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ABSTRACT 

The Manning’s n coefficient represents the friction applied to the flow by the 

inner wall of a channel or a pipe. For a correct design of hydraulic systems, the 

designer should have an appropriate value of this coefficient. The present study 
aims to establish the proper Manning’s n relationship including all the 

parameters that affect the flow in a partially filled circular pipe, such as the 

relative roughness, the slope of the energy grade line, and the kinematic 
viscosity. A new dimensionless parameter, acting as a Reynolds number, is 

introduced reflecting the relative effect of friction forces versus viscous forces. 

The study highlights the significant role of this parameter in the variation of the 
Manning’s n coefficient with the relative flow depth. 

Keywords: Manning’s coefficient, Darcy-Weisbach, Partially filled pipe, 

Dimensionless diagram.  

RESUME 

Le coefficient n de Manning représente le frottement appliqué à l'écoulement 

par la paroi intérieure d'un canal ou d'une conduite. Pour une conception 

correcte des systèmes hydrauliques, le concepteur doit avoir une valeur 

http://creativecommons.org/licenses/by/4.0
mailto:bachir.achour@larhyss.net


Achour B. & Amara L. / Larhyss Journal, 42 (2020), 107-119 

108 

appropriée de ce coefficient. La présente étude vise à établir la relation n de 

Manning appropriée, incluant tous les paramètres qui affectent l’écoulement 

dans une conduite circulaire partiellement remplie, tels que la rugosité relative, 
la pente de la ligne d’énergie et la viscosité cinématique. Un nouveau paramètre 

sans dimension, agissant comme un nombre de Reynolds, est introduit reflétant 

l'effet relatif des forces de frottement par rapport aux forces visqueuses. L’étude 

met en évidence le rôle important de ce paramètre dans la variation du 
coefficient n de Manning en fonction de la profondeur relative de l’écoulement. 

Mots-clés : Coefficient de Manning, Darcy-Weisbach, Conduite partiellement 

remplie, Diagramme adimensionnel. 

INTRODUCTION 

The roughness coefficient represents the friction applied to the flow by the inner 

wall of a channel or a pipe (Chow, 1959). The determination of the appropriate 

value of the roughness coefficient in the channels and conduits is essential for 
carrying out the correct calculation of the flow characteristics such as velocity, 

dimensions, and slope. A value higher than that required leads to oversizing the 

structure, while a value below that required can lead to a hydraulically deficient 
structure. For the designer, having a correct value for the roughness coefficient 

is then essential. What is also essential is how the roughness coefficients are 

determined. The recent literature often gives roughness coefficients which are 
sometimes significantly different from those provided by the older literature. 

This is also the case with research that often comes up with values of roughness 

coefficients contrasting those usually used. The determination of the roughness 

coefficient by laboratory tests does not reflect reality because the tests are 
carried out under ideal conditions. Water used for testing is clean without debris 

and the experimental channels are straight without bends or other obstructions. 

Manning’s n laboratory values are systematically corrected before using them in 
actual installed conditions. The correction factor, called design factor, could 

vary between 20% and 30% (ACPA, 2000; 2012). It is therefore a significant 

correction that is made on the Manning’s n laboratory values. As an indication, 
for smooth pipes engineers use Manning’s n value ranging between 0.012 and 

0.013, while Manning’s n value has been found varying between 0.009 and 0.01 

for this state of pipe. For some pipe material, recommended n design values can 

be selected from tables given by many institutions and authors such as the 
University of Minnesota (1950), Barfuss and Tullis (1989), the American 

concrete pipe association (2000), and the US department of transportation 

(2012).  
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The Manning’s n roughness coefficient has always been considered to be a 

constant value depending on the type of material constituting the channel or the 

pipe. Even today, engineers continue to view n as a constant whose value comes 
from the tables. Yet, seventy years ago Camp (1946) drew up a chart showing, 

in particular, the variation of the mean values of Manning’s n as a function of 

the relative flow depth in partially filled circular pipes with different diameters. 

This diagram, reproduced elsewhere in manuals and reports by the American 
Society of Civil Engineers (1992), is recognized today and is used by many 

professionals. Many studies later confirmed the fact that Manning’s coefficient 

varies as function of flow depth (Pomeroy, 1967; Yen, 1992; Meky et al., 2015).  

Manning's versatile formula, developed in the 1890s, came twenty years later to 

replace that of Ganguillet-Kutter which was developed in the 1869s. The later 

and the associated aid chart design were considered to be quite cumbersome. 

This is the coefficient n of the Manning’s formula that interests the present 
study. The main objective of this is to examine the variation of this coefficient 

in partially filled circular pipe not only as a function of the relative flow depth 

but also as a function of other flow parameters such as the relative roughness, 
the slope of the energy grade line and the kinematic viscosity of the flowing 

liquid. For doing so, the Manning’s formula (1891) is faced with a 

dimensionally consistent uniform flow relationship given by Achour and 
Bedjaoui (2006). In this relation, a dimensionless number is introduced which 

gives a measure of the ratio of friction forces to viscous forces and consequently 

the relative importance of these types of forces on the variation of the 

Manning’s n coefficient. 

GEOMETRICAL PROPERTIES 

Fig.1 shows a partially filled circular pipe with the flow depth h and the 

diameter D. 

 

Figure 1: Circular pipe partially filled  

 

h

D
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Let us define /h D  as the aspect ratio or the ratio of depth to diameter. The 

wetted area, the wetted perimeter P and subsequently the hydraulic radius 

/hR A P can be written respectively as: 

2

( ) ( )
4

D
A                (1) 

( )P D             (2) 

( )
4

h

D
R              (3) 

where: 

1( ) cos (1 2 )                            (4) 

   

 1

2 1 2 1
( ) 1

cos 1 2

  
 




 
 


  (5) 

It can be derived from the equation (5) that for a half-full pipe (0.5) 1   and 

for a full pipe (1) 1  . Accordingly, Eq. (3) allow writing that: 

,

( )h

h f

R

R
            (6) 

which also amounts to writing that for both a half-full pipe and a full pipe, 

corresponding respectively to (0.5) 1   and (1) 1   as stated above: 

,

1h

h f

R

R
          (7) 

The subscript “f “denotes the full flow condition. Eqs. (5), (6) and (7), in 

particular, will be used for the rest of the study. 

THEORETICAL CONSIDERATIONS 

The dimensionally consistent uniform flow relationship ( , , , , , )hQ S g A R   

can be established using the Rough Model Method (Achour and Bedjaoui, 

2006) or by combining the rational equations of Darcy-Weisbach (1854) and 

Colebrook (1939). Q is the discharge, S is the slope of the energy grade line, 
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is the absolute roughness, g is the acceleration due to gravity and   is the 

kinematic viscosity. These three relationships can be written respectively as: 

*

10.04
4 2 log

14.8
h

h

Q g A R S
R R

 
   

 
          (8) 

where : 

3

* 32 2
hgR S

R


           (9) 

2

8 h

V
S f

gR
         (10) 

1 2.51
2log

14.8 hRf R f

 
    

 

        (11) 

In Eqs (10), f is the friction factor also called the Darcy-Weisbach friction factor 

which is governed by Eq.(11), while V is the mean flow velocity. Special 

attention should be paid to the dimensionless number R
*
 which Eq.(9) refers to. 

It seems that the literature makes no explicitly mention of this number. There is 
also no indication of its order of magnitude. It does not correspond to the 

Reynolds number R=VDh/v usually used, where Dh is the hydraulic diameter. 

What the literature indicates, however, is that the quantity 
hgR S corresponds to 

the shear velocity u* also called friction velocity (Schlishting, 1979) having 

units of velocity. Therefore, Eq.(9) can be written in the following form: 

*
* 32 2 hu R

R


       (12) 

With regard to the form of the Eq.(12), the dimensionless number R
*
 would give 

a measure of the ratio of friction forces to viscous forces and consequently the 

relative importance of these types of forces. It is a form of conversion by which 

the shear stress is re-written in units of velocity. The quantity u
*
Rh/v can, 

therefore, be considered as the shear Reynolds number which also corresponds, 

to within a constant, to the dimensionless number R
*
. This could, therefore, be 

appropriate for quantifying the variation as a function of the flow depth of the 

roughness coefficients opposite to the moving of flows such as Manning's n. 

The Manning’s formula expresses the mean flow velocity, written in SI units, as 

(Chow, 1959): 
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2/3 1/21
hV R S

n
         (13)  

where n is the manning’s roughness coefficient. Multiplying and dividing the 

right-hand side of Eq.(13) by g
0.5

 and rearranging results in: 

*

1/6

h

n gu

V R
         (14) 

The literature indicates that the u
*
/V ratio is such that (Daugherty and Franzini, 

1977): 

*

8

u f

V
         (15) 

Thus: 

*

8

f
u V         (16) 

Multiplying the both sides of Eq.(16) by 32 2 /hR   and knowing that Rh=Dh/4, 

on may derived the following result: 

* /
32 2 32 2

4 8

h hu R VD
f




        (17) 

Eq. (17) can be reduced to: 

* 4 ( / , )hR R f R R          (18) 

On one hand, Eq.(18) indicates that the dimensionless number R
*
 is, to within a 

constant, the product of the two well known dimensionless numbers R and f , 

and Eq.(18) reveals that R
*
 is a function of both ε/Rh and R, on the other hand. 

Extracting R f and 1/ f from Eq.(18) and inserting them in Eq.(11) gives: 

* *

2.51
4 2log

14.8 / 4h

R

R R R

 
   

 
     (19) 

Rearranging Eq. (19) results in: 
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*

*

1 10.04
log

2 14.8 h

R R
R R

 
   

 
     (20) 

The same equation was established by Achour and Bedjaoui (2006) using the 

Rough Model Method. This is the fundamental relationship relating R
*
 to the 

Reynolds number R and the relative roughness ε/Rh. It is implicit in R
*
 and a 

dimensionless chart R
*
(ε/Rh,R) can be designed as was done for Moody’s 

diagram (Moody, 1944). This diagram will allow reading R
*
 for the given value 

of both Reynolds number R and the relative roughness ε/Rh. Moreover, the value 
thus determined of R

*
 will be used to calculate the shear velocity u* according 

to the Eq.(12). If one wants to avoid the implicit calculation of R
*
 imposed by 

the form of Eq. (20), the explicit Eq. (9) would then be the most appropriate 

provided Rh, S and   are given, which is generally the case in practice. If both 

Reynolds number R and the relative roughness ε/D are given, Eq.(18) is 

strongly recommended for the computation of R
*
.The downside is that the 

friction factor f is governed by the implicit Eq.(11). However, one can use one 

of the explicit approximate relationships available in the literature (Zeghadnia et 

al., 2019). 

PROPER RELATIONSHIP OF MANNING’S n  

With V = Q/A, the Eq.(13) can be rewritten as : 

2/3 1/21
hQ AR S

n
        (21) 

By equating Eqs.(8) and (21), one can write : 

2/3 1/2

*

1 10.04
4 2 log

14.8
h h

h

Q AR S g A R S
n R R

 
    

 
 (22) 

After simplifications, Eq.(22) is reduced to: 

1/6

*

1 10.04
4 2 log

14.8
h

h

gR
n R R

  
   

 
        (23) 

Introducing the dimensionless number representing the right-hand side of 
Eq.(14), Eq.(23) can be rewritten as : 
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1

1/6 *

1 10.04
log

14.84 2h h

n g

R R R




  
    

  
       (24) 

On the other hand, taking into account Eq.(3), Eqs.(9) becomes: 

 
3 3

3/2* 32 2 4 2 ( )
hgR S gD S

R  
 

         (25) 

For the full-pipe, corresponding to (1) 1  , Eq.(25) can be rewritten as: 

 
3/2* * ( )fR R          (26) 

Where: 

3

* 4 2f

gD S
R


         (27) 

According to Eq.(26), it is worth noting that the ratio 
* */ fR R  depends 

exclusively on the relative flow depth /h D  . 

Inserting Eqs.(3) and (26) into Eq.(24), and rearranging, gives the following 
results: 

 
 

1

1/6

3/21/6 *

2 / 0.222
( ) log

8 3.7 ( ) ( )f

n g D

D R


 
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

  
    

    

      (28) 

Eq.(28), presented in dimensionless terms, is the fundamental relationship 

which governs the Manning’s n coefficient in a partially filled circular pipe. It 
can be plotted on a Cartesian coordinate graph where the x-axis represents the 

dimensionless number 
1/6/n g D and the y-axis represents the filling rate

/h D  . For this, the value of the relative roughness / D is fixed and 
*

fR is 

varied. One may thus obtain a series of curves that have a resemblance to those 

of Figs. 2 and 3. By following this procedure, it can be observed the influence 

of the modified Reynolds number 
*

fR on the Manning’s n coefficient for a given 

value of / D .  
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For the full-pipe, Eq.(28) gives : 

1

1/6 *

2 / 10.04
log

8 3.7

f

f

n g D

D R




  
     
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     (29) 

The ratio of Eqs.(28) and (29) leads to : 

 
 

1

1/6

3/2 **

/ 10.04 / 10.04
( ) log log

3.7 ( ) 3.7( )f ff

n D D

n RR

 
 
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

     
                 

 (30) 

Camp (1946) further stated that: 

1/6

,

h

f h f f

Rn f

n R f

 
   
 

    (31) 

which is incorrect. It must be corrected by writing the proper equation as: 

1/6 0.5

,

h

f h f f

Rn f

n R f

   
       
   

        (32) 

Eq.(32) can be easily worked out from the combination of Eqs.(10) and (13).  

The following important result can be deduced from Eq.(30). For a half-full 

pipe, it was demonstrated previously that ,h h fR R  [Eq.(7)] and (0.5) 1  . 

Therefore, the quantities in parenthesis of the right-hand side of Eq.(30) are 
equal and their ratio gives 1. In other words, Eq.(30) necessarily leads to writing 

that fn n  when the pipe is half full. This result is not observed on the Camp’s 

chart (1946) regarding the variation of Manning’s n with the relative depth h/D. 

As an indication, Manning’s n value according to Camp’s chart is about 1.25 
1/3/s m  for h/D = 0.5. Fig.2 shows the variation of / fn n with h/D in a smooth 

circular pipe partially filled, in accordance with Eq.(30), while Fig.3 indicates 

the variation of / fn n in a rougher pipe.  
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Figure 2: Variation of / fn n with h/D in a smooth circular pipe, according to 

Eq.(30)  

 

Figure 3: Variation of n/nf with h/D in a circular pipe for ε/D=0.001, according to 

Eq.(30) 

DISCUSSION OF RESULTS 

As can be observed in Figs.2 and 3, the variation of n/nf in smooth or rougher 

pipes strongly depends on the value of *

fR . It can be also observed that the more 

the relative roughness ε/D increases and the more the n/nf ratio increases, 

meaning that n takes large values. This is confirmed in the literature. 

As expected, all the obtained curves intersect the particular point n/nf =1 for the 

half-full state of the pipe. It should also be noted that the Camp’s data are such 

that n/nf ≥1 throughout the range 0.026 ≤ h/D ≤ 1. Figs. 2 and 3 show that n/nf 

can be less than unity, depending on the value of *

fR . This fact has been already 

reported in the literature (Pomeroy, 1967; Meky et al., 2015). The ratio n/nf can 
also remain almost constant beyond the relative depth of 30%, in the case of 

smooth pipes as shown in Fig.2 for * 510fR  . For shallow depths, n/nf  
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undergoes an abrupt variation with h/D and the curves pass from negative to 

positive through an inflection point, until reaching the relative depth of 80%. 

This is particularly the case for high values of *

fR . In the shallow depth flow 

region, extending beyond the inflection point, the size of the roughness has an 

important effect and the n value should be large. The inflection point gets closer 

and closer to the shallow depths as *

fR  increases as it can be observed in Fig.3. 

Due to the presence of the inflection point, the curves in Figs. 2 and 3 do not 

pass through the origin. In fact, in the current state of knowledge, the variation 
of n/nf around the small flow depths is not well known. Even on the Camp’s 

chart, designed with practical data, the curve showing the variation of n/nf 

versus h/D is interrupted when approaching shallow depths, due to the fact that 
there is no available data for this area of flow. If the curves of n/nf were to pass 

through the origin, this would mean that 1/n tends to infinity. In the same time, 

the hydraulic radius Rh tends to zero, that will involve a 0  indeterminate 

form in Eq.(13). This indeterminacy can be lifted if it is accepted that around 
small depths n tends to take great values, what the curves in Figs. 2 and 3 show. 

CONCLUSIONS 

The aim of the study was to examine the influence of the flow parameters on the 
variation of the Manning's n coefficient in a partially filled circular pipe, for 

doing so, the Manning's equation expressing the discharge [Eq. (21)] has been 

faced with a dimensionally consistent uniform flow relationship derived from 

the combination of the rational Darcy-Weisbach and Colebrook equations [Eqs. 
(8) and (11)]. The derived final relation [Eq (24)], valid for all shapes of 

channels, contains in its left-hand side a dimensionless parameter related to the 

Manning's n coefficient and in its right-hand side a dimensionless parameter R
*
, 

acting as a Reynolds number, representing, in fact, the ratio of the friction 

forces to viscous forces. It has been shown that R
*
can be related to both the 

Reynolds number R and the relative roughness ε/Rh in accordance with an 

implicit relation [Eq.(20)]. The general relationship [Eq (24)] has been applied 
to the partially filled circular pipe. This resulted in an equation linking both the 

relative flow depth h/D, the relative roughness ε/D, and the dimensionless 

number 
*

fR  which is a characteristic of the flow when the pipe is full [Eq.(28)]. 

The same relationship was applied to the totally filled circular pipe [Eq.(29)] 

and the ratio between the latest equations led to the final Eq.(30). This has been 
plotted in Figs. 2 and 3 for a smooth pipe and for a rougher pipe respectively. 
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The filling rate h/D is representing on the Y-axis, while n/nf is defined by the X-

axis. Depending on the *

fR  values, the slope of the curves changes from 

negative to positive or vice versa. A change in slope from negative to infinity 

can even be observed in the case of the smooth pipe, indicating a constant value 

for n/nf  beyond a certain filling rate [Fig.(2)]. Beyond the filling rate of 80%, 

n/nf decreases for the low values of *

fR , while it increased for the larger values 

of *

fR . Whatever the value of both the relative roughness ε/D and the number

*

fR , the largest values of n/nf are observed around shallow depths [Figs.(2) and 

(3)]. 
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