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ABSTRACT  

The exactness in determining the radius of curvature of the downstream toe of a spillway 

ensures a smooth hydraulic transit from the upstream to the downstream of the structure. 

The literature mentions that this radius takes half the height of the dam if the latter is less 

than 10 m. Beyond this value, the values of the connection radius are numerically 

tabulated as a function of the height of dam and the head of water over the crest. The 

purpose of this technical note is to transform the numeric values into multiple dimensional 

curves and then present them as a single curve with a unique dimensionless mathematical 

formulation that is easy to apply. The relation thus proposed avoids to the users any kind 

of interpolation and intermediate dubious calculation. 
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RESUME 

La précision dans la détermination du rayon de courbure du pied aval d'un déversoir 

assure un transit hydraulique fluide de l'amont vers l'aval de l'ouvrage. La littérature 

mentionne que ce rayon prend la moitié de la hauteur du barrage si celui-ci est inférieur 

à 10 m. Au-delà de cette valeur, les valeurs du rayon de raccordement sont chiffrées 
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numériquement en fonction de la hauteur du barrage et de la hauteur d'eau sur la crête. Le 

but de cette note technique est de transformer les valeurs numériques en courbes 

multidimensionnelles, puis de les présenter sous la forme d'une courbe unique avec une 

formulation mathématique sans dimension unique et facile à appliquer. La relation ainsi 

proposée évite aux utilisateurs toute sorte d'interpolation et de calcul intermédiaire 

incertain. 

Mots-clés : Déversoir, charge, rayon de courbure, relation sans dimension. 

INTRODUCTION  

The spillway dam is a structure often encountered in hydraulic installations. A spillway 

is a structure built to divert or evacuate the water retained behind a fixed valve or dam, 

the height of which would exceed a certain limit (for example the crest of the structure). 

One of its fundamental functions is to release surplus waters from the reservoir in order 

to prevent overtopping and possible failure of the dam. 

The main function of dams and weirs is to divert the flow of a river in a water transport 

system towards a hydropower plant. They can also produce an additional drop and 

provide storage capacity. The weir is, hydraulically speaking, the ideal solution giving 

the greatest discharge coefficients. Its curved shape corresponds to that which a water jet 

would have on a thin weir for the corresponding design discharge. For higher or lower 

flow rates, areas of overpressure or depression appear on the downstream side. 

Depressions can cause cavitation and damage to the structure. Fortunately, work suggests 

that such a phenomenon will not occur before the load on the crest of the weir is greater 

than three times the design load (Sinniger and Hager, 1989; Chow, 1959). 

The two main types of spillways are controlled spillway and uncontrolled spillway. The 

first one has mechanical structures or gates to regulate the flow rate. This design allows 

nearly the full height of the dam to be used for water storage year-round, and flood waters 

can be released as required by opening one or more gates. The second one, in contrast, 

does not have gates. When the water rises above the crest of the spillway, it begins to be 

released from the reservoir. The discharge is controlled only by the depth of water above 

the reservoir's spillway. 

As water passes over a spillway and down the chute, potential energy converts into 

increasing kinetic energy. Failure to dissipate the water's energy can lead to scouring and 

erosion at the dam's toe (base). This can cause spillway damage and undermine the dam's 

stability. Energy can be dissipated in several ways such as steps, flip bucket, ski jump, or 

stilling basin (Chanson, 2015; Hager, 1992). It is this last work which interests our study. 

In fact, the downstream toe of the spillway is connected to the stilling basin by a curved 

shape, with a radius of curvature R, in order to damp the supercritical flow occurring in 

this part of the spillway.  
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There is empirical data in the literature (Naoumenko, 1975; Ibrahim and Alkhader, 1995) 

giving the value of R as a function of the height of the weir and the flow head above the 

crest. These data are tabulated and the present study proposes to put them in the form of 

an easy-to-use dimensionless equation. 

PROBLEMATIC  

In this technical note, we aim to transform the empirical data recorded in table 1 into 

graphs of several dimensional formulations, giving the variation of the radius of curvature 

R of the downstream toe of spillways as a function of the corresponding heights of dams 

P for each value of the head of water over the crest H, and then look for the possibility of 

transforming them into a single dimensionless curve (formulation). The dimensional 

curves and the final dimensionless equation give the values of the connection radius of 

the spillways of the overflow dams (Figure 1) with the stilling basins witch dissipating 

hydraulic energy due to the flood (discharge) releases above the spillways. 

Table 1: Connection radius as a function of the height of dam P and the head of 

water over the crest H (Naoumenko, 1975; Ibrahim and Alkhader, 1995) 

H (m) 1 2 3 4 5 6 7 8 9 

P (m)    R (m)      

10 3 4.2 5.4 6.5 7.5 8.5 9.6 10.6 11.6 

20 4 6 7.8 8.9 10 11 12.2 13.3 14.3 

30 4.5 7.5 9.7 11 12.4 13.5 14.7 15.8 16.8 

40 4.7 8.4 11 13 14.5 15.8 17 18 19 

50 4.8 8.8 12.2 14.5 16.5 18 19.2 20.3 21.3 

60 4.9 8.9 13 15.5 18 20 21.2 22.2 23.2 

 

 
Figure 1: Sketch of the radius of curvature of the downstream toe of a spillway 
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STATISTICAL DESCRIPTION OF THE DATASET 

The data from Table 1 can be statistically considered in two ways, one considers the 

values of the connection radius as a function of the heads of water H  discharged above 

the dam; this point of view is represented by figure 2. The second considers the same 

values of so-called radius as a function of the heights of the dams P; this point of view is 

represented by figure 3. Figures 2 and 3 show the violin graphs of radius values against 

of heads of water H and heights of dams P, respectively. Figure 2 indicates that the means 

and medians of the values of the radius approach more and more as the values of H 

increase, thus reflecting a tendency towards normality for the large values of the head 

water. Contrariwise in figure 3, this finding is reversed for the values of the same radius 

with respect to the values of the heights of the dams. 

 
Figure 2: Violin diagrams of different values of heads of water over the dams against 

of radius values 
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Figure 3: Violin diagrams of different heights of dams against of radius values 

TRANSFORMATION OF TABULATED DATA INTO DIMENSIONAL CURVES 

The graphical representation of the connection radius R as a function of the  height of the 

dam P gives nine curves corresponding to the number of values of the head of water over 

the crest H of the dam. These curves are illustrated in figure 4. For P < 10 m, a value of 

R = P/2 is recommended by Naoumenko (1975) and indicated in (Ibrahim and Alkhader, 

1995). 
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Figure 4: The graphical representation of the connection radius  as a function of the  

height of the dam  corresponding to the head of water over the crest  

From Figure 4 it can be seen that each of the nine curves, with a number of values of H, 

has a tendency which can be given, with statistical satisfaction, by a mathematical 

formulation. The nine mathematical formulations are given in Table 2 where we note that 

the trends are of parabolic type at almost perfect performances (R2 very close to 1). The 

relationships are ideal (R2 = 1) for the H equal to 3 m and 4 m and the weakest relation 

concerns the value of  equal to 9 m (R2 = 0.9792). 

Table 2: Mathematical formulations of radius R  as a function of the height of the 

dam p  corresponding to the head of water over the crest H 

Value of H (m) Formulation 
Coefficient of 

determination R2 

1 R = -0.0009P2 + 0.2920P + 8.78 0.9999 

2 R = -0. 0009P2 + 0.2920P + 778 0.9999 

3 R = -00007P2 + 0.2848P + 6.82 1 

4 R = -0.0007P2 + 0.2771P + 5.77 1 

5 R = -0.0012P2 + 0.2942P + 4.64 0.9998 

6 R = -0.0017P2 + 0.2998P + 3.62 0.9995 

7 R = -0.0019P2 + 0.2850P + 2.80 0.9992 

8 R = -0.0023P2 + 0.2550P + 1.87 0.9994 

9 R = -0.0011P2 + 0.1108P + 2.09 0.9792 
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DIMENSIONLESS RELATIONSHIP 

In this section the concern is focused on the possibility of existence of a single curve with 

dimensionless relation which encloses all the possibilities and scenarios and gives the 

value of the connection radius R whatever the values of P and H. 

To this end, the goal is reached by means of an adequate change of variable similar to 

those carried out in (Houichi, 2007; Houichi and Achour, 2007). The mathematical trick 

is to consider dimensionless variables according to Table 3. These new variables will 

have H/P in abscissa and R/P as ordinate. 

The unique relation is universal and it is of the power type with a coefficient of 

determination R2 = 0.9923 (figure 5), that is to say that this unique formulation explains 

99.23% of the variability of R/P according to H/P values. The relationship is written: 

0.6

1.2
R H

P P
=

 
 
 

          (1) 

The relation proposed is simple and easy to remember and encloses all the cases of Table 

1 for the radius of connection of the toe of the spillway and the stilling basin. 

Table 3: Dimensionless transformation of the variables H and R 

H 

(m) 

P 

(m) 

H/P (-) R/P (-) H 

(m) 

P 

(m) 

H/P (-) R/P (-) H 

(m) 

P 

(m) 

H/P (-) R/P (-) 

1 10 0.100 0.300 4 10 0.400 0.650 7 10 0.700 0.960 

20 0.050 0.200 20 0.200 0.445 20 0.350 0.610 

30 0.033 0.150 30 0.133 0.367 30 0.233 0.490 

40 0.025 0.118 40 0.100 0.325 40 0.175 0.425 

50 0.020 0.096 50 0.080 0.290 50 0.140 0.384 

60 0.017 0.082 60 0.067 0.258 60 0.117 0.353 

2 10 0.200 0,420 5 10 0.500 0.750 8 10 0.800 1.060 

20 0.100 0.300 20 0.250 0.500 20 0.400 0.665 

30 0.067 0.250 30 0.167 0.413 30 0.267 0.527 

40 0.050 0.210 40 0.125 0.363 40 0.200 0.450 

50 0.040 0.176 50 0.100 0.330 50 0.160 0.406 

60 0.033 0.148 60 0.083 0.300 60 0.133 0.370 

3 10 0.300 0.540 6 10 0.600 0.850 9 10 0.900 1.160 

20 0.150 0.390 20 0.300 0.550 20 0.450 0.715 

30 0.100 0.323 30 0.200 0.450 30 0.300 0.560 

40 0.075 0.275 40 0.150 0.395 40 0.225 0.475 

50 0.060 0.244 50 0.120 0.360 50 0.180 0.426 

60 0.050 0.217 60 0.100 0.333 60 0.150 0.387 
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Figure 5: Graphical representation of R/P as a function of H/P and dimensionless 

relationship 

RESIDUALS ANALYSIS FROM THE APPLICATION OF THE PROPOSED 

RELATIONSHIP  

The residuals resulting from the application of the proposed relation and which are in fact 

the difference between the actual values of R/P and the approximated values from the so-

called proposed relation, supposed to obey the normality estimated by the famous test of 

Shapiro-Wilk and would present a quantile-quatile cloud as regular as possible. 

Test of Shapiro-Wilk 

The Shapiro-Wilk statistic is equal to W = 0,96165, having a p-value = 0.08165 > 0,05, 

where the residual follows normality according to the Shapiro-Wilk test. 

Graphical visualization of the normality of the residuals 

The graphic visualization (figure 6) of the histogram of the residuals with respect to the 

theoretical density (curve in blue) and the Gaussian bell (curve in dotted red) as well as 

the approximation in value of the median and the mean of the residues (0,0016 and -

0,0011, respectively) indicate the aspect of normality of the residuals already confirmed 

by the Shapiro-Wilk test. The quantile-quatile cloud of figure 7 shows a regularity of 

distribution of the points which further confirms the aspect of desired normality. 
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Figure 6: Graphical comparison of the histogram of the residuals of the proposed 

relation and the normality through the Gaussian bell and the theoretical density 

 
Figure 7: Quantile-Quantile graph of the residuals of the proposed relation 
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CONCLUSIONS  

In this technical note the tabulated empirical data were transformed into graphs of several 

dimensional curves of parabolic variation (polynomial of order two) and then these were 

then transformed into a single dimensionless curve of variation power. The dimensional 

curves and the dimensionless final curve give the value of the connection radius of the 

toe of the spillways with hydraulic energy dissipation basins. The proposed relationship 

was ultimately justified by the analysis of the residuals by testing the aspect of normality 

statistically and graphically. 

NUMERICAL EXAMPLE 

Consider the following data: H = 2m, P = 40m. Compute the radius of curvature R and 

compare it with actual one.   

According to Eq. (1), R is: 

R = 40 x 1.2 x (2/40)0.6 = 7.955m. 

For the given data, the actual value is R  =  8.4m derived from table 3 corresponding to 

R/P = 0.21. 

Thus, the deviation is: 

7.955 8.4
100 5.3%

8.4

−
 =  
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