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ABSTRACT 

The computation of backwater curves is often encountered in various applications of 

hydraulic engineering, especially those related to the gradually varying flow in open 

channels. The knowledge and the mastery of the varied flow condition the correct sizing 

of the canal. 

The objective of our study is to contribute to the establishment of an analytical protocol, 

as simple as possible, with the aim of proposing a generalized relation to the calculation 

of the gradually varied flow in a wide rectangular channel. The introduction of new 

dimensionless parameters leads to a differential equation different from those proposed 

in previous works. 

The attention will focus mainly on the cases of horizontal and critical channel slopes 

given their interest on the mathematical side of the problem. 

Keywords: Gradually varied flow, GVF, backwater curve, drawdown curve, slope, wide 

rectangular channel, control section, analytical solution. 
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RESUME 

Le calcul des courbes de remous est souvent rencontré dans diverses applications de 

l'ingénierie hydraulique, en particulier celles liées à l'écoulement graduellement varié 

dans les canaux ouverts. La connaissance et la maîtrise des écoulements variés 

conditionnent le dimensionnement correct du canal. 

L'objectif de notre étude est de contribuer à l'établissement d'un protocole analytique, le 

plus simple possible, dans le but de proposer une relation généralisée au calcul de 

l’écoulement graduellement varié dans un canal rectangulaire de grande largeur. 

L'introduction de nouveaux paramètres sans dimension conduit à une équation 

différentielle différente de celles proposées dans le passé. 

L'attention sera portée principalement sur les cas de pentes horizontales et critiques du 

canal compte tenu de leur intérêt au niveau mathématique du problème. 

Mots clés : Ecoulement graduellement varié, courbe de remous, courbe de rabattement, 

pente, canal rectangulaire large, section de contrôle. 

INTRODUCTION 

The term "Backwater Curve" is used herein as the longitudinal profile of the water surface 

in a non-uniform steady flow in an open prismatic channel (Chen, and Wang, 1969; 

Valentine, 1967). The flow depth varies gradually along the length of the channel. In fact, 

when the depth of water increases in the direction of flow then the surface profile is 

classified as backwater curve and when it decreases then it is known as drawdown curve. 

Non-uniform or varied flow occurs when the water depth as well as the other hydraulic 

parameters, namely the slope, the roughness, and the flow rate, vary from one section to 

another for a given channel (U.S. Army Corps of Engineers, 1959; U.S. Geological 

Survey, 1955; Henderson, 1966; Valentine, 1964). It is even found in a uniform channel 

with a rectilinear axis, of constant slope and section, and of homogeneous roughness, but 

only in the vicinity of its ends or when there is a singularity such as a weir, a waterfall, a 

sluice gate, ... etc. The non-uniform flow can be accelerated or decelerated depending on 

whether the flow velocity increases or decreases in the direction of the flow. Therefore, 

it can be classified into two categories: gradually varied flow and rapidly varied flow as 

a hydraulic jump for example (Chow, 1959).  When a flow entering a channel is slow, the 

velocity and the resistance of the flow are low. The gravity forces are then predominant 

and the flow is then accelerated from upstream. Both velocity and resistance increase as 

one moves downstream, until the gravity forces are balanced. At this stage, uniform flow 

appears. Then, the gravity forces become more and more predominant because of the 

local hydraulic resistances which are downstream of the uniform flow. As a result, the 

uniform flow disappears and the non-uniform flow appears. The brief passage from a 

uniform flow to a varied flow which corresponds to a variation of depths and velocities 

is called a transition zone, the length of which depends on the flow rate as well as the 
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characteristics of the channel such as roughness and slope. In the study of the gradually 

varied flow, some simplifying assumptions are necessary, assuming that the liquid current 

is rectilinear and parallel to the bottom of the channel. Therefore, the transverse velocities 

are neglected with respect to their longitudinal components parallel to the general 

direction of flow. It is considered in any section that the liquid stream is uniform with the 

same depth and the same flow rate, which amounts to saying that the Manning-Strickler 

or Chezy formulas are applicable in gradually varied flow regime, relationships which, 

strictly speaking, are only valid for the uniform flow regime. This assumption simplifies 

the calculation such as that of the friction slope Sf as well as the critical slope Sc. The 

errors associated with this assumption are considered quite small. The validity of the 

hypothesis is all the more justified as the varied motion approaches the uniform regime. 

It is also assumed that all the velocities are assumed to be equal to the average velocity in 

a given section of the channel and that the slope S0 of the latter is quite low, meaning that 

the depth of flow is the same in both vertical and normal directions. Another simplifying 

assumption is that the coefficient of resistance to flow is independent of depth and 

remains constant along the entire reach of the channel. It is now accepted that this 

hypothesis is not realistic since it has been shown that the coefficient of resistance to flow 

such as that of Chezy or Manning depend in particular on the depth of the flow and many 

other factors (Achour, 2020; 2015). 

Backwater curves, or the water surface profiles, can be classified according to the slope 

S0 of the canal. There is, for a given flow rate, a channel slope Sc for which flow occurs 

at the critical depth. The corresponding backwater curves form the C-type group. Slopes 

of the canal less than this critical slope will be considered low. It is said to be a mild slope. 

This will form the M-type backwater curves group. The channel slopes greater than the 

critical slope are so-called steep slopes and will form the S-type backwater curves group. 

The horizontal slopes are associated with the type H group, while for the adverse slopes 

corresponds the H-type group. 

The computation of the water surface profiles is based on the principle of energy, that is 

to say quite simply on the Bernoulli equation applied between two chosen flow sections. 

It is easily demonstrated that the final result is a differential equation called the gradually 

varied flow equation expressed as:  

0

2

3
1

fS Sdh

Q BdL

gA

=
−

−

          (1) 

where Q is the flow rate, B is the channel width, A is the water area, g is the acceleration 

due to gravity, h is the water depth at a given section, and dh/dL gives the variation of 

water depth along the channel in the flow direction. Note that dL, which is the distance 

between two given sections, is taken on the horizontal reference datum and not along the 

bottom channel. 
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The study of the relationship (1) allows the construction of the curves of the free surface 

of the flow. For this, different methods have been proposed in order to proceed with the 

calculations and the exact construction of the shapes of the free surface. Among the most 

widespread methods, one may distinguish the following three methods: method by 

successive approximations, method by direct integration, and method by graphical 

integration. The first method includes the method of sections where L is fixed as well 

as a first depth h1, the depth variation procedure where h is fixed, and finally the finite 

difference method. The direct integration method allows making the differential equation 

expressed by (1) integrable. By integrating between two sections A1 and A2 of respective 

depths h1 and h2, equation (1) becomes: 

2 1

2

1

( )

h

h

L L f h dh− =             (2) 

This last equation is difficult to solve analytically because the second member is a 

complex function. It is quite easy to solve for a few simple cases such as the case of the 

large width rectangular channel which is of interest to our study. For this case, the 

preferred calculation methods are those of Bresse (Lencastre, Bakhmeteff (1932) and 

Chow (1955; 1959). 

The graphical integration method puts the differential equation of the gradually varied 

flow into the following form, provided the flow rate and the channel profile are known: 

( )

dh
dL

f h
=            (3) 

That is: 

2 1

2 2

1 1
( )

L L

L L

dh
L L dL

f h
− = =             (4) 

One thus obtains a first-order differential equation, integrable by means of a constant of 

integration known thanks to the boundary conditions. 

The calculation methods usually used for gradually varied flow, such as those previously 

indicated, do not take into account the effect of the viscosity of the flowing liquid. As a 

result, their application would be reserved exclusively for gradually varied flows in rough 

turbulent regime. 

The present study proposes a new theoretical approach allowing the calculation as well 

as the plotting of the free surface of a one-dimensional flow. The differential equation 

governing the gradually varied flow is transformed into a function defined by 

dimensionless terms. The integration of this function leads to a mathematical formulation 

allowing the direct solution of all the problems of the one-dimensional gradually varied 
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flow in a rough turbulent flow regime. Particular attention is paid to the particular cases 

of critical and horizontal slopes which are of remarkable mathematical interest. 

TRANSFORMATION OF THE DIFFERENTIAL EQUATION FOR 

GRADUALLY VARIED FLOW 

The Manning-Strickler equation gives the mean velocity of a uniform flow in the 

following form (Strickler, 1923): 

2/3 1/2

h f

Q
V k R S

A
= =           (5) 

where Q is the flow rate, A is the water area, k is the Strickler coefficient, and Rh is the 

hydraulic radius. Recall that S0 is the slope of the channel and that Sf is the slope of the 

hydraulic grade line or the linear hydraulic head loss. For a two-dimensional flow of depth 

h flowing on a bottom formed by a wide inclined plane of width B, one can write: 

/q Q B= : The unit flow rate; A Bh= : The water area; P B= : The wetted perimeter; 

hR h= : The hydraulic radius.  

Taking into account the above parameters, Eq. (5) becomes: 

2/3 1/2

f

Q q
V k h S

Bh h
= = =            (6) 

One may write finally what follows: 

2

2 10/3f

q
S

k h
=            (7) 

On the other hand, one may write: 

2 2

3 3

Q B q

g A gh
=           (8) 

Inserting both Eqs. (7) and (8) into Eq. (1) results in: 

2 3

2

0 2 10/3

1 / ( )q gh
dL dh

q
S

k h

=
−

−

           (9) 
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Knowing that
2 3

cq gh= , where ch is the critical depth, Eq. (9) can be rewritten, after 

some arrangements, as: 

3 3

0 2 10/3 1/3

1

( /

/

)

c

c c

h h
dL dh

g
S

k h h h

=
−

−

        (10) 

Let us adopt the following dimensionless parameters: 

*
/ ch h h= ; 

*
/ cL L h=          (11) 

Eq. (10) then becomes: 

* 3
* *

0 2 *10/3 1/3

1

c

h
dL dh

g
S

k h h

−

=
−

−

        (12) 

By multiplying the numerator and the denominator of Eq. (12) by (
2 *10/3 1/3

ck h h ), it 

becomes: 

( )* 3 2 *10/3 1/3

* *

2 *10/3 1/3

0

1 c

c

h k h h
dL dh

S k h h g

−

=
−

−
        (13) 

For a wide rectangular channel, the critical slope is expressed as: 

2 1/3c

c

g
S

k h
=         (14) 

Let  be 1 / cS = , which amounts to writing that: 

2 1/3

ck h

g
 =         (15) 

By virtue of Eq. (15) and some arrangements, Eq. (13) becomes: 

*10/3 *1/3
* *

*10/3

0 1

h h
dL dh

S h



=

−

−
        (16) 

Introducing the following dimensionless number: 

0 0 / cS S S = =          (17)  
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Eq. (16) is then rewritten as: 

*10/3 *1/3
* *

*10/3
1

h h
dL dh

h
=

−

−
        (18) 

Integrating Eq. (18) between two relative depths 
*

1h  and 
*

2h , yields: 

**
22

*
1 *

1

*10/3 *1/3
* *

*10/3
1

hh

h
h

h h
L dh

h
=

−

−         (19) 

Consider the following function: 

*
2

*
1

*10/3 *1/3
* *

*10/3
( , )

1

h

h

h h
F h dh

h



=

−

−         (20) 

One may then write what follows: 

*
2

*
1

* * *

2 1( , ) ( , )

h

h
L F h F h = −           (21) 

That is: 

2

1

* *

2 1( , ) ( , )

h

c
h
L h F h F h = −             (22) 

Thus, it is the function 
*

( , )F h  expressed by Eq. (20) which makes it possible to solve 

the problems of the gradually varied one-dimensional flow.  

THE DIMENSIONLESS PARAMETER   

By definition and for a uniform flow for which S0 = Sf, one may write: 

nh h=         (23) 

where nh is the normal depth.  

Dividing the two members of Eq. (23) by ch results in: 
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* *

nh h=           (24) 

In uniform flow regime, Eq. (7) is written as: 

2

0 2 10/3

n

q
S

k h
=         (25) 

Eq. (25) can be rewritten as: 

3

0 10/3

2 10/3

c

n
c

c

gh
S

h
k h

h

=

 
 
 

 

That is: 

0 2 *10/3 1/3

n c

g
S

k h h
=         (26) 

Combining Eqs. (15), (17), and (26) yields: 

* 3/10

0 nS h 
−

= =          (27) 

It is thus shown that the dimensionless parameter  is closely related to the normal relative 

depth. This implies that  is independent of the depth h and that it is constant for a given 

case. Eq. (27) has never been established before. 

Without having demonstrated, Bakhmeteff (1932) suggests that  is a constant because 

the S0 / Sf ratio varies little with depth, according to the author. This is not the case with 

Chow (1959) who considers that  is not constant, which is an unreliable assertion when 

referring to Eq. (27). Considering  as being a variable further complicates the solution 

of the problem as presented by Chow (1959).  

The interest and advantage of Eq. (27) lies in the fact that it allows the classification of 

slopes. This is done as follows: 

i)  >1, 
*

nh < 1, i.e. nh < ch  

This means that the normal flow regime is supercritical and the slope is of steep type (S). 

ii)  =1, 
*

nh = 1, i.e. nh = ch  

This means that the normal flow regime is critical, which implies that the slope is of the 

critical type (C).  

iii) 0 <  < 1, 1 < 
*

nh <  , ch < nh <  
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This means that the normal flow regime is subcritical, which implies that the slope is of 

the Mild type (M). 

iv)   = 0, 
*

nh = ,   0, so 0S = 0 

The normal flow regime does not exist and the slope is horizontal. 

v)   < 0, 
*

nh < 0, so nh < 0 and 0S < 0 

The normal flow regime does not exist and the slope is adverse (A). 

SPECIAL CASES 

Horizontal slope 

This case corresponds to 0S = 0 and Eq. (16) becomes: 

( )* *1/3 *10/3 *
dL h h dh= −         (28) 

Integrating this equation between two relative depths 
*

1h  and
*

2h results in: 

( )
* *
2 2

* *
1 1

* *1/3 *10/3 *

h h

h h

dL h h dh= −          (29) 

which gives: 

2

1

*4/3 *13/3

0

2

1

3 3

4 13

h

c
h

h

h

L h h h C=
 

− + 
 

        (30) 

Eq. (30) can be rewritten as: 

2

1

* *

2 1( , 0) ( , 0)

h

c
h
L h F h F h= −            (31) 

where: 

( )* * 4/3 *13/3

0

3 3
, 0

4 13
F h h h C= − +          (32) 
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C0 is an integration constant which can be determined by the initial conditions. According 

to Eq. (20), for 
*

h = 1 and   = 0 one may write F (1, 0) = 0. Inserting this result into Eq. 

(32) yields C0 = - 27/52. Therefore, Eq. (32) can be written as: 

( )* * 4/3 *13/33 3 27
, 0

4 13 52
F h h h= − −         (33) 

Eq. (33) is used to plot the H2-type backwater curve for 
*

h values greater than 1 (
*

h > 1), 

as well as the H3-type backwater curve for 
*

h values less than 1 (
*

h < 1). Theses curves 

are shown in Fig.1. When calculating the function ( )*
, 0F h using Eq. (33), the values can 

be negative. One must then consider the absolute value. 

 

a) 
*

h > 1 

 

b) 
*

h < 1 

Figure 1: Graphical representation of H2 and H3-type drawdown and backwater 

curves respectively according to Eq. (33) 
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Critical slope 

In this case, on may write: 

0 cS S= , 0 / 1cS S = = , 
*

nh = 1, i.e. nh = ch  

1 / 1 /cS S = =  

The first case to study is for which: 

h > nh = ch ; i.e. 
*

h >1 

Eq. (18) becomes: 

*10/3 *1/3
* *

*10/3

1

1

h h
dL dh

S h
=

−

−
        (34) 

Since 
*

h >1, the numerator and the denominator of Eq. (34) are positive, i.e. dL/dh > 0. 

If 
*

h → , then dL/dh → 1/S which allows concluding that the curve approaches 

asymptotically to the horizontal. 

For h  = ch , i.e. 
*

h =1, Eq. (34) leads to the following indeterminacy: 

*

*

1 0

0

dL

dh S
=  

Using the L’hopital’s rule, the limit of dL / dh when 
*

h approaches 1 is: 

* *

* *10/3 *1/3

* *10/3
1 1

1 1 10 / 3 1 / 3 0.9
lim lim

1 10 / 3h h

dL h h

dh S h S S→ →

−
= = =

   −
   

−   
         (35) 

In this case, it is a C1-type backwater curve (Fig. 2). 

The second case to study is for which: 

h < nh = ch ; i.e. 
*

h < 1 

Since 
*

h <1, the numerator and the denominator of Eq.(34) are both negative, i.e. 

dL/dh>0. The water depth h increases downstream. Fro h = 0, i.e. 
*

h = 0, Eq. (34) 

becomes: 
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*

*
0

dL

dh
=          (36) 

In this singular point of the flow, the depth becomes zero and the tangent of the curve is 

perpendicular to the bottom of the channel. This is the C3-type backwater curve (Fig.2).  

 

Figure 2: C-type backwater curves 

The function F (
*

h , 1) corresponding to critical flow has been the subject of an in-depth 

regression study for the values 
*

h >1 and 
*

h < 1.  

For the values of 
*

h  such as 
*

h  1, the function F (
*

h , 1) can be reasonably represented 

by the following equation, obtained with a coefficient of determination 
2

0.9999R = : 

( )* * 1.325
,1 0.73F h h=         (37) 

The maximum deviation caused by Eq. (37) is 1.72 % only. Eq. (37) allows a simplified 

and rapid calculation of the C3-type backwater curve, in particular the calculation of the 

length L separating two given depths 1h and 2h . 

On the other hand, for the values of 
*

h  such as 
*

h  1 and more precisely in the wide 

range
*

1 2h  , the function F (
*

h , 1) can be governed with fairly great accuracy by the 

following equation, obtained with a coefficient of determination
2

0.9999R = : 

( )* *
,1 0.9389 0.2265F h h= −         (38) 

The maximum deviation caused by Eq. (38) is 0.73 % only, which allows making a fast 

and precise calculation of the C1-type backwater curve.  

90

/ 0.9 /dL dh S=
horizontal

1C

3C n ch h=

Channel bottom
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USE OF THE H-TYPE BACKWATER CURVES TO DETERMINE THE 

ABSOLUTE ROUGHNESS OF A WIDE RECTANGULAR CHANNEL 

The experimental measurement of the coordinates of the H3-type backwater curve allows 

estimating the value of the absolute roughness . In this section, the utility of the H3-type 

backwater curve in the estimation of  will be highlighted. The backwater curve is caused 

by the installation of a sluice gate in a horizontal rectangular channel of large width. 

Supercritical flow is generated by passing a unit flow rate q controlled upstream or 

downstream, under a sluice gate (Fig. 3). 

 

Figure 3: H3-type backwater curve downstream a sluice gate 

The unit flow rate q being known, one may calculate the critical depth hc according to the 

following well known relationship: 

1/3
2

c

q
h

g
=
 
 
 

        (39) 

In carefully chosen sections 1-1 and 2-2, the total heads H1 and H2 are measured using a 

Pitot tube. Dividing H1 and H2 by the critical depth hc results in: 

*

1 1 / cH H h=  

*

2 2 / cH H h=  

The relative total head 
*

/ cH H h=  can be expressed as: 

2
*

2
/

2
c

c c

h q
H H h

h gh h
= = +         (40) 

1

1

1H

2

2

2H

Energy grade line

L
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The ratio / ch h corresponds by definition to the dimensionless parameter
*

h . Taking into 

account Eq. (39), Eq. (40) becomes: 

* *

*2

1

2
H h

h
= +         (41) 

This is a third degree equation in
*

h . Since  
*

1 1 / cH H h= and 
*

2 2 / cH H h=  are known, 

then Eq. (41) analytically gives the values of 
*

1h  and 
*

2h  both chosen less than 1 since the 

backwater curve is of H3-type. With the calculated values of 
*

1h and
*

2h , the corresponding 

values of ( )*
, 0F h are worked out using Eq. (33). Then, thanks to Eq. (31), one may 

calculate the value of the parameter  as: 

2

1

* *

2 1( , 0) ( , 0)

h

h

c

L

h F h F h


−
=

  

      (31a) 

The distance L separating the depths h1 and h2 in the respective sections 1-1 and 2-2 

(Fig.3) is measured experimentally. 

Once the parameter  has been calculated, one may deduce the value of the Strickler 

coefficient k according to Eq. (15) as: 

1/3

ch

g
k


=        (15a) 

Finally, using the relationship proposed by Hager (1987), one can calculate the required 

value of the absolute roughness  as: 

6

8.2 g

k
 =

 
 
 

        (42) 

EXAMPLE 1 

Let consider a horizontal channel of width B = 7m, conveying a flow rate: 

 Q = 28 m3/s 

The Manning roughness coefficient was previously determined as being: 

 n =0.025 m-1/3/s 
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From the critical flow depth corresponding to a control section, calculate and draw the 

the water surface profile over a length of L = 6 m following the control section. 

Solution 

Start from the control section, and then go up the liquid stream from downstream to 

upstream. The calculations will lead to the plot of the H2-type backwater curve. 

According to Eq. (39), the critical flow depth is as: 

hc = (
q2

g
)

1/3

= [
(Q/B)2

g
]

1/3

= [
(28/7)2

9.81
]

1/3

= 1.17710984m 

It is therefore considered that the first depth of the flow corresponds to: 

h1 = hc = 1.17710984m 

That is: 

*

1 1 / 1ch h h= =  

For the purposes of the calculation, a depth step 0.01h m = is considered. This means 

that the second depth to consider is: 

2 1 1.17710984 0.01 1.18710984h h h m= +  = + =  

More generally, one may write: 1i ih h h+ = +  , i = 1,2,... 

That is: 

ℎ2
∗ = ℎ2/ℎ𝑐 = 1.18710984/1.17710984 = 1.00849538 

The next step consists in calculating the dimensionless parameter  according to Eq. (15), 

knowing that Strickler coefficient k is such as k = 1/n: 

2 1/3 1/3 1/3

2 2

1.17710984
172.209315

0.025 9.81

c ck h h

g n g



= = = =  

Based on Eq. (33), calculate then the quantity 

* *

2 1( , 0) ( , 0)F h F hI − =    

According to Eq. (33): 

( )* * 4/3 *13/33 3 27
, 0

4 13 52
F h h h= − −  
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That is: 

( ) ( )*

1

3 3 27
, 0 1, 0 0

4 13 52
F h F = == − −  

F(h2
∗ , 0) =

3

4
× 1.008495384/3 −

3

13
× 1.0084953813/3 −

27

52
= 0.00010908 

That is: 

* *

2 1( , 0) ( , 0) 0.00010908F h F hI − = =   

According to Eq. (31), the length separating the depths 1h and 2h is as: 

2

1

* *

2 1
1 2

( , 0) ( , 0)

h

c c
h
L L h F h F h h I 

−
=  = −    =   

Whence: 

1 2
1.17710984 172.209315 0.00010908 0.0221109L m

−
 =   =  

That is: 

2

1
1 2 1 2

0 0.0221109

h

h
L L L m

− −
= +  =  =  

Continue the calculation with the procedure described above writing that: 

3 2

1 1
2 3

h h

h h
L L L

−
= +   

More generally, one may write: 

1 1

1

1

h h

h h hh

i i

L L L
i i→

+

= 
+

+ , i = 1, 2,… 

Note that for i = 1, 
1

1

0

h

h
L = .  

Based on this calculation procedure, table 1 was dressed. 
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Table 1: H2-type backwater curve calculations according to the proposed method 

3
28 /Q m s= , B = 7 m, 

1/3
0.025n m s−

= , L = 6 m, 1.17710984ch m= , 0.01h m =  

1h (m) 2h (m) 
*

1h  
*

2h   I L (m) L (m) 

1.1771098 1.18710984 1 1.1871098 172.20931 0.0001090 0.022110 0.022110 

1.18710984 1,19710984 1.00849538 1.0169907 172.20931 0.0003305 0.006700 0.089111 

1,19710984 1.20710984 1.01699076 1.0254861 172.20931 0.0005569 0.112901 0.202012 

1.20710984 1.21710984 1.02548615 1.0339815 172.20931 0.0007884 0.159822 0.361834 

1.21710984 1.22710984 1.03398153 1.0424769 172.20931 0.0010249 0.207774 0.569609 

1.22710984 1.23710984 1.04247692 1.0509423 172.20931 0.0012666 0.256769 0.826378 

1.23710984 1.24710984 1.0509723 1.0594677 172.20931 0.0015135 0.306816 1.133195 

1.24710984 1.25710984 1.05946768 1.0679630 172.20931 0.0017657 0.357928 1.491123 

1.25710984 1.26710984 1.06796307 1,0764584 172.20931 0.0020231 0.410114 1.901237 

1.26710984 1.27710984 1.07645845 1.0849538 172.20931 0.0022859 0.463385 2.364623 

1.27710984 1.28710984 1.08495384 1.0934492 172.20931 0.0025541 0.517753 2.882376 

1.28710984 1.29710984 1.09344922 1.1019446 172.20931 0.0028278 0.573228 3.455604 

1.29710984 1.30710984 1.1019446 1.1104439 172.20931 0.0031070 0.629821 4.085425 

1.30710984 1.31710984 1.1104439 1.1189353 172.20931 0.0033917 0.687544 4.772969 

1.31710984 1.32710984 1.1189353 1.1274307 172.20931 0.0036821 0,746406 5.519376 

1.32710984 1.33710984 1.1274307 1.1359261 172.20931 0.0039782 0.806421 6.325797 

 

The curve representing ( )h f L=  is plotted in Fig. 4 according to the values of Table 1. 

Over a length of 6.326 m, the line of the water surface evolves from the critical depth

1.17710984ch m= , in the control section, to the depth 1.337h m= . The evolution takes 

place according to the horizontal H2-type backwater curve. 

 

Figure 4: H2-type backwater curve according to the data of example 1. 

(o) Control section 1.17710984ch m=  
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Let's check the calculations by directly using Eq. (19): 

( )
* *
2 2

* *
1 1

* *1/3 *10/3 *

h h

h h

dL h h dh= −   

That is: 

( )
*
2

*
1

*1/3 *10/3 *

c

h

h

L h h h dh= −  

With 
*

1h =1 and 
*

2h = 1.1359261, the value of the integral calculated by appropriate 

software is such that: 

( )
*
2

*
1

*1/3 *10/3 *
0.0312062

h

h

h h dh = −−  

Whence: 

( )
*
2

*
1

*1/3 *10/3 *
1.177109 172.209384 0.0312062 6.325786131c

h

h

L h h h dh m= =   =−  

This value is identical to that calculated by the previous procedure and reported in table 

1, i.e. L = 6.325797 m. 

EXAMPLE 2 

This example is considered in order to show how to estimate the absolute roughness  of 

a wide rectangular channel from the knowledge of the H3-type backwater curve. 

A two-dimensional flow of a unit flow q = 0.099 m2/s passes through a supercritical flow 

regime on a horizontal plane. 

In a first section 1-1, the total head is H1 = 0.80 m, while in a second section 2-2 the total 

head is H2 = 0.40 m. Sections 1-1 and 2-2 are separated by a length L = 4 m. 

Determine the absolute roughness of the channel bottom. 
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Solution 

According to Eq. (39), the critical flow depth is as: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

= (
0.992

9.81
)

1/3

= 0.09996941𝑚 ≈ 0.10𝑚 

Let's calculate the relative total heads in sections 1-1 and 2-2, respectively such as: 

* 1
1

0.80

0.10

8

c

H
H

h
= = =  

* 2
2

0.40

0.10

4

c

H
H

h
= = =  

Using Eq. (41), one may obtain: 

*

1 0.254067h =   

and  

*

2 0.371196h =  

The relative depths 
*

1h and 
*

2h are less than 1, so it is an H3-type backwater curve. 

According to Eq. (33): 

( )* * 4/3 *13/3

1 1 1

3 3 27
, 0

4 13 52
F h h h= − −  

That is: 

𝐹(ℎ1
∗ , 0) =

3

4
× 0.2540674/3 −

3

13
× 0.25406713/3 −

27

52
= −0.3991532 

On the other hand: 

( )* * 4/3 * 13/3

2 2 2

3 3 27
, 0

4 13 52
F h h h= − −  

Whence: 

𝐹(ℎ2
∗ , 0) =

3

4
× 0.3711964/3 −

3

13
× 0.37119613/3 −

27

52
= −0.32230159 

According to Eq. (31) and considering the absolute value of the functions F, the parameter 

  is as: 
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 

2

1

* *

2 1

4

0.10 0.3991532 0.32230159( , 0) ( , 0)

h

h

c

L

h F h F h
 =

 −−
=

  

 

That is: 

 = 520.483566 

With regard to Eq. (15), the Strickler coefficient is such that: 

1/3

1/3 1/3

520.4835669.81
104.882899

0.10
/

c

m
h

g
k s

 
= = =  

According to Eq. (42), the absolute roughness is: 

6 6

8.2 8.2 9.81
0.00021561 0.216

104.882899

g
m mm

k



= 
   

= =   
  

 

EXAMPLE 3 

This example concerns the calculation of the C-type backwater curve by the proposed 

method. The calculation procedure will be identical to that described in example 1. The 

example of the C1-type backwater curve will be taken and whose first depth will be 

defined as h1 = 1.35 m. The following depths will be calculated considering a depth step

0.01h m = . So, for depths, one may write: 

1i ih h h+ = +  , i = 1,2,... 

On the other hand, for lengths, on may write: 

1 1

1

1

h h

h h hh

i i

L L L
i i→

+

= 
+

+ , i = 1, 2,… 

Consider a wide rectangular channel with slope S0 = 0.001147. The Manning’s n 

resistance coefficient was estimated to be n =1/90 m-1/3/s, implying that the Strickler 

coefficient is k = 90 m1/3/s. The unit flow rate through the channel is q = 4 m2/s.  

Calculate the length L separating the depths h1 = 1.35 m and h2 = 1.36 m. 

Perform the calculation using the differential equation which governs the gradually varied 

flow as well as the approximate relationships proposed in the theoretical part of the study. 



New theoretical considerations on the gradually varied flow in a wide rectangular 

channel  

107 

Solution 

According to Eq. (39), the critical flow depth is as: 

1/3 1/3
2 2

4
1.17710984

9.81
c

q
h m

g
= ==

   
   
   

 

The next step consists in calculating the dimensionless parameter  according to Eq. (15): 

2 1/3 2 1/3
90 1.17710984

871.809657
9.81

ck h

g



= = =  

According to Eq. (27), one may write: 

* 3/10

0 nS h 
−

= =  

That is: 

871.809657 00.0011 .947 9996568 1 = =   

It is therefore concluded that the slope of the channel is critical, meaning that: 

0 cS S S= = , 0 / 1cS S = = , 
*

nh = 1, i.e. nh = ch  

In this section, attention is paid to the following case: 

h > nh = ch ; i.e. 
*

h >1 

Therefore, equation (34) applies: 

*10/3 *1/3
* *

*10/3

1

1

h h
dL dh

S h
=

−

−
  

That is: 

*
2

*
1

*10/3 *1/3
*

*10/3
1

c

h

h

h h h
L dh

S h
=

−

−  

where, according to Eq. (20): 

*
2

*
1

*10/3 *1/3
* *

*10/3
( ,1)

1

h

h

h h
F h dh

h
=

−

−  
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Whence, one may write: 

ch
L

S
I=  

where: 

*
2

*
1

*10/3 *1/3
* * *

2 1*10/3
( , 0) ( , 0)

1

h

h

h h
dh F h F h

h
I −

−
 = =  −  

The first depth of the flow corresponds to: 

1 1.35h m=  

That is: 

*

1 1 1.35 / 1.17710984 1.14687692/ ch h h= = =  

Since a depth step 0.01h m = is considered, this means that the second depth to 

accounting for is: 

2 1 1.35 0.01 1.36h h h m= +  = + =  

That is: 

*

2 2 1.36 / 1.177109841 1.15537221/ ch h h= ==  

Using appropriate software package, the integral I is such that: 

I = 0.00781364 

The exact length L separating the two defined depths is then: 

2

1 0.00781364 8.0187555 8.02
0.001

1.17710984
exact

147
( )

ch

h

h
L

S
m mI  = =  

Recall the approximate Eq. (38): 

( )* *
,1 0.9389 0.2265F h h= −  

That is: 

( )1.14687692;1 0.9389 1.14687692 0.2265 0.85030274F =  − =  
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The length L1 separating the depth h = 0 (
*

0h = ) and the depth h = 1.35 m (

*
1.14687692h = ) is: 

1.35

0 872.623998
0.001

1.17710984
0.8503

1
0274

47

ch
L m

S
I  = =  

On the other hand: 

( )1.15537221;1 0.9389 1.15537221 0.2265 0.85827897F =  − =  

Whence, the length L2 separating the depth h = 0 m (
*

0h = ) and the depth h = 1.36 m (

*
1.15537221h = ) is: 

𝐿0
1.36 =

ℎ𝑐
𝑆
𝐼 =

1.17710984

0.001147
× 0.85827897 ≈ 880.80961𝑚 

So, the approximate length L separating the two defined depths h1 = 1.35 m and h2 = 1.36 

m is: 

L (approximate) = 
1.36

0L - 
1.35

0L = 880.80961 – 872.623998 = 8.18561137 m  8.2 m 

That is: 

8.18561137 8.0187555

8.018755
100 2.065 %

5

L

L

 −
=  =

 
 
 

 

One thus commits a relative error of about 2% when using the approximate Eq. (38). 

It should be noted that, for the considered C1-type backwater curve, the depth increases 

by only 1 cm over a distance of approximately L = 8 m. 

EXAMPLE 4 

This example addresses the problem of the gradually varied flow passing under a sluice 

gate, where it is required to determine the depth h2 of the flow at a fixed distance L and 

for a given initial depth h1. The slope of the channel is horizontal. 

The discharge is Q = 22.4 m3/s 

The channel width is B = 10 m 

The initial depth is h1 = 0.32 m 

The absolute roughness is  = 5 mm 
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Determine the depth h2 at the distance L = 60 m from h1. 

Solution 

The unit flow rate is: 

Q = Q/B = 22.4/10 = 2.24 m2/s 

According to Eq. (39), the critical flow depth is as: 

1/3 1/3
2 2

2.24
0.79972808 0.80

9.81
c

q
h m m

g
= = =

   
   
   

 

Since the slope is horizontal, the dimensionless parameter  is as: 

0 / 0cS S = =  

On the other hand, the relative depth 
*

1h  is: 

*

1 1 / 0.32 / 0.80 0.40ch h h= = =  

Thus, since 
*

1h < 1, the flow is characterized by a H3-type backwater curve. 

According to Eq. (33): 

( )* * 4/3 *13/3

1 1 1

3 3 27
, 0

4 13 52
F h h h= − −  

That is: 

( )* 4/3 13/3

1

3 3 27
, 0 0.4 0.4 0.3025417

4 13 52
F h =  − − = −  

Knowing the absolute roughness , Hager’s relationship (42) allows computing the 

Strickler’s k roughness coefficient as: 

1/3

1/6 1/6

8.2 9.81

0.005

8.2
62.11 /

g
k m s




= =   

The next step consists in calculating the dimensionless parameter  according to Eq. (15): 

2 1/3 2 1/3
62.11 0.8

365.05
9.81

ck h

g



= =  
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According to Eq. (31), one may write: 

2

1* *

2 1( , 0) ( , 0)

h

h

c

L

F h F h
h 

= +          

That is: 

*

2

60
( , 0) 0.3025417 0.09709039

0.80 365.05
F h = = −


−  

Applying Eq. (33) to 
*

2h results in: 

( )* * 4/3 * 13/3

2 2 2

3 3 27
0 0.09709039

4 13 52
;F h h h= −− − =  

Since the backwater curve is of H3-type, the relative depth 
*

2h must be less than 1 like its 

h1 counterpart. Therefore, calculations show that the required solution of the previous 

equation is: 

*

2 0.70896439036 0.709h =  

The sought depth h2 is then: 

*

2 2 0.70896439036 0.80 0.56717151 0.567ch h h m m = = =  

CONCLUSIONS 

The study focussed on the backwater curves generated by a gradually varied flow 

occurring in a wide rectangular channel. The differential equation governing such a flow 

has been transformed by the introduction of dimensionless parameters, such as , , and 
*

h  which represents the ratio of the depth h to the critical depth hc [Eq. (18)]. The 

dimensionless  parameter has been shown to be closely related to the normal relative 

depth [Eq. (27)] with which it plays an important role in the backwater curves 

classification.  

In order to show how to apply the new equation governing the flow, the cases of the 

horizontal and critical slopes have been considered. Theoretical development applied to 

these slopes has shown real mathematical interest. 

Four numerical examples have been proposed to enlighten the reader on the practical 

application of the advocated method. 
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APPENDIX 

This appendix is intended to show that the proposed method can be extended to the case 

of the non-wide rectangular channel. A theoretical demonstration will be given for this 

purpose and a new differential equation governing the gradually varied flow in a 

rectangular channel will be drawn. A numerical example will be exposed in order to show 

how to use the equation in the case of a horizontal channel slope. 

For a rectangular channel of width b and a flow of depth h, one can write: 

The unit flow rate: q =Q/b 

The water area: A = bh 

The wetted perimeter: P = b + 2h 

The hydraulic radius: Rh = A/P = bh/(b + 2h) 

Taking into account these considerations, Eq. (5) can be written after some modifications 

as: 

2/3 1/2

h f

Q
V k R S

A
= =           (5) 

2/3

2/3 1/2/

/ 2
fh

Q q b h
V k S

bh h b h
= = =

+

 
 
 

        (43) 

Let’s the aspect ratio be /b h = . Thus, Eq. (43) is rewritten as: 

2/3

2/3 1/2

2
fh

Q q
V k S

bh h




= = =

+

 
 
 

          (44) 

From Eq. (44), one may deduce that: 

2

4/3

2 10/3

2

f

q
S

k h




=

+

 
 
 

         (45) 

Let us put  as: 

2/3

2
k






+

 
=  

 
        (46) 

Inserting Eq. (46) into Eq. (45) results in: 
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2

2 10/3f

q
S

h
=         (47) 

It can be easily demonstrated that the critical slope is expressed as: 

2 1/3

c

c

g
S

h
=          (48) 

Recall the following relationship: 

2 3

0

1 / ( )

f

q gh
dL dh

S S
=

−

−
        (49) 

Inserting Eq. (47) into (49) results in: 

2 3

2

0 2 10/3

1 / ( )q gh
dL dh

q
S

h

=
−

−

         (50) 

The quantity 
2 2 10/3

/ ( )q h can be written as: 

2 2 10/3

2 10/3 1/3
/ (

( /
)

)c c

g
q h

h h h



=         (51) 

As well as the quantity
2 3

/ ( )q gh is written as: 

2 3 3
/ ( ( / )) cq gh h h

−
=         (52) 

Taking into account Eqs. (51) and (52), Eq. (50) becomes: 

3

0 2 10/3 1/3

1 /

( /

( )

)

c

c c

h h
dL dh

g
S

h h h

−

=
−

−

         (53) 

Let’s recall the following dimensionless parameters: 

*
/ ch h h=  and 

*
/ cL L h=  
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Thus, Eq. (53) can be written as: 

* 3
* *

0 2 *10/3 1/3

1

c

h
dL dh

g
S

h h

−

=
−

−

        (54) 

Let’s  be: 

2 1/3

ch

g


 =          (55) 

Comparing Eqs. (48) and (55) results in: 

1

cS
 =           (56) 

After some arrangements, Eq. (54) reduces to: 

*10/3 *1/3
* *

*10/3

0 1

h h
dL dh

S h



=
−

−
          (57) 

That is: 

*
2

2

1
*
1

*10/3 *1/3
*

*10/3

0 1
c

h

h

h

h

h h
L h dh

S h



=

−

−         (58) 

Or: 

*
2

2

1
*
1

*10/3 *1/3
*

*10/3
1

h

h

ch

h

h h
L h dh

h



=

−

−         (59) 

where:  

0 0 / cS S S = =          (60) 

Eq. (57) is of the same form as Eq. (18) which was determined for the case of the wide 

rectangular channel.   is similar to  and 0 0 / cS S S = =  is identical to 

0 0 / cS S S = = . 
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Eq. (57) is the definitive form of the differential equation which governs the gradually 

varied flow in a rectangular channel.  

EXAMPLE 5 

Take the data from example 4 and solve the problem by considering the channel as being 

rectangular and no longer as being wide as assumed in example 4. Eq. (55) is then 

applicable. 

Let us calculate the  parameter defined by Eq. (46): 

( )
2/3 2/3

1/310 / 0.32
62.11

10 / 0.32 2
59.5937128

2
/mk s






+
= =

+

 
=  

 
 

Thus, the  parameter defined by Eq. (55) is such that: 

2 1/3 2 1/3
59.5937128 0.80

336.069069
9.81

ch

g





= = =  

On the other hand, the relative depth 
*

1h is: 

*

1 1 / 0.32 / 0.80 0.40ch h h= = =  

Thus, since 
*

1h < 1, the flow is characterized by a H3-type backwater curve. 

According to Eq. (33): 

( )* * 4/3 *13/3

1 1 1

3 3 27
, 0

4 13 52
F h h h= − −  

That is: 

( )* 4/3 13/3

1

3 3 27
, 0 0.4 0.4 0.3025417

4 13 52
F h =  − − = −  

According to Eq. (59) for 0 0S =  ( 0 = ), one may write: 

( )
*
2

2

1
*
1

*1/3 *10/3 *

c

h

h

h

h

L h h h dh= −  
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which can be written in the following form: 

2

1

* *

2 1( , 0) ( , 0)c

h

hL h F h F h= −    

Whence: 

2

1* *

2 1( , 0) ( , 0)

c

h

hL
F h F h

h 
= +  

That is: 

*

2

60
( , 0) 0.3025417 0.0793729

0.80 336.069069
F h = = −


−  

Applying Eq. (33) to 
*

2h results in: 

( )* * 4/3 * 13/3

2 2 2

3 3 27
0 0.0793729

4 13 52
;F h h h= −− − =  

Since the backwater curve is of H3-type, the relative depth 
*

2h must be less than 1 like its 

h1 counterpart. Therefore, calculations show that the required solution of the previous 

equation is: 

*

2 0.74083644771 0.741h =  

The sought depth h2 is then: 

*

2 2 0.74083644771 0.80 0.59266916 0.592ch h h m m = = =  

In example 4, considering the rectangular channel to be wide, the calculated depth h2 was: 

2 0.567h m=  

So, there is a difference of about 2.55 cm only, corresponding to a deviation of 4.5% 

approximately. 

Note that 
*

2h  can also be determined by reading Fig. 1b corresponding to 
*

h < 1 or to the 

H3-type backwater curve. 


