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ABSTRACT 

Manning-type relations do not contain the term viscosity, which limits their use to the 

field of rough turbulent flow. Strickler roughness coefficient k or n of Manning are 

estimated with great difficulty, requiring a proven practical experience. In order to 

simplify the problem and allow a rapid calculation of k, the main objective of the present 

study is to establish an explicit analytical relation which links k and the absolute 

roughness . To do this, it was useful to combine the rational Darcy-Weisbach 

relationship and the empirical Manning-Strickler formula. After some development, the 

function )();( * = k , where hD/*  =  is the relative roughness, was clearly defined. 

It was possible to calculate the mean value of the function  in the practical range of *

such that  is equal to a constant. This constant is different from that proposed by the 

literature. 

Keywords: Darcy-Weisbach, Friction factor, Manning-Strickler, Relative roughness, 

Rough turbulent flow, Roughness coefficient. 

INTRODUCTION 

Although it was developed for pipe-flow, the enthusiasm to use the Colebrook formula 

(1939) to estimate the friction factor f in open-channels is not recent. As an example, in 

1958 and 1959, Ackers used the Colebrook formula in open channel flow.  
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In 1963, a special task group of the American Society of Civil Engineers recommended 

the use of the Colebrook equation. This group felt that, with the exception of the rough 

turbulent regime, Colebrook's formula is more reliable than Manning's relationship for 

which the resistance coefficient n is constant.  

Another example is that of Frederiksen and De Vries (1965) who compared a large 

number of friction equations and ultimately decided to use Colebrook's formula to 

calculate the friction losses in wide channels. More recently, in 1985, on the 

recommendation of the Committee on Channel Stabilization of the Corps of Engineers, 

US Army, the Los Angeles District uses the Colebrook formula to calculate the friction 

losses in the Arizona diversion channel.  

In his conclusion, Falvey (1987) makes it clear that most of the major engineering 

organizations in the world are now using the Colebrook equation to estimate the frictional 

resistance of both open and closed conduit flows. He said that "The universal use of the 

Colebrook-White equation is recommended". 

In Europe, the preference to use Colebrook's formula for the computation of open channel 

flow resistance is growing (Hager, 1985). 

Note finally that Sinniger and Hager (1989) assert that the Colebrook’s formula remains 

applicable to any shape of channels and conduits. 

On the other hand, several research workers have developed friction factor formulae in 

the form of the Colebrook equation but whose constants differ (Henderson, 1966; 

Progress Report of the Task Force, 1963). However, compared to the values used for 

closed conduit flow, the range of variation of these constants is not at all very large. In 

fact, several researchers use the same values as those used for closed conduit flow, i.e. 

they favour the use of the original Colebrook formula as mentioned above (Progress 

Report of the Task Force, 1963; Ackers, 1958; 1959). 

For the calculation of the flow resistance coefficient, Colebrook's formula has the 

particularity of being applied for ranges of hydraulic parameters far beyond those reached 

by the tests.  

In hydraulic engineering, virtually all flows of interest such as rivers and man-made open 

channels are considered rough and the occurring flow is in complete turbulent state. The 

other two regimes of turbulent flow, that is to say smooth and transition are often 

encountered during laboratory tests but the second regime can take place in some practical 

cases of flow in pipes (Chow, 1959: Henderson, 1966). 

For the establishment of the hydraulically rough flow, the following condition must be 

satisfied (Hager, 1989):  

2.02
0 ])([30 − gSQ                                                                (1) 
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where  is the absolute roughness (m),  is the kinematic viscosity (m2/s), Q is the volume 

flow rate (m3/s), g is the acceleration due to gravity (m/s2), and 0S is the channel bed 

slope. 

If the flow is in a complete turbulent flow state, where effects of viscosity are neglected, 

the computation can be performed by the use of the well known Manning-Strickler 

formula. Owing to its simplicity of form and to the satisfactory results it lends to practical 

applications, the Manning-Strickler formula has become the most widely used of all 

uniform flow formulae for open-channel flow computation. This formula relates the mean 

velocity V of the flow to the hydraulic radius hR as follows: 

0
3/2 SRkV h=                         (2) 

where k (m1/3/s) is the Strickler resistance coefficient which is also a coefficient of 

roughness.  

According to Christensen (1984), Eq. (2) is restricted to: 

04.0/004.0  hR           (3) 

Moreover, the range of applicability of Eq. (2) is also limited by both slope and observed 

data (Chow, 1959; Falvey, 1987).  

The coefficient k is equal to the inverse of Manning's coefficient n, i.e. k = 1/n and varies 

from 20 for rough stone and rough surface to 80 m1/3/s for smooth concrete and cast iron. 

With the exception of the Darcy-Weisbach friction factor, most coefficients of resistance 

are all estimated empirically and are applied only to rough turbulent flow. There is no 

exact method to estimate the coefficient of resistance k or n so much so that different 

people can get different values. It takes a lot of experience to be able to estimate somewhat 

the average value of these coefficients. 

For mainly man-made channels of trapezoidal, circular shape or rectangular one Achour 

and Amara (2014, 2020a, 2020b) derive analytical relationships for estimating the 

Manning’s coefficient. 

For all these reasons, the idea of proposing a relationship which makes it possible to 

estimate the value of k from the known value of the absolute roughness constitutes the 

basis of the present technical note. The idea was proposed first by Hager in 1987. 

Nonetheless, the authors believe that Hager's theoretical approach is not rigorous and 

somewhat approximate, suggesting correcting Hager's relationship based on a more 

elaborate and congruous procedure. 

Given that the measurement of the absolute roughness  is not very precise, the relation 

must be such that k does not undergo large variations under the effect of the relative error 

made on the measurement of . The k- relationship that this study intends to establish 

will be very useful for man-made open channels. 
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FRICTION FACTOR 

According to Colebrook (1939), the friction factor f, known also as the Darcy-Weisbach 

friction factor, is expressed as: 














+−=−

fR
f

51.2

7.3
log2

*
2/1 

          (4) 

where hD/*  =  is the relative roughness, hD  is the hydraulic diameter equal to four 

times the hydraulic radius hR , and R is the Reynolds number.  

The Darcy-Weisbach relationship, which may also be applied to uniform flow in open 

channels, relates the channel slope 0S  as: 

g

V

D

f
S

h 2

2

0 =             (5) 

For higher values of R, the flow may be in a complete turbulent flow state, i.e. rough 

turbulent flow. It is characterised by the friction factor f also governed by Eq. (4) for

→R , yielding:  





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7.3
log2

*
2/1 

f                                                                  (6) 

Combining Eqs. (2) and (5) results in: 

6/1

3/2

2/1

24
hD

g

k
f =−              (7) 

Eq. (7) shows clearly that Eq. (6) can be formulated as the following power law: 

 hDf =− 2/1            (8) 

where 6/1= is assumed as a constant and gk /280615.0= .  

To verify the previous average value of , use was made of the theoretical computation 

values of equation (6) for different values of both hydraulic diameters and roughnesses. 

Considering the following practical ranges 0.10 m  Dh  10 m and 0.1 mm    50 mm, 

corresponding to a variation of the relative roughness * within the wide practical range 

0.0001 to 0.05, the exponent  was found to vary slightly from 0.092 to 0.22 so that 

could be effectively assumed as a constant, independent on both Dh and . Nevertheless, 

1/6  0.167 seems to be a slightly overestimated value of the exponent , knowing that 

0.156 would be the most appropriate value. In the above mentioned ranges of Dh and , 



Technical Note: Analytical relationship between the Strickler roughness coefficient and 

the absolute roughness in rough turbulent flow regime  

11 

the parameter  has been found strongly dependent on Dh and  values, since its 

corresponding range was from 3.60 to 9.10. The obtained coefficient of determination R2, 

greater than 0.99, proves the goodness of the fit of the derived relationships (7) or (8). 

Taking into account the range of variation thus obtained for , it is concluded that k varies 

between 40.3m1/3/s and 102m1/3/s theoretically. It is important to note that these values 

have been observed in practice (George et al., 1989).      

K-  RELATIONSHIP 

Eliminating 2/1−f between Eqs. (6) and (7) yields: 











=

*6/1

7.3
log

127.7


h

Dg

k
   (9) 

To make equation (9) dimensionless, multiply the two sides by 6/1 . Thus, one may 

obtain the following result: 











=

*

6/1*
6/1 7.3

log127.7





g

k
    (10) 

Let us denote by  the following function:  

g

k 6/1
=             (11) 

It is therefore clear, from both Eqs. (10) and (11), that on the one hand the function  

depends exclusively on the relative roughness *  and is not, on the other hand, a constant 

as stated by Hager (1987) who derived that  = 8.2 = constant. 

The function  is represented graphically in Fig. 1 as a function of the relative roughness 
* , according to Eq. (10). 
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Figure 1. Variation of  versus * according to Eq. (10). (•): max . (- - -):  = 8.2 as 

Hager's result (1987). 

Note how  increases sharply within a rather narrow range for lower values of the relative 

roughness *  and increases slightly beyond the horizontal dashed line, tending finally to 

the maximum value max . Beyond max , the curve decreases slightly and its variation 

may be approximate linearly to * . Setting the first derivative of Eq. (10) with respect to 

relative roughness *  equal to zero, i.e.: 

( )
0

09522.3/7.3ln515869.0
6/5*

*

*
=

−
=







d

d
                (12) 

yields: 

00917128.0* =  

Inserting this result into Eq. (10) results in: 

( ) 497.849665777.800917128.0/7.3log00917128.0127.7 6/1
max ==  

Inserting this result into Eq. (10), the following −maxk relationship is obtained:  

1
497.8

6/1
max =

g

k 

            (13) 

In order to compare our result with that of Hager (1987), let us calculate the mean value 

of the function  by integrating Eq. (10) in the practical range [0.0001; 0.05] of the 

relative roughness 
* mentioned previously. The mean value m  is as: 
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After calculations, the final result is: 

315.831470769.8 =m  

Inserting this result into Eq. (11) and rearranging results in the following k-  relationship: 

1
315.8

6/1

=
g

k 
                                                                  (16) 

This is the relationship that this study sought. It explicitly relates the Strickler roughness 

coefficient k to the absolute roughness . Thanks to the power 1/6, even if one assumes 

that the measurement of the absolute roughness  is affected by a relative error of 20%, k 

only undergoes a variation of 20/6  3.34%. 

Note finally that calculation shows that the deviation between Eq. (16) and that of Hager 

is about 1.4%.  

CONCLUSIONS 

The main objective of the study is to determine the relationship between the Strickler 

roughness coefficient k and the absolute roughness  in the rough turbulent flow domain, 

then compare it to the Hager relation established in 1987. To do so, it was necessary to 

combine the Darcy-Weisbach and Manning-Strickler formulae. After performing some 

manipulations, it was possible to define the dimensionless function  which contains both 

k and   [Eq. (11)]. It has been shown that this function is not a constant, but it depends 

exclusively on the relative roughness * =  / Dh [Eq. (10)]. The graphical representation 

showed, in particular, that  reached a maximum for * = 0.00917128 corresponding to 

max  8.497. Finally, the mean value of the function  was calculated as m  8.315 

thus deviating by 1.4% from the value proposed by Hager.  
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