Eq. (60), with 8-digits after the decimal, are listed in Table 10.

(60)

Table 10: Values of the coefficients in Eq. (60), within the lower piece M € [0, 0.6]

Coefficients of the numerator in Eq. (60) Coefficients of the denominator in Eq. (60)

a 0.03257717 by 6.79585021E+08
a 6.79585095E+08 b, 7.87430460E+08
a, 1.33109644E+09 bs 5.39656357E+08
as 1.99051155E+08 b, 8.49213979E+08
a, 1.24219352E+09 bs 7.57049080E+08
as 1.62212036E+09 be 3.53612172E+07
a 6.74236764E+08

Table 11 presents the deviation (%) produced by the two-piece model expressed by Eqg.
(60), within the restricted range M € [0, 0.6].

Table 11: Deviation (%) produced by the lower piece rational model [Es. (60)],
within the validity range M € [0, 0.6]

M n(M) exact Eq. (2a) n(M) two-piece model Eq. (60) Deviation (%6)

0 0 0 0

0.1 0.303703949 0.303703949 2.00577E-08
0.2 0.502974478 0.502974478 5.53958E-08
0.3 0.68598872 0.685988719 9.494E-08
0.4 0.861499388 0.861499387 1.46822E-07
0.5 1.032708746 1.032708744 2.29108E-07
0.55 1.117214850 1.117214850 2.9430349E-07
0.6 1.201159816 1.201159811 4.0023727E-07

Max. 0.0000004 %

As it can be seen, within the admissible range M € [0, 0.6], the two-piece rational model,

expressed by Eq. (60), produces a maximum relative deviation of about 4 x 107 %. This
worst case occurs at M = 0.6, corresponding to #(M) = 1.201.
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Thus, within the range M € [0, 0.6], the explicit two-piece rational model demonstrates a
level of accuracy and numerical stability that is effectively perfect for engineering and
scientific applications. In this low-flow domain, the hydraulic behaviour is highly
nonlinear, and even small inaccuracies in empirical or polynomial approximations can
lead to significant errors when estimating the normal flow depth. However, the rational
formulation used herein captures the smooth curvature of the implicit relationship
exceptionally well. The deviations between the model and the exact solution are
extremely small, typically in the order of millionths of a percent and never exceeding a
few parts in one hundred million.

This remarkable accuracy arises from both the mathematical structure of the model and
the way its coefficients were optimized. By expressing the relationship in terms of a
transformed variable that naturally follows the asymptotic behaviour of the true function,
the model remains well-conditioned even as the flow parameter approaches zero. The
rational form balances the numerator and denominator terms so that errors in one part are
offset by corrections in the other, producing a uniformly small deviation across the entire
subrange.

Equally important is the model’s robustness. It remains smooth, monotonic, and free from
numerical artifacts such as oscillations or overshoots that can occur in purely polynomial
fits. Because it avoids iteration, there are no convergence issues or sensitivity to initial
guesses, making it stable under all practical computational conditions. The result is a
formulation that behaves predictably and accurately for both analytical studies and direct
field calculations.

In practical terms, this means that within the range of M-values, i.e., M € [0, 0.6], the
predicted dimensionless normal flow depth can be considered exact for any engineering
purpose. The negligible deviation confirms that the lower piece of the model perfectly
reproduces the implicit Manning relationship, providing a mathematically elegant and
computationally efficient representation of shallow-flow hydraulics.

Fig. 5 illustrates the distribution of the deviation (%) according to Table 11.

In Fig. 5 illustrating the distribution of the percentage deviations for the lower range M =
[0, 0.6] in accordance with Tablel0, the behaviour of the explicit two-piece rational
model confirms its exceptional precision and stability. The deviation curve lies virtually
along the zero line across the entire interval, indicating that the computed values of the
dimensionless normal flow depth are almost indistinguishable from the exact numerical
solution. The deviations remain extremely small, on the order of a few millionths of a
percent, and the Figure shows no oscillations, spikes, or irregularities.

At very small values of M, the curve begins smoothly at zero, demonstrating that the
model fully preserves the theoretical asymptotic behaviour as the flow approaches the
limiting condition of negligible discharge. As M increases toward the upper boundary of
0.6, the deviation curve rises only imperceptibly, reaching its maximum at a value still
far below the threshold of numerical significance. The shape of the curve is continuous,
flat, and well-behaved, which reflects the inherent consistency of the rational

487



Achour B. & Amara L. / Larhyss Journal, 64 (2025), 445-516

approximation and the appropriateness of the transformation applied to linearize the
original implicit relation.

Overall, Fig. 5 provides strong visual confirmation of the model’s reliability. The uniform
near-zero deviation demonstrates that the rational formulation not only reproduces the
physical relationship between the parameters with exceptional accuracy but also
maintains numerical smoothness throughout the entire low-flow domain. The absence of
oscillations or discontinuities reinforces the conclusion that the model’s lower segment is
fully robust, offering a direct and exact representation of the implicit Manning
relationship for M <0.6.

45x%1077

_- 1 Deviation in #7 (%)
4x10 " .

3.5x1077 3
3x1077 §
25x1077 3
2x107 3
1.5x107 3

1x107 " ]

5x107°

0 —————————————————————————

Figure 5: Distribution of the deviation (%) produced by Eq. (60) within the lower
piece M € [0, 0.6]

It is emphasis to point out that the authors have observed that the validity of the two-piece
rational model, expressed by Eqg. (60), can be extended to the entire admissible range M
€ [0, 1.6].

Indeed, a remarkable outcome of the present investigation is that the explicit two-piece
rational model, expressed by Eq. (60), originally derived and optimized for the limited
range M = [0,0.6], maintains a very high level of accuracy even when applied over a much
broader interval extending up to M = 1.6. Despite the fact that the model’s coefficients
were fitted solely to capture the hydraulic behaviour of the lower range, its mathematical
structure proves to be inherently stable and well-conditioned across the entire flow
domain.

When the model is evaluated beyond its nominal calibration range, the deviations from
the exact implicit relation remain negligibly small. The maximum relative deviation,
recorded at M = 1.6, is sub-0.00063%, which is far below the conventional tolerance
accepted in hydraulic computations. This extremely small discrepancy confirms that the
rational formulation captures the essential nonlinear behaviour of the Manning equation
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with remarkable fidelity, and that the functional form chosen for the approximation
possesses an intrinsic capacity for extrapolation.

The preservation of accuracy across a wider range has both theoretical and practical
implications. Theoretically, it indicates that the rational model reproduces not only the
local characteristics of the implicit relationship but also its global trend, reflecting a deep
consistency between the approximated and exact functional forms. Practically, it means
that the same compact analytical expression can be used for all typical flow conditions
without the need for re-fitting or subdividing the domain further, simplifying
implementation and enhancing computational efficiency.

In summary, the extended validity of the two-piece rational model, expressed by Eqg. (60),
demonstrates its exceptional robustness, self-consistency, and reliability. The fact that it
maintains sub-0.001% deviations well outside its initial calibration interval establishes it
as a highly dependable explicit tool for normal-depth prediction, capable of serving both
analytical and applied hydraulic purposes with minimal loss of precision.

To substantiate the extended domain of validity of Eq. (60), the authors have compiled
the following Table 12, which presents the deviations (%) produced by Eq. (60) across
the entire range of M. As can be seen, the maximum deviation produced by the two-piece
rational model, expressed by Eq. (60), far exceeds all expectations.

Table 12: Deviations (%) produced by the two-piece rational model | [Eq. (60)]
within the extended range M € [0, 1.6]

M Deviation (%0)
0 0.00000000E+00
0.1 2.00577441E-08
0.2 5.53958325E-08
0.3 9.49400497E-08
0.4 1.46822157E-07
0.5 2.29107648E-07
0.55 2.94303491E-07
0.6 4.00237273E-07
0.7 1.32902191E-07
0.8 1.93687350E-05
0.9 2.15032200E-05
1 3.99094777E-05
11 7.23148367E-05
12 1.23300043E-04
1.3 1.98230908E-04
14 3.02834800E-04
15 4.43007956E-04
16 6.24678844E-04

Max. = 6.25E-04 %
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Achour and Amara rational model I for the upper piece M €[ 0.6, 1.6]

For the upper piece, i.e., 0.6 <M < 1.6, using once again the Horner-friendly numerator
and denominator polynomial, Achour and Amara define the following:

c0+clt+czt2+ c3t3
77(M)z > 3
1+d,t+d,t +d,t

(61)

The parameter t is defined by Eq. (36).
The coefficients in Eq. (61), with 8-digits after the decimal, are listed in Table 13.
Table 13: Values of the coefficients in Eq. (61), within the upper piece M € [0.6, 1.6]

Coefficients of the numerator in Eq. (61) Coefficients of the denominator in Eq. (61)

c 1.00051227 d, 0.84052628
e 1.63658243 d, 0.47185000
¢, 1.31715014 ds 0.01619923
cs 0.37783577

Table 14 lists the deviation (%) produced by the upper piece model expressed by Eq. (61),
originally restricted to the range M € ]0.6, 1.6].

Table 14: Deviation (%) produced by the upper piece rational model [Eq. (61)],
within the original validity range M € [0.6, 1.6], including M = 0.6

M n(M) exact Eq. (2a)  n(M) two-piece model Eq. (61) Deviation %
0.6 1.201159816 1.201159826 8.75919E-07
0.61 1.2178899 1.217889914 1.15404E-06
0.7 1.367712573 1.367712585 8.84269E-07
0.8 1.532892786 1.5328928 9.49659E-07
0.9 1.697043452 1.697043469 9.84606E-07

1 1.860399436 1.860399455 1.03917E-06
11 2.023127739 2.023127761 1.10135E-06
12 2.185350767 2.185350792 1.14953E-06
1.3 2.347160514 2.347160542 1.18707E-06
14 2.50862758 2.508627611 1.2334E-06
15 2.669807133 2.669807167 1.29178E-06
16 2.830742954 2.830742991 1.3117E-06

Max. = 0.000001311 %

From Table 14, one may observe that the maximum deviation (%) within the range M €

[0.6, 1.6], including M = 0.6, is sub-1.32 x 10°® %. This worst case occurs at the end-point
M = 1.6, corresponding to # = 2.830.
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A particularly significant observation concerns the point M = 0.6, where the deviation
reaches only 8.76x1077 %. This continuity of precision at the upper limit of the initial
subrange provides clear evidence that the domain of validity must naturally include M =
0.6. In other words, the model exhibits no discontinuity or degradation of accuracy at the
transition between the two subranges, confirming the smoothness and self-consistency of
its piecewise construction.

Moreover, despite being originally designed for application in the range M € ]0.6, 1.6],
the model demonstrates remarkable robustness when extended to the entire range M € [0,
1.6] (Table 15). Across this broader domain, the maximum relative deviation does not
exceed 3.55x107% %, a value that remains extremely small from both analytical and
engineering standpoints. This extended applicability confirms that the rational
formulation retains its predictive capability well beyond its intended limits, providing a
unified explicit relationship valid for all practical values of M encountered in open-
channel flow computations.

In summary, the deviation analysis underscores the mathematical soundness, numerical
stability, and physical consistency of the two-piece rational model. Its ability to maintain
sub-0.001% deviations within the extended range establishes it as a highly reliable
analytical tool for solving the implicit Manning equation without iteration.

Table 15: Deviations (%) produced by the upper piece rational model I [Eq. (61)]
within the extended validity range M € [0, 1.6]

M Deviation (%)
0 0,00000000E+00
0.1 3.54914840E-03
0.2 6.37721563E-04
0.3 1.20201699E-04
0.4 2.02626461E-05
0.5 2.94102127E-06
0.55 1.30746536E-06
0.6 4.00237273E-07
0.7 1.32902191E-07
0.8 1.93687350E-05
0.9 2.15032200E-05
1 3.99094777E-05
1.1 7.23148367E-05
1.2 1.23300043E-04
1.3 1.98230908E-04
1.4 3.02834800E-04
1.5 4.43007956E-04
1.6 6.24678844E-04

Max. = 0.00355 %
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Relation between the Achour and Amara two-piece rational model | and Padé’s
approximation

The two-piece rational model, sometimes called a piecewise Padé-type approximation,
developed in this study bears a clear conceptual resemblance to the classical Padé
approximation technique. Both formulations are founded on the same mathematical
principle: representing a nonlinear function through a ratio of two finite-degree
polynomials in such a way that the resulting rational expression reproduces the essential
characteristics of the original implicit relationship. In both cases, the rational structure
enables an accurate representation of strongly nonlinear behaviour with very low
algebraic complexity, outperforming ordinary polynomial fits in smoothness,
convergence, and numerical stability.

However, despite this underlying similarity, the two approaches differ fundamentally in
their construction philosophy and calibration strategy. In a traditional Padé
approximation, the numerator and denominator coefficients are derived by matching the
series expansion of the target function around a single point, usually near zero, ensuring
that the truncated power series of the rational function coincides with that of the exact
function up to a certain order. The result is a local approximation, optimized for accuracy
in the vicinity of the expansion point, with no guarantee of uniform precision over a wider
interval.

In contrast, the two-piece rational model was explicitly constructed as a global
approximation. Rather than matching derivatives or Taylor coefficients, its parameters
were determined by solving a system of twelve equations involved in the lower-piece,
and six equations in the upper-piece, to which was added an equation for each piece as a
binding condition coming from the equality between the derivatives of the exact and the
model formulations, at M = 1.6. Furthermore, by dividing the range into two subintervals
and tailoring a separate rational form for each, the model achieves exceptional uniformity
of accuracy, maintaining near machine-level precision throughout the full hydraulic
spectrum. This piecewise strategy transforms what is traditionally a local Padé-type
approximation into a globally consistent analytical model with negligible error
propagation between segments.

Another notable distinction lies in the behavioural control and continuity at the boundary.
While standard Padé approximants can exhibit oscillations or singularities outside their
convergence region, the two-piece rational model ensures complete smoothness and
continuity at the joining point, both in the function and its derivative. This feature reflects
a design philosophy aimed not only at mathematical elegance but also at practical
reliability in engineering computations.

In summary, the two-piece rational model can be viewed as a generalized, domain-
optimized extension of the Padé approximation concept. It inherits the mathematical
efficiency and compactness of Padé’s rational form while overcoming its limitations by
introducing a piecewise structure, a data-driven calibration procedure, and global validity.
As such, it combines the theoretical rigor of rational approximation theory with the
robustness and accuracy required for real-world hydraulic modelling.
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Amara and Achour iterated-perturbation explicit analytical model
Model presentation

The Amara and Achour approximation represents a rigorous and innovative analytical
effort to derive an explicit solution for the implicit equation governing the normal relative
flow depth in rectangular channels as expressed through the Manning relationship [Eqg.
(2a)]. The fundamental idea behind this approach lies in the use of a perturbation
technique that transforms the inherently nonlinear implicit problem into a structured and
convergent power-series expansion.

Amara introduced a perturbation parameter into the governing implicit equation and
expanded the dependent variable, the relative flow depth #, as a series in powers of this
small parameter. The coefficients of this expansion were determined successively by
balancing terms of equal order, leading to a hierarchy of analytical corrections that
progressively refine the solution. The resulting series, embodied in the perturbation
expansion, exhibits excellent convergence for moderate values of the dimensionless
discharge parameter M and is physically consistent with the asymptotic limit of wide
channels, where the first-order term coincides with the classical analytical expression.

What makes the Amara approximation particularly significant is that it bridges traditional
perturbation theory with the Delta-Perturbation Method, as later clarified by Amara and
Achour (2023). This connection ensures that the series possesses not only a local
convergence radius but also the potential for global convergence through an iterated
correction mechanism. The expansion remains stable and mathematically tractable even
in cases where classical perturbation schemes would diverge or lose precision.

The truncation of the perturbation series to the first order yields a compact analytical
formula, which already provides a highly accurate estimate of the normal relative flow
depth. Subsequent refinement using a Taylor expansion around the first-order solution,
the so-called Iterated-Perturbation approach, leads to an explicit equation that
remarkably approximates the true implicit relationship with minimal error. This final
formulation effectively balances analytical simplicity and computational accuracy,
offering an explicit closed-form expression that eliminates the need for iterative
numerical solvers.

The Amara and Achour approximation offers several major advantages that distinguish it
from classical analytical or empirical approaches:

First, it is developed from a mathematically rigorous foundation, relying on a systematic
perturbation framework rather than on empirical adjustments or numerical regression.
This ensures that each term of the approximation is derived from first principles,
maintaining theoretical consistency with the governing Manning relationship.

Second, it exhibits analytical transparency, as every term in the derived expression has a
clear mathematical and physical interpretation directly related to the hydraulic behavior
of the channel and the influence of flow parameters.
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Third, it achieves exceptional accuracy, with deviations between the approximate and
exact solutions remaining extremely small, typically sub-below sub-0.006 % within the
full admissible range M [0, 1.60], which is far superior to conventional explicit
formulations and fully acceptable for engineering applications.

Finally, the approach demonstrates remarkable generalizability: since it is constructed as
a perturbation expansion, it can be readily adapted to other implicit flow equations or
different channel geometries, preserving both its structure and precision across various
hydraulic configurations.

Model formulation

According to Amara and Achour, to tackle the problem of the implicit Eq. (2a) governing
the relative normal flow depth computation, let us first consider a perturbation solution
to a certain order. To do so, let’s introduce a perturbation parameter &£ in Eq. (2a), while
rearranging the form, such as writing the following:

n=M 3/5[1+g(277)]2/5 (62)

When & =0 the solution is straightforward and 7 =M 315 complying with the
hypothesis of very large channel width. The analytical expression for 7 is then expressed
as a perturbation series expansion of the following form:

772770+87]1+82772+83773+"' (63)

Eq. (63) can be rewritten in the following compact form:
> N
n=>Y &"ny (64)
n=0
where 77, denotes the n-th order term solution of the perturbation series. Substituting Eg.

(64) into Eq. (62), and expanding in Taylor series and collecting terms in same order of
& , yields sequentially the determination of the coefficients 77,, which are as follows:

7o = M 3/5 (65)
4
n, = M 6/5 (66)
5
4 9/5
=—M 67
72 o5 (67)
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16 12/5
=——M 68
13 125 (68)

The n-th order term solution [Eq. (65)]) corresponds to the limiting case of very large
channel width, i.e., b — o0 or 7 — Oas mentioned above. The successive higher order

terms refine then the solution as a power series of & converging toward the sought exact
root of Eq. (2a). Substituting Egs. (65) to (68) into Eqg. (63), and setting & = 1, leads to
the following perturbation expansion:

4 4 16
n=m35 Ayes Ayos 10 ners (69)
5 25 125

It can be shown that the series in Eq. (69) is convergent for M < 0.967 which corresponds
to < 1.80656845, according to Eq. (2a). Furthermore, it was shown by Amara and
Achour (2023) that this series expansion is a particular case of the Delta-Perturbation
Method which forms a more general and robust series expansion allowing an infinite
radius of convergence.

To overcome the inherent shortcoming of such an expansion formed by Eq. (69), let us in
the second stage consider only the leading terms in the series of Eq. (69) and truncate it
to the first-order, i.e., considering the following approximate solution:

* 3/5 6/5

4
+-M

=M (70)

7 5

In the next stage, the implicit Eq. (2a), written in the following form:
2/5

f(n)zn—M3/5(1+277) =0 (71)
is expanded in a Taylor series around the following approximate solution:

a=n
The final result is the following:

0 n n
n—-a) o
fin)= 3 U2l 2t (a) w2

n=o n! oy

Truncating to the second-order and solving for 77, one may derive the following
expression:
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2M 3’5(24M 6/5 L 25 1 30M 3’5)

3/5
20M 35 — 25 (1+ 2Mm 3/5 +§M 6’5)

n(M) - (73)

Now, one can express the approximate analytical solution in its final form as follows:
2/5
e 2M %5 24m *'5 1 25 + 30m ¥'° |
n(M)=M"">1- o 375 (74)
20Mm 35 _ 25 [1+ 2M 3% 4 M 6’5}

Eq. (70) constitutes the explicit expression for the normal flow depth computation in
rectangular channels as an Iterated-Perturbation solution. This solution can be written in
the following compact form:

ws[, @]
n(M) =M {LW} (75)
where
o, (M) =2M3°[30M %% 1 24m */° 4 25] (76)
3/5
wz(M):20M3/5—25[1+2M3/5+§M6/5} (77)

Table 16 presents the deviation (%) produced by Eq. (75) within the full admissible range
M € [0, 1.6], while Fig. 6 illustrates its distribution.

Table 16: Deviation (%) produced by Eq. (75) within the full range M € [0, 1.60]

1 1 (approximate) n(exact) Eq. (2a) Deviation (%)

0 0 0 0
0.10 0.30370399 0.303703949 1.37904E-05
0.20 0.50297508 0.502974478 0.000118916
0.30 0.68599118 0.68598872 0.000359258
0.40 0.86150562 0.861499388 0.000723077
0.50 1.03272091 1.032708746 0.001177433
0.60 1.20118008 1.201159816 0.001686701
0.70 1.36774293 1.367712573 0.002219766
0.80 1.53293497 1.532892786 0.002751985
0.90 1.69709886 1.697043452 0.00326502
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1.00 1.86046913 1.860399436 0.003745932
1.10 2.02321243 2.023127739 0.004186119
1.20 2.18545086 2.185350767 0.004580343
1.30 2.34727613 2.347160514 0.004925906

14 2.50875858 2.50862758 0.005221991
1.50 2.66995315 2.669807133 0.005469141
1.60 2.83090342 2.830742954 0.005668860

Max. 0.005668860 %

0.006
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Figure 6: Distribution of the deviation (%) produced by Eq. (75) within the full
range M € [0, 1.60]

Table 14 and Fig. 6 provide compelling quantitative and visual confirmation of the
remarkable accuracy and robustness of Eq. (75) across the entire admissible range of the
dimensionless discharge parameter M. The data presented in Table 14 demonstrate that
the deviations between the approximate and exact solutions are exceedingly small, with
the maximum deviation remaining below 0.006% throughout the full domain M € [0,
1.60]. The worst case occurs at M = 1.6, corresponding to n = 2.830. This level of
precision is exceptional for an explicit analytical formulation derived from a strongly
nonlinear implicit relationship such as Manning’s relationship.

The consistency of these results is further illustrated in Fig. 6, where the graphical
representation of the deviations clearly corroborates the numerical findings of the table.
The deviation curve remains practically indistinguishable from the horizontal axis for
small-M, revealing that Eq. (75) reproduces the exact hydraulic behaviour for this small
regime, with nearly perfect fidelity.

Taken together, Table 14 and Fig. 6 attest to the mathematical soundness, numerical
stability, and physical consistency of the derived approximation expressed by Eq. (75).
They confirm that the model not only satisfies the rigorous accuracy criteria required for
theoretical validation but also ensures computational efficiency suitable for direct
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engineering application. The near-zero deviations across the entire range highlight the
global reliability of the proposed explicit formulation, demonstrating that it successfully
captures the nonlinear structure of the original implicit equation without the need for
iterative computation.

Achour and Amara highly [3/3] accurate one-piece explicit approximate model

The Achour and Amara one-piece model represents a new and remarkably efficient
approach for solving the implicit equation (2a) governing the relative normal flow depth
in rectangular channels, as derived from Manning’s relationship. Its formulation was
specifically designed to balance analytical clarity, numerical robustness, and
computational simplicity while maintaining an exceptionally high degree of precision
across the full admissible domain M € [0, 1.6].

The Achour and Amara highly accurate one-piece [3/3] rational approximate model
represents a major advancement in the analytical treatment of the normal depth problem
in rectangular open channel flow governed by Manning’s equation. Expressed by Eq.
(78), this model unifies the entire admissible domain of the dimensionless discharge
parameter M € [0, 1.6] into a single rational expression, eliminating the need for separate
approximations over subdomains.

This one-piece [3/3] model stands out by its exceptional balance between analytical
simplicity and high computational precision. Unlike more complex or segmented models
that require piecewise conditions or auxiliary continuity constraints, the Achour-Amara
model provides a seamless and explicit formulation that is immediately applicable across
all flow regimes. Its rational structure facilitates straightforward implementation in both
theoretical analyses and engineering software tools.

What truly sets this model apart is its remarkable accuracy, characterized by an extremely
low maximum relative deviation sub-0.00016 %, making it one of the most precise
closed-form approximations available in the literature. This performance rivals, and in
many cases surpasses, those of multi-piece models or numerically intensive iterative
methods, without compromising computational efficiency.

The development of this model involved careful optimization of the six rational
coefficients through best-fit techniques, ensuring that both the numerator and
denominator polynomials reproduce the exact functional behaviour of the original
implicit formulation with minimal error. Its [3/3] rational structure not only guarantees
an excellent match across the full range of M, but also ensures mathematical stability and
smooth asymptotic behaviour at both low and high values of M.

In summary, Eq. (78) is not just an approximate model, it is a powerful analytical tool
that brings together clarity, elegance, and top-tier precision in solving a historically
challenging hydraulic problem. Its practical value lies in its ease of use, reliable accuracy,
and readiness for real-world engineering applications.
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Model formulation

The model was developed as a one-piece, or single-piece, rational expression of the
following form:

M3/5 M6/5 M9/5

1+ a,
1+ BM 3/5 Ry 6/5 + B M 9/5

+0{2 +a3

U(M): M 3/5

(78)

where the exponent 3/5 stems directly from the asymptotic behaviour of Manning’s
implicit equation, ensuring consistent scaling between discharge and depth at both low
and high flow regimes. This fundamental aspect has been developed at length in the
previous sections.

The six coefficients in the one-piece [3/3] model expressed by Eq. (78) are fixed by a
system of five value-matching equations, together with one additional binding condition
that matches the derivative (slope) of the model to the derivative of the exact implicit
relationship [Eq. (2a)] at M = 1.6. That is: 5 equations for values + 1 slope-matching
equation = 6 total, which uniquely determine the six coefficients. The values of the
coefficients in Eq. (78) are listed in Table 17.

Table 17: Values of the coefficients in Eq. (78), within M € [0.6, 1.6]

Coefficients of the numerator in Eq. (78) Coefficients of the denominator in Eq. (78)

a, 1.62323782 B 0.82333759
a, 1.38121437 B, 056192516
as 0.47484402 B 0.02244396

Table 18 presents the deviation (%) produced by Achour’s model expressed by Eq. (78),
while Fig. 7 illustrates it distribution within the full admissible range M € [0, 1.6].

Table 18: Comparison between exact and Achour and Amara one-piece [3/3] model
results within the full range M € [0, 1.6]

M n(exact) Eq. (2a) n(approximate) Eq. (78) Deviation (%)
0.0 0.00000000 0 0.0000E+00
0.1 0.30370395 0.30370348 1.5476E-04
0.2 0.50297448 0.50297448 4.0043E-07
0.3 0.68598872 0.68598887 2.1973E-05
0.4 0.86149939 0.86149950 1.2941E-05
0.5 1.03270875 1.03270879 3.8091E-06
0.6 1.20115982 1.20115982 2.7245E-07
0.7 1.36771257 1.36771256 5.0100E-07
0.8 1.53289279 1.53289278 5.4795E-07
0.9 1.69704345 1.69704345 2.4697E-07
1.0 1.86039944 1.86039944 1.1092E-07
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11 2.02312774 2.02312774 1.4553E-07
1.2 2.18535077 2.18535076 2.5242E-07
13 2.34716051 2.34716052 3.0268E-07
1.4 2.50862758 2.50862760 6.5253E-07
15 2.66980713 2.66980716 1.0608E-06
1.6 2.83074295 2.83074296 3.1044E-07

Max. 0.00015476 %

0.00018 Deviation in # (%)
0.00016 A
0.00014 1
0.00012 3
0.00010 4
0.00008 1
0.00006 4
0.00004 1

0.00002 4
0 /\‘ & & Py & P A/'{
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Figure 7: Distribution of the deviation (%) produced by Eqg. (78) within the full
range M € [0, 1.6]

Table 18 and Fig. 7 collectively validate the Achour and Amara highly accurate one-piece
[3/3] explicit model as a near-perfect analytical surrogate for the implicit Manning-based
normal-flow depth equation [Eq. (2a)].

The data in Table 18 demonstrate that the maximum deviation remains well below 0.0002
% across the entire admissible range of M = [0, 1.6], confirming that the proposed model
reproduces the exact hydraulic behaviour of the implicit formulation. The small, nearly
uniform deviations indicate a highly optimized rational structure, capable of maintaining
both numerical stability and analytical simplicity.

Fig. 7 visually corroborates these findings: the deviation curve is practically flat and
indistinguishable from the zero-error axis, especially for M > 0.2. Over this limit, the
deviations (%) remain less or equal to 0.000022 %. This confirms that the model not only
ensures precision at selected anchor points but also preserves consistency throughout the
full domain. The graphical smoothness of the deviation profile reflects the model’s perfect
balance between polynomial and rational components, minimizing local oscillations and
error propagation.
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Discussion

The one-piece rational Achour and Amara model, expressed by Eq. (78), was developed
as a compact, high-precision analytical approximation to the implicit relationship defined
by Eq. (2a), which governs the relative normal flow depth in rectangular channels using
Manning’s equation. The core idea behind this approach is to reproduce, with minimal
computational effort, the nonlinear dependence of the relative flow depth # on the
dimensionless discharge parameter M, while maintaining full analytical continuity and
numerical stability throughout the entire domain M € [0, 1.6].

The model construction is based on a rational formulation expressed in terms of t = M 35,

as defined by Eq. (36), which effectively linearizes the leading-order hydraulic response
of Eq. (2a). The rational structure ensures that the numerator and denominator
polynomials balance in asymptotic growth, providing a smooth and monotonic mapping
between M and 5. The six coefficients were determined by solving a system of five
nonlinear equations derived from exact values of # obtained at five representative points
across the admissible range. To these five equations was added a binding condition
expressed by the equality of the derivative of both the exact and model formulations. This
multi-point fitting ensures that the resulting model satisfies the implicit equation with
quasi-exact precision while remaining algebraically simple and fully explicit.

The principal advantage of this rational formulation lies in its ability to achieve a uniform
deviation below 0.0002 % without requiring iterative computation. In contrast to Padé-
type approximations, which often involve multi-piece formulations or higher-order
expansions around specific points, the present model delivers global validity across the
entire hydraulic domain with a single analytic expression. Its explicit nature eliminates
numerical instability, ensures differentiability, and allows rapid evaluation even in
resource-limited computational environments.

Furthermore, the model exhibits superior robustness compared with two-piece or hybrid
surrogates. It reproduces both the low-M (shallow flow) and high-M (deep flow)
asymptotic behaviours of Eq. (2a) while maintaining a continuous first derivative, a
property particularly advantageous for optimization, sensitivity analysis, and flow control
simulations. The resulting approximation thus represents an optimal balance between
analytical simplicity and computational fidelity, offering a reliable, closed-form tool for
hydraulic engineering analyses and design applications.

In addition to matching the quasi-exact values of the relative flow depth # at selected
points, the slope, or first derivative, of the function #(M) derived from Eq. (2a) provides
critical information about the local curvature and rate of change of the hydraulic response.
Incorporating the slope into the construction of the rational model allows the
approximation not only to interpolate the known values but also to replicate the trend and
dynamic sensitivity of the implicit function.

In the present rational formulation, the slope serves as a local shape constraint, ensuring
that the derivative of the model matches the true derivative obtained analytically from Eq.
(2a) at one or more key points, typically at the upper end of the range, e.g., M = 1.6, where
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the function curvature changes most rapidly. This means writing the following, ensuring
that the model not only matches the function’s value there but also its tangent, its rate of
change:

dn _dn

= (79)
dM model, M =1.6 dM exact, M =16

This procedure anchors the model’s gradient behaviour, significantly improving global
accuracy and minimizing oscillations or local deviation peaks between interpolation
points.

Thus, this slope constraint ensures that the rational function transitions smoothly between
the fitted points without oscillations or bias, thereby improving both local linearity and
global stability. In the context of the one-piece Achour and Amara model, the derivative
acts as an “anchor” that aligns the tangent of the approximation with that of the exact
implicit curve, achieving a continuous first derivative across the entire range.
Consequently, the model maintains physical realism, accurately reflecting the gradual
flattening of the »(M) curve at high discharges while preserving monotonicity at low
values of M.

Mathematically, using slope information enforces C!-continuity between the rational
approximation and the original implicit curve, guaranteeing that both the value and rate
of variation are consistent. Physically, this ensures that small perturbations in discharge
or slope produce the correct incremental response in flow depth, a property of great
importance in hydraulic design and stability analysis. Consequently, the slope term
therefore serves a dual mathematical and hydraulic purpose: it enhances numerical
precision by minimizing residuals between fit points and simultaneously guarantees
physical coherence with the governing flow law. In this way, the slope-constrained
rational model achieves quasi-exact agreement with Eq. (2a) while retaining analytical
simplicity and computational efficiency.

While the one-piece Achour and Amara model structure formally resembles a [3/3] Padé-
type rational surrogate, there are fundamental conceptual differences, as summarized in
Table 19:

Table 19: Fundamental differences between Padé’s surrogate and the Achour and
Amara one-piece [3/3] model

Aspect Padé’s Approximation Achour and Amara model
Derivation Basis Obtained from local series Derived from physical constraints
expansion of the implicit function and endpoint matching
Coefficient Fitting Purely algebraic, based on series Semi-physical, constrained by
truncation exact values and slope behaviour
Domain of Validity Usually local (around an Global, valid for the full domain
expansion point) M € [0, 1.6]
Continuity Can lose accuracy outside small Guaranteed smooth and accurate
intervals across the entire range
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Implementation Requires symbolic series Involves only direct numerical
coefficients coefficients
Simplicity 6 coefficients in both numerator 3 coefficients in both numerator
and denominator [Eq. (37)] and denominator [Eq. (78)]

Hence, the Achour and Amara one-piece model can be viewed as a physically guided
generalization of Padé’s concept, embedding real-behaviour constraints rather than
relying purely on formal series matching.

The Achour and Amara one-piece model key Advantages can be listed as follows: (1)
Exceptional Accuracy: Maximum deviation sub- 0.0002 % at M = 0.1, effectively quasi-
exact; (2) Compact and Explicit: Single algebraic expression; no iteration required; (3)
Full-Range Validity: Performs uniformly from M =0 to M = 1.6; (4) Physical Coherence:
Derivation enforces Manning’s asymptotic structure and slope behaviour; (5)
Implementation Ease: Perfectly suited for analytical computation, software embedding,
or direct engineering use.

In summary, the Achour and Amara one-piece model stands out as a simple yet rigorous
analytical surrogate for the implicit Manning equation. Its derivation directly couples the
physics of open-channel flow with rational approximation theory, producing a single,
universal, and explicit formula for the relative normal flow depth in rectangular channels,
provided from the application of Manning relationship.

In practice, the model achieves the same level of precision as high-order iterative
schemes, without any of their computational overhead, making it an elegant and efficient
tool for hydraulic design and scientific modelling alike.

Achour and Amara accurate rational two-piece [2/2] approximate model 11
Model presentation

In this section, Achour and Amara propose a novel, highly accurate two-piece [2/2]
rational model, referred to as Model Il, that offers a compelling balance between
simplicity and accuracy. The mathematical development of the present model was
directly inspired from that resulted in Eq. (78). This is replaced with two equations, each
of them is valid in the following chosen restricted domain [0, 0.6] and [0.6, 1.6]. This
procedure aims to reduce the number of the coefficients in the model, and more especially
to improve accuracy in computing the sought relative normal flow depth.

What distinguishes Model I, from other suggested models, is its concise mathematical
structure: it consists of two rational expressions, applied respectively over the subdomains
M € [0, 0.6] (lower piece) and M € [0.6, 1.6] (upper piece). This compact rational form
ensures ease of implementation in engineering practice, unlike more intricate models that
may demand higher computational effort or parameter calibration.
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Despite its simplified form, Model Il exhibits exceptional accuracy across its entire
admissible domain. The maximum relative deviation from the exact solution of Eq. (2a)
slightly exceeds 0.006 %, more precisely 0.0062 % as it can be seen in Fig. 8, for the
lower-piece, and 0.00014 % for the upper-piece, which places it among the most accurate
approximations available in the literature. This high fidelity is achieved without
sacrificing analytical transparency or computational efficiency.

Herein, a few sentences are necessary to present the Hermite-rational fitting procedure
that successfully contributed to the construction of the present model.

The Hermite—rational fitting method is a powerful numerical technique for constructing
highly accurate and smooth rational approximations of functions over specific intervals.
It is particularly effective when both the function’s value and its derivative need to match
known or exact values at key points, typically at a junction between two model segments
or within critical subdomains.

The Hermite—rational fitting procedure is a refined and highly effective approximation
technique used to construct smooth and precise mathematical models, particularly when
a function must be represented with both high fidelity and continuity. This method is
especially valuable in applications where the modelled function exhibits nonlinear
behaviour and where preserving derivative continuity across segments is crucial, as in
hydraulic modelling or engineering design.

Unlike traditional polynomial fits, which can oscillate or lose accuracy over extended
ranges, the Hermite—rational approach constructs rational expressions, ratios of
polynomials, that inherently offer greater flexibility and numerical stability. What
distinguishes the Hermite—rational method is its ability to enforce both value and slope
continuity at selected key points, most often at the junction between two model segments.
This ensures a smooth transition without introducing artificial discontinuities or inflection
artifacts.

The construction of a Hermite—rational approximation typically involves selecting a set
of representative points across the domain of interest, including a junction point where
continuity in both function and derivative is required. At these points, exact values of the
target function are either known analytically or computed numerically with high
precision. The procedure then formulates a system of equations that ensures the rational
approximation not only passes through these values but also matches the derivative at the
junction point. This is critical to maintaining physical realism, especially when the
function represents quantities like flow or pressure that must evolve smoothly.

Once the system of constraints is established, numerical optimization techniques are
employed to solve for the rational coefficients. The result is a compact and robust function
that mirrors the behaviour of the exact solution with exceptional accuracy, often achieving
deviations well below one part in ten thousand. Moreover, this accuracy is attained
without sacrificing simplicity, as the resulting expressions are typically low-order and
computationally efficient.
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In practice, the Hermite—rational fitting procedure has demonstrated superior
performance over standard curve fitting methods, particularly in contexts where both
smoothness and precision are paramount. It is well-suited for modelling piecewise
phenomena where different functional behaviours dominate different intervals, yet a
unified and continuous global model is still desired.

Thus, crucially, the construction of this model is underpinned by a Hermite-rational fitting
procedure. The coefficients in both segments of the piecewise function were determined
by enforcing a smooth C! continuity at the junction point M = Mx = 0.6, ensuring that
both the function value and its first derivative are continuous. This continuity contributes
significantly to the model’s robustness and its ability to mirror the behaviour of the exact
implicit equation over the full domain.

Compared to Padé-type surrogates and Achour and Amara two-piece polynomial-rational
model I1, the later achieves equivalent accuracy using a simpler analytic structure, since
the number of involved coefficients is substantially reduced. In addition, it requires no
symbolic series expansion, avoids sensitivity to high-order truncation, and maintains
physical interpretability through the Hermite-rational fitting. These advantages make the
Achour and Amara two-piece [2/2] rational model 11 a powerful yet computationally light
analytical tool for evaluating the normal flow depth in rectangular channels.

In short, Achour and Amara's rational two-piece [2/2] Model 11 stands out for its elegant
simplicity, analytical clarity, and exceptional precision, making it a powerful and reliable
tool for solving the normal flow depth problem in rectangular channels governed by
Manning’s equation.

Model formulation

Achour and Amara two-piece rational [2/2] approximate model Il can be expressed as
follows:
3/5 6/5
M 3/5 1+o0M +o, M
1+o,M 35+ 5,M 6/5
n (M ) _ 3 4
1+5,M3/54+5,M 6/5
M 3/5 1 2
1+5,M 37545, M 6/5

@) M e [0, 0.6]

(80)
(b) M e [0.6,1.6]

This new two-piece model Il differs, in the mathematical form, from the Achour and
Amara explicit two-piece rational model I, as it involves only four coefficients for each
piece. It is then simpler, handier, and more elegant.

The values of the coefficients in Egs. (80a) and (80b), reported in Table 20, were obtained
through a Hermite—rational fitting procedure ensuring ct continuity at the junction point
M = M= = 0.6.

On the other hand, Table 21 presents the deviations (%) produced by the lower-piece
expressed by Eq. (80a), while the distribution of these deviations is illustrated in Fig. 8.
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One may observe that, despite the simplified mathematical form of the lower-piece, it
produces a maximum deviation of only 0.006%, occurring at M ~ 0.42 (Fig. 8). In other
words, the simplified mathematical form of the lower-piece model 11 has not affected its
accuracy. Yet, it is well known that the more the form of an approximate model is
simplified, the more the model loses accuracy.

Table 20: Values of the lower-piece and the upper-piece coefficients in Eqs. (80a)
and (80b), respectively.

Lower-piece coefficients [Eq. (80a)]

Upper-piece coefficients [Eq. (80b)]

01 0.76711008 01 2.08378178
0, 0.19599852 5, 1.38233298
03 -0.03700090 O3 1.30041752
Oy 0.09429985 b4 0.10020727
Table 21: Deviation (%) produced by the lower-piece model Il expressed by Eq.
(80a)
M n(exact) Eq. (2a) n(approximate) Eq. (80a) Deviation (%0)
0 0 0 0
0.1 0.30370395 0.30371208 0.00267853
0.2 0.50297448 0.50295521 0.00383145
0.3 0.68598872 0.68599290 0.00060978
0.4 0.86149939 0.86155115 0.00600767
0.5 1.03270875 1.03276388 0.00533822
0.6 1.20115982 1.20108876 0.00591617
Max. = 0.006 %
0.007
] Deviation in # (%)
0.006 ] ,
0.005
0.004
0.003
0.002
0.001
0 ] . | | | | M
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 8: Distribution of the deviation (%) produced by the lower-piece Achour and
Amara rational [2/2] approximate model 11, expressed by Eq. (80a), within
the admissible range M € [0, 0.6]
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Table 22 presents the deviations (%) produced by the upper-piece Achour and Amara
rational [2/2] approximate model 11, expressed by Eq. (80b). A maximum deviation of
about 0.00014 % is exhibited, occurring at the end-point M = 1.6. Thus, as stated above,
one may confirm that despite the fact that the upper-piece model 11 is built with the most
simplified mathematical form, it produces a quasi-exact sought relative normal flow
depth, since the maximum deviation is of about 0.00014 % only, within the validity range
M € [0., 1.6], including the junction point M = M« = 0.6.

Table 22: Deviation (%) produced by the upper-piece model 11 expressed by Eq.

(80b)

M n(exact) Eq. (2a) n(approximate) Eq. (80b) Deviation (%)
0.6 1.20115982 1.201158136 0.000140157
0.7 1.36771257 1.367714484 0.000139916
0.8 1.53289279 1.532893705 5.97125E-05
0.9 1.69704345 1.697042197 7.38625E-05
1 1.86039944 1.860396834 0.000140054
11 2.02312774 2.023125444 0.000113479
1.2 2.18535077 2.185350289 2.19907E-05
13 2.34716051 2.347162462 8.31534E-05
1.4 2.50862758 2.508631084 0.000139684
15 2.66980713 2.669809411 8.5448E-05

1.6 2.83074295 2.830738995 0.000139708

Max. = 0.00014 %

Based on Table 22, Fig. 9 illustrates the distribution of the deviation (%) produced by the
upper-piece Achour and Amara rational [2/2] approximate model 11, expressed by Eqg.
(80b), within the admissible range M € [0.6, 1.6] including the junction point M = Mx =
0.6.

0.00016

1 Deviation in # (%)
0.00014 3 ]

0.00012 ]
0.00010
0.00008 7
0.00006 ]
0.00004

0.00002
0 ] M
06 07 08 09 1 11 12 13 14 15 16

Figure 9: Distribution of the deviation (%) produced by the upper-piece Achour and
Amara [2/2] approximate model 11, expressed by Eq. (80b), within the
admissible range M €[0.6, 1.6]
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Given the above findings, one may write the following:

Table 21 displays the deviations (%) between the exact solution of Eq. (2a) and the
approximate model expressed by Eg. (80a) over the interval M € [0, 0.6]. The data in
Table 19 reveal that the maximum deviation across the entire interval is only = 0.006 %,
with many values well below this mark. This level of accuracy is outstanding for an
explicit model in hydraulic computation. The table also confirms a smooth and stable
approximation as there are no abrupt spikes in deviation across the sampled values of M.
This ensures not only a reliable mathematical model but also enhances confidence in
numerical simulations using this formula.

Fig. 8 graphically corroborates this accuracy by showing the almost complete overlap
between the approximate and exact solutions. The curve representing the approximate
n(M) follows the exact curve with imperceptible discrepancy, visually affirming the
findings of Table 21.

Table 22 reports the deviations (%) for the upper subdomain M € [0.6, 1.6] as
approximated by Eq. (80b). It mirrors the high fidelity observed in the lower-piece. The
maximum deviation is capped at 0.00014%, confirming that the upper-piece is just as
accurate and stable as the lower one.

The uniformity of deviations across the upper range values of M suggests that the model
retains its reliability even as the Manning number grows larger. Importantly, this is
achieved with a minimalistic rational function, another testament to the power of the
chosen [2/2] structure and the precision of the coefficient fitting.

Fig. 9 supports this with a near-perfect alignment between the exact and modelled curves.
The visual match demonstrates that no visual distortion or drift occurs over the extended
range of M, reinforcing the model’s capacity to serve in practical engineering applications
with confidence.

Together, Tables 21 and 22 with Figs. 8 and 9 make a compelling case for the superiority
of the Achour and Amara [2/2] rational two-piece model 1I. The combination of
mathematical elegance, continuity at the junction, and extraordinarily low deviation
percentage firmly establish it as a robust and efficient alternative to the implicit Eqg. (2a).

Discussion on the proposed models for the implicit Eq. (2a)

The suite of suggested models presented in the manuscript aims to resolve a classic
hydraulic challenge: accurately estimating the normal flow depth in a rectangular open
channel using Manning's equation. This problem is characterized by its transcendental
nature, which defies direct analytical solutions and traditionally requires iterative
numerical approaches. The proposed models serve as explicit approximations to this
problem and are designed with both accuracy and computational efficiency in mind.

One of the most compelling aspects of the models, particularly the two-piece rational
approximants, is their strategic simplicity. These formulations partition the domain of the
dimensionless parameter into lower and upper sub-ranges, allowing each subdomain to

508



Highly accurate explicit rational approximations for the normal flow depth problem in
rectangular channels using manning’s equation

be captured by a tailored rational expression. This segmentation not only enhances
approximation accuracy but also ensures that each piece can remain mathematically
concise and easily evaluable. As a result, the derived models outperform many classical
or empirical alternatives, particularly when benchmarked against the exact numerical
integration of Manning’s equation.

In terms of performance, the models strike an impressive balance between simplicity and
accuracy. Despite their reduced mathematical form, the deviations introduced by the
approximants remain exceptionally small, often on the order of thousandths or ten-
thousandths of a percent, well within engineering tolerances. The two-piece [2/2] rational
model, in particular, exhibits an almost negligible deviation over the full domain, making
it not only robust but also preferable for applications requiring high reliability.

Another strength lies in how these models were constructed. The coefficient
determination process, especially for the two-piece rational approximant, employed
techniques such as Hermite-based fitting and constraint satisfaction at the junction point.
These approaches ensure continuity in both value and slope, which is critical for
preserving the physical fidelity of the model across the segmented range.

In summary, the suggested models offer an elegant and efficient solution to a historically
difficult hydraulic computation. Their simplicity promotes direct integration into
engineering workflows, while their fidelity supports precision-critical tasks. The
development process reflects a thoughtful balance of theoretical rigor and practical
usability, positioning these approximants as a valuable contribution to computational
hydraulics.

Inappropriateness of certain approximate models for solving the implicit normal
flow depth Eq. (2a)

In the quest to derive efficient approximate solutions to the implicit Eq. (2a) governing
normal flow depth in rectangular open channels, several classical mathematical strategies
have been explored. However, not all of these approaches are well suited to the specific
nature of the problem at hand. This discussion outlines the limitations and unsuitability
of such models and highlights the consequences of their adoption.

One such classical tool is the Lagrange-Birmann theorem, which provides an inverse
function expansion in terms of an infinite power series. While elegant in theory, its direct
application to Eq. (2a) proves to be problematic. The series generated by this theorem
exhibits divergence even within the practical working range of the dimensionless
discharge parameter M € [0, 1.6]. As a result, the approximation is not just ineffective but
potentially misleading, with errors increasing as the value of M grows. The lack of
convergence restricts its use and makes it ill-suited for hydraulic applications where
numerical stability and bounded accuracy are crucial.

Another candidate frequently used in approximation theory is the Laguerre polynomial
expansion. Designed for functions defined over semi-infinite domains such as [0, oo,
Laguerre polynomials enjoy orthogonality over such intervals. However, the domain of
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interest for Eq. (2a) is strictly finite. Consequently, this class of polynomials loses its
orthogonal properties within the bounded domain of M, diminishing its convergence and
representational capacity. As a result, Laguerre-based models struggle to accurately
capture the dynamics of the original equation within the finite bounds of engineering
practice.

On the other hand, Legendre polynomials, orthogonal over the normalized finite interval
[-1, 1], might seem better adapted due to their bounded nature. However, their practical
deployment for approximating Eq. (2a) introduces a critical drawback: the transformation
to a normalized variable. This transformation distorts the physical meaning of the original
problem and leads to severe degradation in accuracy. Even at high terms of the
polynomials, such as the tested 14th term (N = 14), errors can soar up to 55% for lower
values of M, rendering the approximation unreliable where precision is most needed, at
shallow flows. Such behaviour invalidates the use of Legendre polynomials as a robust
basis for approximating the solution to Eq. (2a).

In summary, although classical approximation methods like Lagrange-Blrmann,
Laguerre, and Legendre expansions are mathematically rich, they do not align with the
specific constraints and characteristics of Eq. (2a). These limitations reinforce the need
for tailored, structure-preserving approximation frameworks, such as those designed by
Achour and collaborators, that are crafted not only for analytical elegance but also for
practical hydraulic fidelity.

Beyond these well-known series expansions, other heuristic or semi-empirical
approximate models may also fall short of the precision required for practical hydraulic
computations. Without structural alignment to the properties and asymptotics of Eq. (2a),
these models often fail to preserve critical physical or mathematical features, such as
asymptotic trends, continuity in higher-order derivatives, or monotonicity, leading to
substantial deviations from the exact solution.

In addition to the Lagrange—Blrmann series, Laguerre and Legendre polynomials, there
are several other classes of approximate models or techniques that are not well suited to
solving the implicit Eg. (2a) for normal flow depth in rectangular channels using
Manning’s relationship.

While Taylor series are foundational in approximation theory, they are inherently local.
Expanding Eq. (2a) around a specific value of M, e.g., M = 0 or M = 1, produces an
accurate estimate only in a narrow neighbourhood around that point. When applied across
the full range M € [0, 1.6], the Taylor series: (1) Shows rapid divergence or loss of
precision as M moves away from the expansion point; (2) Requires a very high order to
maintain global accuracy, which increases computational complexity without
guaranteeing convergence or numerical stability.

Chebyshev polynomials, type I and 11, are powerful tools in approximation theory due to
their minimax property. However: (1) They require the function to be projected onto the
[-1, 1] interval, introducing the same transformation issue as with Legendre polynomials;
(2) The approximation is typically best in a uniform sense but may lack the flexibility to
precisely model non-polynomial behaviours, like the highly nonlinear nature of Eq. (2a),
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across a physical range with varying sensitivity; (3) Without adaptive weighting,
Chebyshev models type | and Il may over-prioritize accuracy at extremes and
underperform at critical intermediate values of M.

Padé approximants unconstrained rational models extend Taylor series by providing
rational functions that often approximate better than polynomials. However, they: (1) Are
typically constructed by matching power series coefficients without guaranteeing shape
preservation, i.e., monotonicity, convexity, etc; (2) Can introduce spurious poles or
singularities in the finite domain, which are nonphysical and computationally
undesirable; (3) Often lack a guaranteed maximum deviation bound, especially when not
tailored to specific hydraulic behaviour.

While Fourier expansions are excellent for periodic functions, they are highly
inappropriate for Eq. (2a) because: (1) The function is not periodic, leading to the well-
known Gibbs phenomenon near domain boundaries; (2) The solution behaviour is smooth
but not oscillatory; approximating it with sine and cosine terms introduces artificial
artifacts.

In modern practice, Machine Learning (ML)-based surrogates, e.g., Neural Networks that
can approximate complex nonlinear functions but require training data and do not give
explicit formulas, Symbolic Regression that uses algorithms like genetic programming to
search for symbolic expressions (e.g., polynomials, rational forms) that best fit the data,
Gaussian processes or kernel methods that build probabilistic models from observed data,
seems to have experienced remarkable growth in recent years. Data-driven approaches
may be trained to replicate Eq. (2a) numerically, but: (1) They often lack interpretability,
analytical tractability, and guarantees on error bounds; (2) They require extensive data
preparation and training, which is disproportionate given that Eg. (2a) admits well-
structured analytical approximations; (3) Unlike rational models or structured
approximants, ML-based models may violate physical behaviour, e.g., monotonicity of »
with respect to M, unless strictly constrained.

These alternative techniques, though powerful in general approximation theory, are ill-
suited for the specific requirements of Eq. (2a), which demands: (1) High accuracy across
a finite range; (2) Smoothness and monotonicity; (3) Physical fidelity and bounded
deviation; (4) Numerical simplicity for practical hydraulic use.

The most effective models, such as the Lawson-refined AAA, Achour—Amara [3/3], or
Achour and Amara-based Hermite—rational structures, are explicitly constructed to meet
these demands by respecting the structure of the original problem.

CONCLUSION

The present study has provided a comprehensive analytical, mathematical, and
computational investigation of the normal flow depth problem in rectangular open
channels using Manning’s equation. The work began by revisiting the classical implicit
form of Manning’s law and demonstrating its equivalence to a trinomial quintic equation,
thereby establishing a direct connection between hydraulic uniform-flow theory and the
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algebraic theory of higher-order polynomials. This reformulation revealed that the
Manning equation belongs to the class of quintic equations that cannot be solved in
radicals, according to Adel's impossibility theorem (1824), yet it can be expressed in exact
analytical form through transformation to the Bring-Jerrard canonical equation, a form
historically treated by Tschirnhaus (1683), Kummer (1836), Hermite (1858), Brioschi
(1858), and Birkeland (1924).

The analysis confirmed that the so-called “exact solutions” previously proposed in the
literature, such as those derived by Swamee and Rathie (2004) using the Lagrange-
Burmann inversion theorem, are in fact only approximate series representations, valid
within a limited convergence radius of the dimensionless discharge parameter M. This
clarification corrects a long-standing misconception in the literature and reaffirms that no
finite polynomial expansion can globally reproduce the true Manning relationship for
rectangular channels.

Building upon this theoretical insight, the paper developed and compared a hierarchy of
explicit analytical and numerical surrogate models derived from both classical and
modern approximation frameworks. These include the Padé rational approximation, the
Adaptive Antoulas-Anderson (AAA) algorithm, the Chebyshev polynomial formulation,
Lawson’s least-squares iterative refinement, Amara and Achour’s model, Achour and
Amara’s models, and the PCHIP (Piecewise Cubic Hermite Interpolating Polynomial)
method. Each approach was rigorously analyzed and benchmarked against the implicit
Manning formulation, vyielding high-accuracy rational representations capable of
reproducing the true functional behaviour of the normal depth with errors approaching
machine-level precision across the full hydraulic domain.

From a methodological standpoint, the results highlight the superiority of rational
approximations over power-series expansions, due to their extended convergence and
stable monotonicity. In particular, the Padé and AAA rational models were shown to
provide compact, continuous, and differentiable expressions that remain valid across the
entire range of flow conditions. These models thus represent an optimal compromise
between analytical tractability and numerical accuracy, bridging the gap between the
purely theoretical solution, via hypergeometric formulation, and the practical needs of
hydraulic computation.

Furthermore, the study demonstrated that the proposed approach is not limited to the
rectangular geometry but can be extended to other channel shapes, trapezoidal, circular,
and even elliptic, by adopting similar rational-approximation strategies. This confirms the
generality and robustness of the theoretical framework, positioning it as a unifying
foundation for the analytical modelling of uniform flow in open channels.

From a practical engineering perspective, the explicit equations presented herein
eliminate the need for iterative trial-and-error procedures in determining the normal flow
depth. The proposed formulations can be readily implemented in hydraulic software,
spreadsheets, or design manuals, providing engineers with fast, accurate, and reliable
computation tools. The methodology also ensures compatibility with existing
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computational fluid dynamics (CFD) and symbolic-mathematics platforms, thereby
facilitating integration into modern design environments.

In short, this research advances both the theoretical understanding and computational
practice of the normal-flow depth problem. It unifies classical algebraic theory, modern
rational approximation, and hydraulic analysis within a single coherent framework. The
main achievements can be summarized as follows: (1) Reformulation of Manning’s
equation for rectangular channels as a trinomial quintic, revealing its exact algebraic
structure; (2) Demonstration that previously reported “exact” solutions are approximate
series expansions with limited validity; (3) Derivation and validation of new rational and
polynomial surrogate models such as, Padé, AAA, Chebyshev, Lawson-refined, Amara
and Achour, Achour and Amara, and PCHIP, that provide global, high-accuracy explicit
solutions; (4) Establishment of a generalized mathematical framework that can be
extended to other open-channel geometries; (5) Provision of explicit, implementable
formulas suitable for design, computation, and educational use.

Thus, the study represents a significant contribution to both hydraulic theory and applied
computational hydraulics. By bridging rigorous mathematics and practical engineering
application, it offers a definitive resolution to the long-standing challenge of determining
normal flow depth in rectangular channels with Manning’s equation, delivering a quadi-
exact analytical foundation complemented by highly accurate explicit models for
everyday use.
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