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ABSTRACT 

The head loss in the hydraulic systems falls into two categories, namely major 

and minor head losses. Major head losses are due to friction while minor head 

losses are due to components as valves, bends, the abrupt or gradual variation of 

a section of pipe and many other singularities. The term "minor losses" is a 

misnomer because, in most practical cases, they are not minor but on the 

contrary, they represent a significant part of the total head loss. Minor loss can 

be significant compared to the major loss. As a general rule, major head losses 

are evaluated using the Darcy-Weisbach relationship while minor head losses 

are determined using generally an empirical relation. Both relationships are 

related to kinetic energy which means that head loss is related to the square of 

the velocity.  

In the present study, a rigorous development is proposed for the calculation of 

major losses along a divergent circular pipe. In the literature, there is no method 

for calculating friction losses in a divergent circular pipe. In the calculations, 

these losses are often neglected by the fact that they are insignificant. We will 

see, through a numerical practical example, that this is not always the case. The 

theoretical development is based on the integration of the Darcy-Weisbach 

equation along the divergent pipe. The determination of the exact relationship of 

the hydraulic diameter was necessary for the calculation of the friction factor 

according to Colebrook-White relation. 

http://creativecommons.org/licenses/by/4.0
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RESUME 

Les pertes de charge dans les systèmes hydrauliques se répartissent en deux 

catégories, à savoir les pertes de charge linéaires et les pertes de charge 

singulières. Les pertes de charge linéaires sont dues au frottement, tandis que les 

pertes de charge singulières sont dues à des composants tels que des vannes, des 

coudes, la variation abrupte ou progressive d'une section de tuyau et de 

nombreuses autres singularités. Le terme "pertes mineures" pour désigner les 

pertes de charge singulières est impropre dans la mesure où, dans la plupart des 

cas, elles ne sont pas mineures, mais au contraire, elles représentent une partie 

importante de la perte totale. Une perte de charge mineure peut être importante 

par rapport à une perte de charge majeure ou par frottement. En règle générale, 

les pertes de charge linéaires sont évaluées à l'aide de la relation de Darcy-

Weisbach, tandis que les pertes de charge singulières sont déterminées à l'aide 

d'une relation empirique. Les deux relations sont liées à l'énergie cinétique, ce 

qui signifie que la perte de charge est proportionnelle au carré de la vitesse. 

Dans la présente étude, un développement rigoureux est proposé pour le calcul 

des pertes de charge linéaires le long d’une conduite circulaire divergente. Dans 

la littérature, il n’existe pas de méthode permettant de calculer les pertes par 

frottement dans un tuyau circulaire divergent. Dans les calculs, ces pertes sont 

souvent négligées par le fait qu’elles sont insignifiantes. Nous verrons, à l'aide 

d'un exemple pratique numérique, que ce n'est pas toujours le cas. Le 

développement théorique est basé sur l'intégration de l'équation de Darcy-

Weisbach le long de la conduite divergente. La détermination de la relation 

exacte du diamètre hydraulique était nécessaire pour le calcul du facteur de 

frottement selon la relation Colebrook-White. 

Mots clés : Conduite divergente, conduite circulaire, perte de charge, pertes de 

charge singulières, pertes de charge linéaires. 

INTRODUCTION 

The head loss of a piping system is divided into two main categories, namely 

major losses associated with energy loss per length of pipe or friction head loss, 

and minor losses associated with bends, fittings, valves, gradual or abrupt 

change of the section and other system structures. Friction loss is caused by 
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resistance to flowing water caused by the pipe walls. As such, these losses are 

inversely proportional to the diameter of the pipe (Paraschivoiu and 

Prud'homme, 2003). In fluid flow, friction loss (or skin friction) is the loss of 

pressure or head that occurs in pipe or duct flow due to the effect of the fluid's 

viscosity near the surface of the pipe or duct. The head loss is related to the 

square of the velocity (Rouse, 1946; Carlier, 1980) so the increase in loss is 

very quick. When the inside diameter is made larger, the flow area increases 

and the velocity of the liquid at a given flow rate is reduced. When the velocity 

is reduced there is lower head loss due to friction in the pipe. In fluid dynamics, 

the Darcy–Weisbach (Colebrook and White, 1937; Crowe et al., 2005; Afzal, 

2007) equation is a semi-analytical equation, which relates the head loss, or 

pressure drop, due to friction along a given length of pipe to the average 

velocity of the fluid flow for an incompressible fluid. The equation is named 

after Henry Darcy and Julius Weisbach. In fluid dynamics, the Darcy–Weisbach 

equation is a phenomenological equation valid for fully developed, steady, 

incompressible single-phase flow (Rouse, 1946). 

The Darcy friction factor is also known as the Darcy–Weisbach friction factor, 

resistance coefficient or simply friction factor. The phenomenological 

Colebrook–White equation (or Colebrook equation) expresses the Darcy friction 

factor f as a function of Reynolds number R and pipe relative roughness ε /Dh, 

fitting the data of experimental studies of turbulent flow in smooth and rough 

pipes (Colebrook, 1939). The equation can be used to (iteratively) solve the 

Darcy–Weisbach friction factor f. 

Minor losses in pipe flow are a major part of calculating the flow, pressure, or 

energy reduction in piping systems. “Minor losses” is a misnomer because in 

many cases these losses are more important than the losses due to pipe friction. 

It will be shown in a practical example that the major losses in a draft tube are 

negligible compared to the minor head losses. They represent only a very small 

fraction of the total head loss. This one is equal to the sum of major losses and 

minor losses. For all minor losses in turbulent flow, the head loss varies as the 

square of the velocity. Thus a convenient method of expressing the minor losses 

in flow is using a minor loss coefficient k. Values of the minor loss coefficient k 

for typical situations and fittings are found in standard handbooks (Morel and 

Laborde, 1994; Idel'cik, 1986). These values are generally obtained 

experimentally. The minor loss coefficient k values ranges from 0 and upwards. 

For k = 0 the minor loss is zero and for k = 1 the minor loss is equal to the 

dynamic pressure or head. Major and minor losses in pipes are major 

contributing factors. 

https://en.wikipedia.org/wiki/Turbulent
https://en.wikipedia.org/wiki/Pipe_(material)
https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation
https://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/major-head-loss-friction-loss/
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This technical note develops a rigorous method for the calculation of the major 

losses along a conical pipe. The study is based on known hydraulic relationships 

such as the Darcy-Weisbach relationship and the Colebrook-White relation for 

the calculation of the friction factor. This relationship requires in particular 

knowledge of the hydraulic diameter whose expression is developed in this 

study. In a numerical example, the major losses are calculated and compared to 

the minor losses and even to the total head loss. It appears that the major losses 

are not negligible although the minor losses are greater. 

HYDRAULIC PARAMETERS 

Wetted area A 

Figure 1 shows schematically a conical shaped circular pipe. The inlet and 

outlet diameters are d0 and d1 respectively. The length of the pipe is L and the 

diameter at a distance x from the cone inlet is dx. The inclination angle of the 

pipe wall with the horizontal is β, which means that the opening of the cone is 

2β. 

  

 

Figure 1 : Schematic representation of the cone-shaped pipe. 

One can write: 

0 2xd d xtg            (1) 

     
2

2 2 2 2

0 0 02 4 4
4 4 4

xd
A x d xtg d d xtg x tg

  
          (2) 

With 2tg   

0d
1d

L

xd

x


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   2 2 2

0 02
4

A x d x d x


             (3) 

The wetted area A can be written as: 

0

1
( )

L

A A x dx
L

            (4) 

Thus: 

 2 2 2

0 0

0

1
2

4

L

A d x d x dx
L


             (5) 

2 2 2 3

0 0

1

4 3
A d L L d L

L


 

 
   

 
          (6) 

2 2 2

0 0

1

4 3
A d L d L


 

 
   

 
          (7) 

From figure 1, the following relationship can be deduced : 

1 0d d L   

So: 

   
22

0 0 1 0 1 0

1

4 3
A d d d d d d

  
     

 
          (8) 

 2 2 2 2

0 0 1 0 1 0 1 0

1
2

4 3
d d d d d d d d

  
      

 
         (9) 

 2 2 2 2

0 0 1 0 1 0 1 0

2
2 2 21
0 0 1 0 0 1 0

1
2

4 3

2 1

4 3 3 3

A d d d d d d d d

d
d d d d d d d





 
      

 

 
      

 

       (10) 

2
2 2 21
0 0 1 0 0 1 0

2
21

0 1 0

2 1

4 3 3 3

1 1

4 3 3 3

d
A d d d d d d d

d
d d d





 
      

 

 
   

 

      (11) 
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 
2

2 2 21
0 1 0 0 1 0 1

1 1

4 3 3 3 12

d
A d d d d d d d

  
      

 
                     (12) 

Finally: 

 2 2

0 1 0 1
12

A d d d d


          (13) 

It may be noted that the wetted area A is not calculated in the midsection, at L/2. 

At length L / 2, the wetted area is: 

2 2

0 11

2 4 4
m

d d
A

  
  

 
                    (14) 

The index "m" refers to the median section. The relation (14) can be written as: 

 2 2

0 1
8

mA d d


          (15) 

In this case, What is the relative deviation between the exact mean wetted area 

and the arithmetical mean is: 

1m

m m

A AA A

A A Am


           (16) 

Thus : 

 

 

2 2

0 1 0 1

2 2

0 1

121

8
m

d d d d
A

A
d d





 


 



       (17) 

Finally: 

 
 

2 2

0 1 0 1

2 2

0 1

2
1

3m

d d d dA

A d d

 
 


         (18) 
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EXAMPLE 1 

Let us assume 0 1d m  and 
1 2.5d m  

 
 

2 2

2 2

1 2.5 1 2.52
1 0.10344828

3 1 2.5m

A

A

  
  


 

If the calculation of the wetted area was taken in the middle section of the pipe, 

an error of about 10.35% would have been made in the calculation of A. 

Curve of the relative deviation between the wetted areas  

 
 

 

 

222 2
1 0 1 0 10 1 0 1

22 2 2
0 1 1 0 1

/ / 12 2
1 1

3 3 / 1m

d d d d dd d d dA

A d d d d d

        
  
 

     (19) 

Thus: 

 

 

2

0 1 0 1

2

0 1

/ / 12
1

3 / 1m

d d d dA

A d d

     
 
 

        (20) 

%
m

A

A


 given by the relationship (20) has been plotted in Figure 2 as a function 

of the values of 0 1/d d . 

 

Figure 2 : Variation of %
m

A

A


 according to 0 1/d d  
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Figure 2 shows that the relative deviation %
m

A

A


 decreases as the increase of

0 1/d d . The relative deviation is zero for
0 1/ 1d d  , corresponding to the 

circular pipe of constant diameter. 

Wetted perimeter P 

The mean wetted perimeter P can be expressed as: 

0

1
( )

L

P P x dx
L

          (21) 

With : 

   0 0( ) 2xP x d d xtg d x                (22) 

 0

0

1
L

P d x dx
L

    

2

0

1

2
P d L L

L


 
 

  
 

        (23) 

Thus : 

 02
2

P L d


          (24) 

Knowing that 1 0L d d   , one can write : 

 0 1
2

P d d


         (25) 

It can thus be noted that the mean wetted perimeter P is equal to the mid-length 

perimeter. For the particular case of the circular pipe of constant diameter, one 

writes 0 1d d d  . Thus: 

P d         (26) 
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Hydraulic diameter Dh 

The hydraulic diameter is defined as: 

4h

A
D

P
        (27) 

Inserting Eqs. (13) and (25) in (27), leads to :  

 

 

2 2

0 1 0 1

0 1

124

2

h

d d d d

D

d d





 





                    (28) 

Thus: 

 
 

2 2

0 1 1 0

0 1

2

3
h

d d d d
D

d d

 



       (29) 

For the particular case of the circular pipe of constant diameter, corresponding 

to 0 1d d d  , Eq. (29) gives: 

 
 

 
 

2 2 2 2 2

0 1 1 0

0 1

2 2

3 3 2
h

d d d d d d d
D d

d d d

   
  


        (30) 

MAJOR HEAD LOSSES CALCULATION 

The major head losses due to friction assumed as fh  is written as: 

 
0

x

f x
h J x dx          (31) 

Where J(x) is the major head loss gradient at distance x. The index « f » refers 

to friction. J is given by the well known Darcy-Weisbach relationship. That is: 

2 ( )
( )

2h

f V x
J x

D g
         (32) 
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f is the Darcy-Weisbach friction factor, V(x) is the flow velocity at the location 

x and g is the acceleration due to gravity. It is well known that /V Q A , 

where Q is the discharge. It then comes as: 

2

2
( )

2 ( )h

f Q
J x

D gA x
                      (33) 

Inserting Eq. (27) in (33), one can write : 

2

3
( ) ( )

8 ( )

f Q
J x P x

g A x
                      (34) 

The friction factor  f  is given by the Colebrook-White relationship as : 

2

/ 2.51
2log

3.7

hD
f

R f




  
     
   

       (35) 

In this relationship,   is the absolute roughness which characterizes the state of 

the inner wall of the pipe and R is the Reynolds number defined as: 

4Q
R

P
        (36) 

  is the kinematic viscosity of the flowing liquid. 

Taking into account the above, the minor head losses fh  can be written as: 

2

38
f

f Q
h PL

g A
         (37) 

fh can be expressed in the case of the cone-shaped pipe as:  

2

2

0
( ) 2 ( )

L

f

f Q
h dx

d x gA x
          (38) 

If the hydraulic diameter ( ) 4 ( ) / ( )hD x A x P x had been introduced instead of 

d(x), the same result would be obtained because, in any section of the conical 

pipe, the hydraulic diameter is equal to the geometrical diameter d since the 

section is circular. 
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Eq. (38) becomes: 

2

2

0
2 ( ) ( )

L

f

f Q dx
h

g A x d x
          (39) 

22

0 0 2
( ) ( )

( )
4

L L

x

dx dx

A x d x
d d x




 
 
 

         (10) 

Knowing that [Eq.(1)]: 

0 02xd d xtg d x      

So: 

   

 

2 22
20 0 02

0 0

52
0 0

( ) ( )
( )

4 4

16

L L L

x

L

dx dx dx

A x d x
d d x d x d x

dx

d x

 
 

 

 
   

    
   




  



      (41) 

Adopt the following change of variables: 

0u d x         (42) 

Thus:  

du dx         (43) 

As a result: 

 
5 2 5 2 52

0 0 00

16 16 16
L L L

dx du du

u ud x    
 


           (44) 

Or: 

 
42 5 2 4 2

0 0

16 16 1 4

4

L
du

u u d x     

 
    

 
        (45) 
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Thus: 

     
5 4 42 42 2 2

00 0 0 00

16 4 4 4
L

L
dx

dd x d x d L     

 
    

    
    (46) 

Let us assume: 

 
52

0 0

16
L

dx

d x 
 


        (47) 

As a result: 

 
42 4 2

0 0

4 4

d d L  
  


       (48) 

Or: 

 
42 4

0 0

4 1 1

d d L 

 
   

  

       (49) 

Knowing that: 

1 0L d d    

Thus : 

   
42 4

1 0 0 0 1 0

4 1 1L

d d d d d d

 
   

    

       (50) 

Finally: 

 2 4 4

1 0 0 1

4 1 1L

d d d d

 
   

  
       (51) 

Eq.(39) can be then written as: 

2

2
f

f Q
h

g
                       (52) 

Combining Eqs (51) and (52), yields: 
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 

2

2 4 4

1 0 0 1

4 1 1

2
f

f Q L
h

g d d d d

 
   

  
       (53) 

After simplifications, it comes that: 

 

2

2 4 4

1 0 0 1

2 1 1
f

f Q L
h

g d d d d

 
   

  
       (54) 

For the pressurized circular pipe of constant diameter, corresponding to 

0 1d d d  , Eq.(54) results in an indeterminacy. But, we can continue to 

develop this last relationship by writing that: 

  

   

2 2 2 24 4
1 0 1 01 0

4 4 4 4 4 4

0 1 0 1 0 1

2 2

1 0 1 0 1 0

4 4

0 1

1 1 d d d dd d

d d d d d d

d d d d d d

d d

   
   

 

  


        (55) 

Thus: 

 

   2 22
1 0 1 0 1 0

2 4 4

1 0 0 1

2
f

d d d d d df Q L
h

g d d d d

  
 


                    (56) 

After simplifications, one can write: 

  2 22
1 0 1 0

2 4 4

0 1

2
f

d d d df Q L
h

g d d

 
            (57) 

For 0 1d d d  , Eq.(57) leads to: 

  22 2

2 8 2 5

2 22 8
f

d df Q L f Q L
h

g d g d 
           (58) 

Thus: 

2

2 5

8
f

f Q L
h

g d
          (59) 
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MINOR HEAD LOSSES COMPUTATION  

The pipe represented in figure 1 causes minor head losses mh such that:  

2

0

2
m

V
h k

g
          (60) 

Where k is the minor loss coefficient given by the following relationship (Morel 

and Laborde, 1994): 

2
2

1

2

0

1
d

k b
d

 
  

 
       (61) 

The parameter b is a coefficient which depends on the opening angle of the 

conical pipe and whose values are indicated in table 1. Knowing that 
2

0 0 0/ 4 / ( )V Q A Q d  , one can write: 

 

 

2 2

2 2 42
00

4 8

2
m

Q Q
h k k

g dg d 
          (62) 

Thus: 

2

2 4

0

8
m

Q
h k

g d
         (63) 

Combining Eqs.(61) and (63), results in: 

2
2 2

1

2 2 4

0 0

8
1m

d Q
h b

d g d

 
   

 
       (64) 

Table 1: Values of the parameter b as a function of the opening angle of the cone-

pipe according to Morel and Laborde (1994) 

2 5° 6° 7° 8° 10° 

b 0,049 0,062 0,075 0,088 0,119 

 

2 16° 18° 20° 30° 40° 

b 0,245 0,307 0,389 0,80 0,90 
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TOTAL HEAD LOSS RELATIONSHIP 

The total head loss 
Th corresponds to the sum of the major head losses fh

and the minor head losses
sh , that is: 

T f mh h h            (65) 

Taking into account Eqs.(57) and (64),  Eq.(65) becomes: 

   22 2 22 2
1 0 1 0 1

2 4 4 2 2 4

0 1 0 0

2 8
1T

d d d d df Q L Q
h b

g d d d g d 

   
    

 
        (66) 

Eq. (66) is reduced to: 

   22 2 22
1 0 1 0 1

2 4 4 2

0 1 0

2
4 1T

d d d d dQ
h f L b

g d d d

    
     
   

        (67) 

EXAMPLE 2 

Consider the pipe shown in Figure 1 with the following data: 

30.08 /Q m s  ; 0 0.2d m  ; 1 0.4d m  ; 0.001m   ; 
6 210 /m s   ; 

2 5    

This results in: 

(2.5 ) 0.043660943tg tg     

2 2 0.043660943 0.087321886tg      

The length of the pipe is, therefore: 

 1 0 / (0.4 0.2) / 0.087321886 2.290376555 2.3L d d m m       

According to Eq.(13), the mean wetted area is : 

   2 2 2 2 2

0 1 0 1 0.2 0.4 0.2 0.4 0.073303829
12 12

A d d d d m
 

         
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The mean wetted perimeter is given by Eq.(23) as: 

   0 1 0.2 0.4 0.942477796
2 2

P d d m
 

      

Applying Eq.(29), the hydraulic diameter is: 

 
 

 
 

2 2 2 2

0 1 1 0

0 1

0.2 0.4 0.4 0.22 2
0.311111111

3 3 0.2 0.4
h

d d d d
D m

d d

    
   

 
 

The hydraulic diameter could have been calculated simply by the relation 

4 /hD A P , which would have led to the same result. 

As a result, the relative roughness is: 

/ 0.001/ 0.311111111 0.003214286hD    

According to Eq.(36), Reynolds number is : 

6

4 4 0.08
339530.5453

0.942477796 10

Q
R

P 


  


 

As a result, the friction factor f according to Colebrook-White [Eq.(35] is: 

0.0270656f   

The friction factor f can also be calculated explicitly by approximate 

relationships that are available in the literature (Achour, 2006: Zeghadnia et al., 

2019) 

According to Eq.(58), the major head losses fh are as: 

  

   

2 22
1 0 1 0

2 4 4

0 1

2

2

2 2

4 4

2

2 0.0270656 0.8 2.290376555

9.81

0.2 0.4 0.4 0.2

0.2 0.4

f

d d d df Q L
h

g d d



 
 

  




  



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Thus: 

0.024009718 2.4fh m cm    

It may seem that the major head losses are low, but we will see later that they 

are not negligible compared to the minor head losses. The more the angle 2  

increases, the more fh decreases. 

Let us compute the minor head losses mh according to Eq.(64): 

2
2 2

1

2 2 4

0 0

8
1m

d Q
h b

d g d

 
   

 
 

The value of the parameter b is given by Table 1 for the value of the angle 2β. 

For 2β=5°, the table gives b=0,049. Thus, the minor head losses are: 

2 2
2 2 2

1

2 2 4 2

0 0

2

2 4

8 0,4
1 0.049 1

0.2

8 0.08
0.145753776

9.81 0.2

m

d Q
h b

d g d

m





   
        

  


 

 

 

Approximately: 

14.6mh cm   

We can therefore notice that the minor head losses Δhm are greater than the 

major head losses Δhf. But, the latter represents about 16.5% of Δhm and can not 

be neglected. 

The total head loss Th is then: 

0.024009718 0.145753776 0.169763494T f mh h h m        

Thus: 

17Th cm   

We can also notice that the major head losses Δhf represent more than 14% of 

the total head loss ΔhT, which is not negligible. 
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EXAMPLE 3 

This example is taken from a real case of a draft tube placed in a Kaplan turbine 

at the Gezhouba power plant, Hubei Province, People's Republic of China. 

The data are as follows: 

3825 /Q m s  ; 
0 8.84d m  ; 

1 12.2d m  ; 0.002m   ; 6 210 /m s   ; 

11 26'    

Thus : 

Transforming the angle   into degrees, either 11 26' 11.433333      ; or else 

2 22,866666   . 

2 2 (11.433333) 0.40448173tg tg      

The length of the conical diffuser is therefore: 

 1 0 / (12.2 8.84) / 0.40448173 8.307L d d m      

The wetted area is: 

   2 2 2 2

0 1 0 1

2

8.84 12.2 8.84 12.2
12 12

87.65923149

A d d d d

m

 
      



 

The wetted perimeter is: 

   0 1 8.84 12.2 33.04955472
2 2

P d d m
 

      

The hydraulic diameter is: 

 
 

 
 

2 2 2 2

0 1 1 0

0 1

8.84 12.2 8.84 12.22 2

3 3 8.84 12.2

10.60942966

h

d d d d
D

d d

m

    
  

 



 

As a result, the relative roughness is: 

/ 0.002 /10.60942966 0.000188512hD    
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Reynolds number is: 

6

4 4 825
99850059.35

33.04955472 10

Q
R

P 


  


 

According to the Colebrook-White equation, friction factor f was obtained as: 

0.0135774f   

Major head losses fh are then: 

  

   

2 22
1 0 1 0

2 4 4

0 1

2 22

2 4 4

2

12.2 8,84 12.2 8.842 0.0135774 825 8.307

9.81 8.84 12.2

f

d d d df Q L
h

g d d



 
 

    
 

 

 

Thus: 

0.055979063 5.6fh m cm    

We can also notice that the major head losses are low. Let's calculate the minor 

head losses mh  : 

2
2 2

1

2 2 4

0 0

8
1m

d Q
h b

d g d

 
   

 
 

The value of the parameter b is given by table1 for the value of the angle 2 . 

For 2 22.866666   , table 1 indicates 0.50681973b  , value obtained by 

linear interpolation. Thus, the minor head losses mh are: 

2 2
2 2 2 2

1

2 2 4 2 2 4

0 0

8 6 8 825
1 0.50681973 1

4 9.81 8.84

3.819746575

m

d Q
h b

d g d

m

 

    
         

   



 

Approximately: 

3.82mh m   
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We can thus notice that the minor head losses are very important compared to 

the major head losses. In fact, the major head losses fh represent about 1.5% 

only of the minor head losses mh .  

The total head loss 
Th is then:  

0.055979063 3.819746575 3.875725638T f mh h h m        

Approximately: 

3.88Th m   

Finally, major head losses fh represent about 1.44% of total head loss, which 

is negligible. Several applications we have done have shown this fact. We can 

conclude in practice, in the case of the draft tube, that the major head losses 

fh are negligible. 

CONCLUSIONS 

The purpose of the study was to calculate the major and minor head losses in a 

divergent circular pipe. The theoretical development was based on the 

integration of the Darcy-Weisbach relationship along the pipe. All parameters 

of the flow have been represented in this relation. It was necessary to establish 

the exact relationship of the hydraulic diameter to calculate the friction 

coefficient according to the Colebrook-White relation. It has been found that the 

hydraulic diameter should not be calculated in the middle section of the pipe 

unlike the wet perimeter which is evaluated in the middle of the pipe. Through 

calculation examples, it has been shown that the friction losses must not always 

be neglected in such a pipe. On the other hand, in the case of draft tubes, these 

losses are almost insignificant. Several examples we have treated have shown 

this fact. 
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