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ABSTRACT 

Darcy’s law is widely used to describe the steady-state laminar incompressible 

single-phase fluid flow in a fully saturated porous medium at the macroscopic-
scale. However, in reality, we will be dealing with transient non-laminar 

compressible multi-phase fluid flow through a saturated porous medium. In this 

context, it is important to understand the original framework of Darcy’s law; 

and subsequently, we need to understand clearly, under what circumstances the 
classical Darcy’s law was extended in order to consider the (a) the differential 

form of Darcy’s law; (b) the non-linear relation between pressure gradient and 

fluid velocity; (b) the transient nature of fluid flow; (c) the fluid flow through 
heterogeneous and anisotropic reservoirs or aquifers. It has been reemphasized 

from the present study that the presence of weak inertial effect along with the 

laminar fluid regime causes the ‘non-linear’ relation between the macroscopic 
pressure gradient and the macroscopic fluid velocity, while the strong inertial 

effect paves the way for the onset of transient nature of fluid flow. 

Keywords: Darcy’s law; porous medium; differential form; transient flow; 

inertial effect. 
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RESUME 

La loi de Darcy est largement utilisée pour décrire le flux de fluide monophasé 

laminaire incompressible à l'état stationnaire dans un milieu poreux entièrement 
saturé à l'échelle macroscopique. Cependant, en réalité, nous aurons affaire à un 

écoulement de fluide multiphasique compressible non laminaire transitoire à 

travers un milieu poreux saturé. Dans ce contexte, il est important de 

comprendre le cadre original de la loi de Darcy; et par la suite, nous devons 
comprendre clairement, dans quelles circonstances la loi classique de Darcy a 

été étendue afin d’examiner a) la forme différentielle de la loi de Darcy; (b) la 

relation non linéaire entre le gradient de pression et la vitesse du fluide; (b) la 
nature transitoire de l'écoulement de fluide; c) l'écoulement du fluide à travers 

des réservoirs ou aquifères hétérogènes et anisotropes. Il a été souligné à 

nouveau dans la présente étude que la présence d'un faible effet inertiel avec le 

régime de fluide laminaire provoque la relation «non linéaire» entre le gradient 
de pression macroscopique et la vitesse du fluide macroscopique, tandis que le 

fort effet inertiel ouvre la voie à l’apparition de la nature transitoire de 

l'écoulement de fluide. 

Mots-clés: Loi de Darcy; milieu poreux; forme différentielle; écoulement 

transitoire; effet inertiel. 

INTRODUCTION 

Darcy’s law is the widely used equation that describes the fluid flow in a fully 

saturated porous medium at the macroscopic-scale. The original Darcy’s law 

provide the expression for a steady-state laminar incompressible single-phase 

fluid flow. However, in reality, we are forced to deal with flow through porous 
media under transient non-laminar compressible multi-phase fluid flow. In this 

context, it becomes essential to understand the original version of Darcy’s law 

and subsequently, we need to clearly understand how the classical Darcy’s law 
was extended in order to consider the non-linearity and transient nature of fluid 

flow. Also, the concept of flow field and force field as introduced by King 

Hubbert in 1957 provides the foundation for extending the Darcy’s law to be 
applicable in a non-homogeneous and anisotropic medium. Despite plenty of 

literature review available on Darcy’s equations and its limitations, details on 

the extension of Darcy’s law is very limited; and therefore, the authors have 

made an attempt to converge all the possible extensions associated with Darcy’s 
law. In addition, Darcy’s law is widely used even for a fractured reservoir for 
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different applications (Suresh Kumar and Ghassemi, 2005, 2006; Suresh Kumar 

and Sekhar 2005; Suresh kumar et al., 2006; Sekhar and Suresh Kumar, 2006; 

Sekhar et al., 2006; Ghassemi and Suresh Kumar, 2007; Suresh Kumar, 2008; 
Suresh Kumar et al., 2008, 2009, 2014a; 2014b, 2015, 2016); and hence, a 

sound understanding on the origin and its extension to various forms remains 

very critical and fundamental in order to better characterize the aquifer or 

reservoir of interest. Thus, the focus of the present manuscript is (a) to deduce 
the relation between flow field and force field as explained by Hubbert; (b) to 

provide the details of the Darcy’s experimental set up with a clarity on how to 

measure the manometer readings; (c) to dissect and project the rock and fluid 
properties that are associated with the proportionality constant used by Darcy in 

terms of their measurable and non-measurable quantities; (d) to deduce the 

differential form for of Darcy’s law; (e) to deduce the non-linear form of 

Darcy’s law; and (f) to deduce the transient or unsteady nature of Darcy’s law. 

HUBBERT’S FLOW FIELD AND FORCE FIELD 

The physical expression for Darcy’s law is given by eqn. (1) as suggested by 

King Hubbert (1957). Equation (1) remains valid for (Newtonian) liquids; and 
for gases at pressures greater than 20 atmospheres. In eqn. (1), ‘N’ represents a 

factor in order to account for the shape of fluid paths; and in turn, the shape of 

the solid grains, and, it is a dimensionless factor; ‘d’ represents the 
characteristic length of the connected pore structure, through which, the 

continuous fluid flow takes place, and it carries a dimension of length. Since, it 

is practically, not feasible to get the details on the pore-geometry, the data on 

the details of the solid grains is considered instead, assuming that the mean 
pore-size of the pore-space will be approximately equivalent to the mean pore 

size of the associated solid grains. Thus, both ‘N’ and ‘d’ in eqn. (1) pertain to 

the solid-rock properties. Density (ρ) and viscosity (µ) in eqn. (1) pertain to the 
fluid properties. The term ‘σ’ represents the ‘volume conductivity’ of the 

system as given in eqn. (2). The term E represents the impelling force per unit 

mass acting upon the fluid as given in eqn. (3). Albeit, we have g  in the 

expression of E  as given in eqn. (3), Darcy’s law would remain valid, only, for 

those flow velocities resulting from dominant viscous forces with insignificant 
inertial forces. Thus, there are essentially two superposed physical fields in 

describing the fluid flow through a porous medium, one with the vector E  

representing the force field, while the other vector q  representing the flow field 
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as given in eqn. (4). The equations (1) – (4) remains valid for incompressible 

fluid flow with the property as given in eqn. (5). On the other hand, if the fluid 

density remains a function of pressure only, then, the force field becomes a 
function of ‘Φ’ called the ‘fluid potential’ as given in eqn. (6); and this ‘fluid 

potential’ represents the ‘energy per unit mass of the fluid’ with insignificant 

inertial effects, while with significant compressibility; or, it simply represents 

the Bernoulli’s equation for a steady, compressible flow with insignificant 
kinetic energy; and hence, we will not be having an exact differential term for 

‘flow energy’ (pressure effect) as given in eqn. (7). Now, substituting eqn. (6) in 

eqn. (4) yields eqn. (8) 
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Eq   (4) 

Curl E =0 (5) 

E  (6) 




dp
zg  (7) 

  Eq  (8) 

Equation (9) represents the conservation of steady-state, incompressible fluid 

flow in a porous medium with a constant porosity. Thus, a distinct continuity 
equation can be deduced for the ‘flow field’ as given in eqn. (9). 

0.  qqdiv  (9) 

By comparing equations (8) and (9), it can be inferred that Darcy’s law connects 

the ‘flow field’ with the ‘force field’; and hence, it becomes feasible to 
characterize both the homogeneous as well as heterogeneous porous reservoirs. 

It can be clearly seen from the above derivation that the ‘flow field’ as given in 

eqn. (9) has been deduced based on the assumption that the fluid remains 
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incompressible; and thus, the ‘fluid density’ term got disappeared (from its 

spatial derivative). On the other hand, eqns. (6) and (7) associated with the 

‘force field’ as suggested by King Hubbert (1957) has been deduced based on 
the assumption that the ‘fluid density’ does not remain incompressible; and 

hence, the integral form associated with the ‘flow energy’ term in eqn. (7). 

Thus, it can be clearly concluded that the ‘flow field’ and ‘force field’ as 

deduced by King Hubbert (1957) have varying nature of ‘fluid densities’, while 
both the ‘flow field’ and the ‘force field’ have been related with one another as 

given in eqn. (8).  

DARCY’S EXPERIMENT 

At the time of Darcy, there was a clear understanding in order to design and 

deduce a suitable size (diameter) of the pipe, through which the required 

amount of water (per day) can be transferred from one location to another 

location associated with the respective frictional losses of the pipe flow. 
However, there was no such design to deduce the required size (cross-sectional-

area) of a porous medium (soil), through which, the required quantum of water 

(per day) can be transferred from one location to another location associated 
with the respective frictional losses of the flow through a porous medium or 

soil. In fact, Darcy tried to apply the already existing pipe flow theory to the 

porous medium flow but in vain; and hence, Darcy proceeded to obtain the 
required values associated with the flow through a porous medium by 

experimental means.  

The Darcy’s experiment essentially consisted of 3 different parts of a cylindrical 

vertical column. The top part pertains to the region, where the water gets into 
the left side of the vertical column and it acts as an inlet. In the same top 

portion, an input manometer has been attached on the right side of the vertical 

column in such a way that the centre of the inlet water pipe on the LHS and the 
centre of the input manometer on the RHS of the vertical column remains 

perfectly horizontal and coincides with each other. The central or intermediate 

portion of the cylindrical vertical column (with vertical length ‘l’ & full 
horizontal cross-sectional area ‘A’) pertains to the saturated soil column in 

which the fluid flow takes place vertically downwards from top to bottom. The 

third bottom portion is similar to the top portion, where a water outlet is 

connected and subsequently the water gets collected over a small water 
container. Thus, the fluid flow rate of water that comes out through the outlet 

may be measured in terms of volume over the respective time. An output 

manometer is connected in this bottom region in such a way that the centre of 
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the water outlet pipe and the centre of the output manometer remains perfectly 

horizontal and coincides with each other. Now, it is very important to be noted 

that the reference level or the datum for both the input and output manometer 
measurements remains the same and it pertains to the bottom end of the 

saturated soil column. Thus, we have only water in the top and bottom regions, 

while the intermediate region consists of a fully saturated soil through which the 

fluid flow takes place. The vertical height corresponding to the water level in 
the input manometer from the datum corresponds to the height ‘h1’, while the 

vertical height corresponding to the water level in the output manometer from 

the datum corresponds to the height ‘h2’. 

The experiments were conducted in between 29
th

 October 1855 and 2
nd

 

November 1855, while a few additional experiments were performed between 

18
th
 and 19

th
 February 1856. The experiments comprised several series of 

observations with each series consisting of a different sand that is completely 
saturated with water. The experimental setup consisted of a cylindrical vertical 

column (iron pipe) with 0.35 m diameter and 3.5 m vertical height. The inlet 

and outlet valves were adjusted such that there will be a vertical fluid flow from 
top to bottom with varying fluid discharge rates (flow rate). For each flow rate, 

the respective manometer readings were taken; and it was recorded as the 

‘difference in pressure’ expressed in terms of ‘meters of water’ (measured 
above the base of the vertical soil column). Thus, a plot was constructed with 

increasing ‘discharge’ from 0 to 30 litres/minute (along y-axis); and the 

respective ‘drop in head across the sand’ from 0 to 15 m (along x-axis). And, 

the results showed a beautiful linear relation between the ‘discharge’ and ‘drop 
in head across the sand’ for all the different series. The profiles remained as a 

straight line, originating from the origin (0,0) with varying slopes as a function 

of varying sands. Thus, Darcy observed that the water flows vertically 
downward through the saturated sand column; and he stated that the volume of 

water ‘Q’ flowing through the saturated sand column per unit time can be given 

as expressed in eqn. (10). 

l

hh
KAQ 12   (10) 

In eqn. (10), the LHS indicates the volume of water collected over the 

respective period of time; h1 and h2 represent the heights corresponding to the 

manometer readings; ‘l’ represents the thickness of the vertical soil column; and 
‘K’ represents a proportionality factor. Darcy, then, rearranged eqn. (10) to get 

the volume of water passing through unit cross-sectional area per unit time as 

given in eqn. (11). 
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 l

hh
Kq

A

Q 12   (11) 

From eqn. (11), the following points can be observed: 

The volumetric fluid flow rate (Q) is directly proportional to the changes in 
water levels between the input and output manometers (h1-h2). 

The volumetric fluid flow rate (Q) is directly proportional to the full cross-

sectional area (A) of the vertical cylindrical column. 

The volumetric fluid flow rate (Q) is inversely proportional to the vertical 
length or thickness (l) of the saturated soil column. 

It can be noted from eqn. (11) that Darcy’s formulation was a simple algebraic 

equation in the absence of any differential form. Also, Darcy named ‘K’ as a 
simple proportionality constant in the absence of naming anything explicitly for 

‘K’.  

PROPORTIONALITY CONSTANT FROM DARCY’S LAW 

The proportionality constant associated with the Darcy’s law was assumed to 

depend on both rock as well as fluid properties. With reference to fluid 

property, the proportionality constant was assumed to be directly proportional to 

the ‘fluid specific weight’, while the same is inversely proportional to the ‘fluid 
viscosity’. It can be noted that both these fluid properties can directly be 

measured with ease. With reference to the rock property, the proportionality 

constant was assumed to be directly proportional to the square of the mean grain 
size (dmean), while the same is inversely proportional to the ‘tortuosity’ (τ) & the 

‘specific surface area’ (Ss) of the solid grains. It can be noted that these rock 

properties cannot directly be measured with ease; and hence, these rock 

properties were later collectively called as ‘permeability’. Thus, eqn. (11) gets 
transformed into eqn. (12) as follows by incorporating the respective rock and 

fluid properties of the proportionality constant. 
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From eqn. (12), the difference between the notations, ‘K’ [Hydraulic 
conductivity, which is a function of both rock as well as fluid properties] & ‘k’ 

[intrinsic ‘permeability’, which is a function of rock property only] can be 



Govindarajan S. K. & al. / Larhyss Journal, 42 (2020), 7-22 

14 

clearly noted. It should be noted that the SI unit of ‘K’ is ‘m/day’, while that of 

‘k’ is ‘m
2
.  

DIFFERENTIAL FORM OF DARCY’S LAW 

Equation (12) can be rewritten as expressed in eqn. (13) using the conventional 

hydrostatic principle ghp  . 
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Assuming ‘l’ to be equal to that of ‘∆x’; and expressing the changes in pressures 
in ‘differential form’ yields eqn. (14). 





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


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




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x

pk
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 (14) 

Equation (14) can be expressed in ‘differential form’ when the changes in 

pressures over the respective length happens over a very small distance. In other 
words, the resultant changes in pressure will be smooth and continuous; and 

also, the magnitude of the changes in pressure will remain very small, when 

estimated between its neighbouring/successive/adjacent nodes. Of course, this is 
a very critical assumption behind extending the simple algebraic Darcy’s law 

into the complex differential equation. Thus, as the Limit ∆x→0, the changes in 

pressures between the successive points separated over the distance ‘∆x’ can be 

approximated using the differential equation as expressed in eqn. (15). 

As Limit ∆x→0;  

 
dx

dp

x

xpxxp




 )(

 

 (15) 

Thus, the ‘differential form’ of the equation as expressed in eqn. (15) can be 
substituted in eqn. (14) in order to yield eqn. (16). 






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










dx

dpk
q


 (16) 

In eqn. (16), the negative sign on the RHS indicates that the ‘direction of fluid 

flow’ is opposite to that of the ‘direction of the pressure gradient’. Equation (16) 
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is the modified Darcy’s law that is widely used in petroleum industry in order to 

characterize the flow of hydrocarbons associated with a petroleum reservoir. 

However, eqn. (16) is valid for a one-dimensional single-phase fluid flow. 

From eqn. (16), it is clear that the fluid flux per unit cross sectional area per unit 

time corresponds to ‘q’; and this flux is known as ‘Darcy flux’. Thus, it should 

be noted that ‘Q’ corresponds to the volumetric fluid flow rate in terms of 

volume per unit time (m
3
/day), while ‘q’ corresponds to the Darcy flux 

(m
3
/day/m

2
 or m/day). However, it should be noted that eqn. (16) is valid only 

for a case with fluid flow through a porous medium with insignificant gravity 

effect. In reality, either the groundwater aquifer or a petroleum reservoir would 
not remain either purely horizontal or purely vertical. It will be in an inclined 

position with reference to the horizontal stratum. In other words, the aquifer or 

reservoir would be tilted at an angle with reference to its horizontal section. In 

such cases, fluid may flow either towards gravity (from top to bottom) or fluid 
may flow against the gravity (from bottom to the top). In the present work, let 

us assume that the fluid flows within the aquifer or reservoir against the gravity. 

Thus, the fluid flows from the region of higher potential to the region of lower 
potential. Now, the hydraulic heads at the inlet (h1) and at the outlet (h2) needs 

to be estimated. The ‘hydraulic head’ at any given point (entry point @ the 

centre of the reservoir/aquifer thickness) pertains to the difference between the 
‘datum head’ (D → the depth or elevation at the surface level that is lying above 

the aquifer) and ‘pressure head’ (p/γ) measured from that datum up to the centre 

of the aquifer/reservoir inlet/outlet, assuming that the datum (or the reference 

level) lies above the aquifer or reservoir. The inclined length of the 
aquifer/reservoir between the inlet and the outlet points pertains to the ‘length of 

the saturated aquifer or reservoir’. 

Hydraulic head at inlet: ℎ1 = 𝐷1 − (
𝑝1

𝛾
) (17)  

Hydraulic head at outlet: ℎ2 = 𝐷2 − (
𝑝2

𝛾
)      (18) 

Hydraulic gradient: 
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Now, eqn. (19) can be written in ‘difference form’ as given in eqn. (20). 
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Substituting eqn. (20) in eqn. (12) yields eqn. (21). 
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Equation (21) can be rewritten as given in eqn. (22). 
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Now, by introducing differential calculus, and as the limit ‘l’ or ‘∆l’ or ‘∆x’ 

tends to ‘zero’; then, the quotient of the ‘pressure difference’ (∆p) over its ‘flow 
length’ (l or ∆l or ∆x) becomes equal to the negative pressure gradient. Thus, 

eqn. (22) can be written in ‘differential form’ as expressed in eqn. (23). 
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For multi-dimensional fluid flow, eqn. (23) can be represented in a more general 
form using gradient operator as expressed in eqn. (24). 
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Equation (24) can be extended to characterize the multi-phase fluid flow using 

the expression as given in eqn. (25). 
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In eqn. (25), ‘k’ represents the ‘absolute permeability tensor’, while ‘kr’ 

represents the ‘relative permeability’. The product of the ‘absolute permeability’ 

and the ‘relative permeability’ yields the ‘effective permeability’. Thus, the 

‘Darcy flux’ for multi-phase, multi-dimensional fluid flow can be defined as 
expressed in eqn. (26). 
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NON-LINEAR & TRANSIENT FORMS OF DARCY’S LAW 

Darcy’s law describes a steady-state fluid flow through a saturated porous 

medium. Thus, original Darcy’s law is governed by the elliptic PDEs in the 
absence of any time frame or transient nature. At steady-state conditions, the 

Darcy flux [also called ‘Darcy velocity’ or ‘Macroscopic flow velocity’ or 

‘Macroscopic mean velocity’ or ‘Nominal velocity’ or ‘Superficial velocity’] 

has a direct linear relationship with the fluid pressure gradient. This pressure 
gradient needs to be looked at the macroscopic-scale (and not at the 

microscopic-scale as used in NSE); and hence, it should be addressed properly 

as ‘macroscopic pressure gradient’. Thus, the original Darcy’s law assumes that 
the time dependency of the ‘Darcy flux’, i.e., the ‘macroscopic mean fluid 

velocity’ and its associated ‘macroscopic pressure gradient’ remains 

insignificant. However, in reality, the ‘macroscopic pressure gradient’ does not 

remain to be independent of time, but, it strongly becomes a function of time as 
we very frequently encounter a rapid or abrupt change in the ‘macroscopic 

pressure gradient’ in various field applications (in the absence of considering 

any turbulence). Thus, Darcy’s law had to be modified that takes into account 
the ‘time dependency’ of the ‘macroscopic pressure-gradient’ in order to use the 

same law in real field applications. Further, the fluid flow can be classified into 

linear and non-linear flows depending on whether the ‘macroscopic pressure 
gradient’ remains ‘linear’ or ‘non-linear’ with reference to the ‘macroscopic 

mean fluid velocity’. For steady and linear fluid flow, the fluid flow should be 

driven by dominant viscous forces in the absence of capillary and gravity 

forces; and the macroscopic mean fluid velocity should remain low in such a 
way that the Pore Reynolds Number should not exceed unity for Darcy’s law to 

be valid. Under such circumstances, the ‘macroscopic pressure gradient’ is 

directly proportional to the ‘macroscopic mean fluid velocity’ as given in eqn. 
(27). 



Govindarajan S. K. & al. / Larhyss Journal, 42 (2020), 7-22 

18 

aUp   (27) 

Equation (27) represents that the ‘macroscopic pressure gradient’ is linearly 
balanced by the ‘macroscopic mean fluid velocity’. The coefficient ‘a’ in eqn. 

(27) represents the forces resulting from the associated rock and fluid 

properties. It can further be noted that the fluid flow can still remain ‘laminar’ 

in the absence of any ‘eddies’ or ‘turbulence’, but still with significant inertial 
effect. Thus, the pore Reynolds number may exceed unity that describes 

‘laminar’ fluid flow through a porous medium with significant inertial effect. In 

such cases, the ‘macroscopic pressure gradient’ cannot be balanced by the 
‘macroscopic mean fluid velocity’ by linear means; and the relation between the 

above two parameters becomes non-linear. Forchheimer in 1901 corrected eqn. 

(27) and introduced an additional momentum resulting from the inertial effect; 
and this additional momentum varied non-linearly (i.e., quadratically) with the 

‘macroscopic pressure gradient’ rather than having a linear variation as given in 

eqn. (28). 

2bUaUp 
 (28) 

The coefficient ‘b’ associated with eqn. (28) is related with the forces exerted 

by rock and fluid properties resulting from ‘weak’ inertial effect. Thus, the 

presence of ‘weak inertial effect’ along with the laminar fluid flow introduces a 

non-linear effect in Darcy’s equation. 

It can be critically noted that the ‘transitional fluid regime’ can be characterized 

either by weak inertia or strong inertia. When the fluid flow is characterized by 

laminar flow with weak inertial effect, eqn. (28) can be used. However, when 
the laminar flow in a porous medium is characterized by the strong inertial 

effect, a complete ‘phase shift’ between ‘macroscopic pressure gradient’ and the 

‘macroscopic mean fluid velocity’ happens resulting from the acceleration of 

the fluid particles initiated by the strong inertial effect. Thus, under strong 
inertial effect, the fluid particle at a particular location gets accelerated; and this 

acceleration of the fluid particle keeps varying as a function of time. This 

variation in the fluid acceleration is associated with the variation in the 
‘macroscopic mean fluid velocity’ as expressed in eqn. (29). 

t

U
cbUaUp



 2  (29) 

In equation (29), the coefficient ‘c’ is related with the forces exerted by rock 
and fluid properties resulting from ‘strong’ inertial effect. Thus, the presence of 
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‘strong inertial effect’ along with the laminar fluid flow introduces the 

‘transient’ effect in Darcy’s equation.  

For fluid flows through porous media with significant inertial effect, eqn. (29) 
can be simplified by getting rid-off the non-linear term present in eqn. (29); and 

the simplified form can be expressed as given in eqn. (30). 

t

U
caUp



  (30) 

It can be noted that the estimation of the coefficient ‘c’ is not straight forward 
and it is relatively difficult to get it by laboratory-scale experimental means.   

CONCLUSIONS 

1. Since Darcy’s law connects the ‘flow field’ with the ‘force field’; it 
becomes feasible to characterize not only the homogeneous aquifers or 

reservoirs but also the heterogeneous porous aquifers or reservoirs. 

2. The Darcy’s law did not consider any gravity effect despite the fact that 
the experiment was conducted in a vertical cylindrical saturated sand 

pack; and not in a horizontal set up. 

3. The proportionality constant associated with the Darcy’s law is a 

complex function of measurable fluid properties; and non-measurable 
rock properties called the ‘intrinsic permeability’. 

4. The original algebraic form of Darcy’s equation gets translated into a 

complex partial differential equation by assuming that the resultant 
changes in pressures between any two successive points in an aquifer or 

reservoir remains very small; and subsequently, the resulting spatial 

distribution of fluid pressure is assumed to follow a smooth and 

continuous profile in the absence of any steep gradient. 
5. It has been reemphasized that the presence of ‘weak inertial effect’ 

along with the laminar fluid flow introduces a non-linear effect in 

Darcy’s equation. 
6. It has been reemphasized that the presence of ‘strong inertial effect’ 

along with the laminar fluid flow introduces the transient or unsteady 

nature in Darcy’s equation. 
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