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ABSTRACT 

The article looked at the possibility of making use of a triangular broad crested device, 

provided with a crest height P and a constant apex angle , as a flow measurement weir. 

The device has a triangular gorge which extends over a certain length L. This must be 

sufficient to allow the creation of a control section in a given section of the gorge, which 

represents the prerequisite condition for the proper functioning of the device. Inserted in 

a rectangular channel of width B for which the measurement of the flow rate Q is needed, 

the device causes a lateral contraction of the cross section located above the crest height 

P. It is shown that the dimensionless parameter BhmM /11 =  reflects the effect of this 

lateral contraction, where )2/(tgm = , and 1h  is the upstream flow depth counted above 

the crest. Due to the crest height P, the flow also undergoes vertical contraction. The 

effect of both lateral and vertical contractions can be grouped together in a single 

dimensionless parameter noted  such that )1/( *
1 PM +=  where 1

* / hPP =  denotes the 

relative crest height. 

After the detailed description of the device as well as the resulting flow, a dimensional 

analysis has been proposed in order to identify the parameters on which the discharge 

coefficient dC  of the device depends. It has been clearly demonstrated that the flow 

coefficient can be written as a function of both 1M  and *P , i.e. ),( *
1 PMCd = .  

In order to define the function , a theoretical approach is proposed based on the 

momentum theorem and the energy equation. This approach turned out to be judicious 

since it led to expressing the theoretical relationship that governs the discharge coefficient
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dC . This was presented as an explicit function of the dimensionless parameter , 

depending therefore on both 1M  and *P  as predicted by dimensional analysis. 

After that, experimental tests were rigorously carried out on six devices with different 

geometric characteristics. The objective was to verify the validity of the theoretical 

relationship governing the discharge coefficient. The tests were carried out under suitable 

hydraulic conditions and the flow rate Q and the upstream depth h1 were measured using 

high precision instruments. In total, 122 measurement points were collected and were 

carefully analyzed. The use of linear least-squares fitting method involving experimental 

and theoretical data gave the following trend line relationship: 

ThdThdExpd CCC ,,, 9999.0 =
 

It was thus concluded that the theoretical discharge coefficient relationship did not need 

any correction and it could be used with great confidence since the maximum deviation 

observed rarely reached 0.2%. This is also the case for the relationship that governs the 

flow rate Q. 

Keywords: Flow measurement, Triangular broad-crested weir, theoretical approach, 

discharge coefficient. 

INTRODUCTION 

It is universally known that the flow measurement in open channels is essentially based 

on establishing the Depth–discharge law commonly called "Stage-discharge" 

relationship. Knowing the geometric characteristics of the device, the flow rate is then 

calculated using this law after having measured the flow upstream of the device. When 

the calculated flow rate depends both on the geometry of the device and on the upstream 

flow depth, the device is then called "semi-modular" (Achour, 2003). This is generally 

the case with all devices used for measuring the flow rate in open channels, with the 

exception of siphons which are modular. One of the most famous devices of its time was 

the “Neyrpic mask module”, also called “Neyrpic modular siphon” (Carlier, 1998). The 

flow rate that is conveyed depends only on the geometric characteristics of the device, 

independent of fluctuations in the upstream level of the flow. This means that for an 

already designed device, of given geometry, the delivered flow rate is constant. These 

devices are completely static and their properties depend on the association of a profiled 

sill and an inclined mask, placed in such a way that they compensate for the effect of 

rising water level. However, this device is no longer used today although there are still a 

few specimens in operation worldwide. 

The stage-discharge relationship is most often determined by laboratory testing through 

what is commonly referred to as "Instrument calibration". The tests make it possible to 

deduce a curve, generally of power form, of type Q = ahb called a calibration curve which 

can be plotted in a logarithmic or in a Cartesian division coordinate system. The Q-h 
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relationship is specific to each device whose characteristics are contained in the constant 

"a". The calibration curve is then used to read the value of the flow rate Q when the 

upstream flow depth h is known. Other users prefer to translate this curve into a table of 

values which however often requires linear interpolations. The flow rate tables values 

contained in the ISCO Open Channel Flow Measurement Handbook (Teledyne ISCO, 

2021), eighth or later edition, or those provided by the manufacturer, are examples of 

tools that can be used for this purpose. 

The means of measuring the flow rate differ depending on whether the flow takes place 

in pipes or in open channels. But the something in common lies in the fact that the flow 

measurement is based on the principle of a flow contraction either vertical or lateral, and 

sometimes even both (Bos, 1976; Achour et al., 2003; Achour and Amara, 2021). This is 

the case with open channels that interests the present study and to which all due attention 

will be paid.  

Devices that use the property of a vertically contracted flow are those that have a crest 

height that the flow crosses. These are devices that are called "suppressed weirs" devoid 

of end contraction such that the crest is running all the way across the width of the channel 

so the head loss will be negligible. The geometric and hydraulic properties of such 

structures are detailed in specialized literature (SIA, 1926; Henderson, 1966; Achour et 

al., 2003).  

On the other hand, the devices which are the seat of both a lateral and a vertical 

contraction of the flow are called "Contracted weirs" endowed with an end contraction 

and a crest height as well (Bos, 1976; Achour et al., 2003; Vatankhah and Khamisabadi, 

2019). Due to the end contraction, they have a central opening which can be rectangular 

(rectangular weir), triangular (triangular weir) or trapezoidal shape (trapezoidal weir) 

allowing the crossing of the flow (Bos, 1976; 1989; Hager, 1986; Achour et al., 2003). 

Devices which take advantage on the property of a laterally contracted flow are devoid of 

crest height. They are designed in such a way that their geometry causes a lateral reduction 

of the flow crossing section. They can be composed of two thin plates placed across the 

flow on either side of the walls of the channel, allowing the flow to pass through a central 

opening. This is a sharp-edged width constriction which is the simplest configuration that 

can be conceived for a measuring flow device in open channels (Achour and Amara, 

2021). 

Moreover, devices which only cause lateral contraction of the flow are obviously devoid 

of crest height but are designed with a broad wall extending over a certain length L. This 

length should be sufficient for a control section to be created into a given section of the 

gorge because this is the prerequisite condition for the proper functioning of the device 

(Achour et Amara, 2022). 

The flow rate in open channels can also be measured using what are called "Hydraulic 

jump gauges", depending on field condition. The best known are the Parshall and the 

Venturi (Bos, 1976; 1989; Achour et al., 2003) and a little less used the modified Venturi 

(Hager, 1985). The design adopted for these devices is such that the flow passes through 
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a control section, followed by short slice of supercritical flow before the formation of the 

hydraulic jump. The presence of a hydraulic jump is an advantage since it makes it 

possible to raise the downstream body of water, which is desired above all when the 

slopes are low (Achour, 1989). In the control section, the corresponding critical depth is 

closely related to the flow rate to be measured. With the exception of the hydraulic jump 

gauge proposed by Achour in 1989, which is of triangular cross-section, all the other 

known hydraulic jump gauges are of rectangular cross-section.  

With regard to this study, it is on a broad-crested configuration that will focus all the 

required attention, with in addition that the device is provided with a crest height P. The 

flow should therefore experience the combined effect of lateral and vertical contractions. 

In fact, this is a broad-crested device provided with a crest height P, consisting of a 

triangular cross-section the gorge of which extends over a given length L. One of the 

attracting advantages of such a device is that the triangular section allows excellent 

accuracy for both high and low flow rates. This is not the case with the rectangular cross-

section for which acceptable precision in the measurement of the flow rate is only 

obtained for high flow depths. However, the existence of a crest height, like a barrier, is 

not advantageous insofar as the device no longer has the self-cleaning property. Indeed, 

solid debris carried by the flow coming from the upstream are likely to accumulate in 

front of the device for which regular cleaning is then necessary. 

What is expected is to subject the device to a thorough investigation as theoretical as 

experimental. The theory is expected to explain experimental results and to predict new 

results, while experiment is expected to check the validity of the theory and to gather and 

manage data for possibly modifying it. What one wishes to achieve at the end of the 

theoretical development is to establish the relationship that governs the flow rate. This 

relation should especially take into account the effect of the approach flow velocity which 

is an important flow rate influencing factor. It is also envisioned to write the theoretical 

flow rate relationship in the known form governing the triangular weir in order to extract 

the general expression of the discharge coefficient. It is this relationship that will be 

subjected to an intense experimental program in order to confirm its validity or to possibly 

correct it if deviations will be observed between experimental and theoretical values.  

MATERIAL AND METHODS 

Description of the device and the flow 

Fig. 1 shows a perspective representation of the apparatus placed in an approach channel 

of rectangular cross-section of width B. It consists over its entire length L of a triangular 

cross-section with a constant opening angle . In addition, its height is h0 equal to that of 

the channel and it is in particular endowed with a crest height P. The flow rate conveyed 

by the channel is noted Q while h1 designates the upstream flow depth counted above the 

crest, i.e. above the vertex of the triangle. 
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Figure 1: Perspective view of the device settled in a rectangular approach channel 

Fig. 2 clearly shows the device in a front view when it is in the dry state before its 

operation, whilst Fig. 3 illustrates the device in operation seen from downstream. It can 

easily be seen that the flow upstream of the device is calm and quiet, showing no 

appreciable disturbance of the free surface. This state is well confirmed by Fig. 4. 

The geometric forms of the device thereby generate two contractions of the flow. The 

first contraction is lateral due to the change from the upstream rectangular section to a 

reduced triangular section at the entrance of the device. Indeed, the cross-section 

decreases from the quantity oBh corresponding to the rectangular channel cross-section 

to 2
omh  representing the triangular cross-section, where ( )2/tgm = . The second one is 

vertical since the device is endowed with a crest height of P.  

 

Figure 2: The device in the dry state placed in a rectangular channel 
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Figure 3: View of the downstream side of the device in operation 

 

Figure 4: View of the flow upstream and downstream of the device. Flow from right 

to left. 

It is worth noting that the maximal depth above the crest is (Fig. 1): 

Phh o −=max,1           (1) 

This particularity corresponds to the following: 

( )
)(2

2/
2/

max,1
max

Ph

B

h

B
tgm

o −
===            (2) 

Considering the following dimensionless parameter: 

B

hm
M

1
1 =           (3) 
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it is then easy to show when referring to Eq. (2), that the maximal value of 1M is as: 

2

1max,1
max,1 ==

B

hm
M             (4) 

On the other hand, for low values of the depth above the crest or for large values of the 

width B of the approach channel, one may write 01 →M in accordance with Eq. (3). 

Taking these considerations into account, it is justifiable to write that: 

2/10 1 M             (5) 

The physical meaning of parameter 1M becomes clearer when one write what follows: 

cresttheabovesectionrRectangula

sectiontriangularContracted

1

2
11

1 ===
hB

hm

B

hm
M           (6) 

It is therefore a parameter that reflects the effect of the contraction of the cross-section of 

the supply channel located above the height crest P. In addition, the effect of the 

transverse contraction of the entire supply section of the channel, located upstream of the 

device, can be reflected in the following dimensionless parameter: 

)( 1

2
1

PhB

hm

+
=           (7) 

Eq. (7) can be rewritten as: 

*
1

1 P

M

+
=           (8) 

where *P is the relative crest height defined as: 

1

*

h

P
P =           (9) 

The smallest value that could take by the dimensionless parameter  is zero and 

corresponds either to 01 →M  or to large values of the relative crest height *P , i.e. 

→*P . On the other hand, the maximum value of  is obtained for the low values of 

the relative crest height *P , i.e. 0* →P , and for the largest value of 1M  as well, i.e. 

2/1max,1 =M . It is therefore obvious to write that: 

2/10          (10) 

In the next sections, it will be demonstrated the important role that the dimensionless 

parameter  plays in the flow rate and discharge coefficient relationships. 
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Regarding the flow, Fig. 5 shows the longitudinal profile revealing a subcritical flow in 

the upstream section 1-1 and supercritical inside the throat of the apparatus. The 

changeover from the subcritical flow to the supercritical flow results in the occurrence of 

a control section c-c where the flow depth is critical symbolized by ch . The existence of 

a critical regime within the gorge is the first and sine qua non condition for the correct 

functioning of the device as a flowmeter as long as the length L is sufficient for the 

emerging of a control section. The longitudinal profile shown in Fig. 5 has been observed 

experimentally for all the tested devices for which the chosen length L was sufficient. 

For the case of a triangular section, the critical depth ch is written as: 

5/1

2

22














=

mg

Q
hc         (11) 

where g is the acceleration due to gravity.  

 

Figure 5: Longitudinal profile of the flow upstream and within the device 

 

The total upstream head above the crest, defined as 1H (Fig. 5), is governed by the 

following relationship: 

g

V
hH

2

2
1

11 +=         (12) 

where 1V denotes the mean flow velocity. Noting 1A as the water area in section 1-1, the 

mean flow velocity 1V is given by the ratio 1/ AQ where 1A can be written as: 

( )PhBA += 11           (13) 

Thus, Eq. (12) reduces to: 

2
1

2

2

11
)(2 PhBg

Q
hH

+
+=         (14) 
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Eq. (14) can be rewritten as: 

12
11

2

2

1
)(2

1 h
PhhBg

Q
H















+
+=         (15) 

It thus appears that the total head 1H can be written in the following form: 

( ) 11 1 hH +=         (16) 

where  is a kinetic factor defined as: 

2
11

2

2

)(2 PhhBg

Q

+
=          (17) 

In other words, it amounts to writing that gVh 2/2
11 =  thus reflecting the fact that the 

approach velocity head is a fraction  of the upstream depth 1h . It is self-evident that the 

kinetic factor   is less than unity, varying within the range 10  . On may even show 

that  is equal to ½ in the case of critical flow. For the case where  → 0, the approach 

flow velocity is then insignificant implying that the total head 1H  can be assimilated to 

the upstream depth 1h  in accordance with Eq. (16). 

It will be seen in an appropriate section that Eq. (17) will play a momentous role in taking 

into account the approach flow velocity when deriving the theoretical relationship 

governing the flow rate passing through the device. 

Dimensional analysis and discharge coefficient dependency 

Through a qualitative functional relationship, the dimensional analysis allows 

highlighting the parameters on which the discharge coefficient dC  of the device depends. 

One may logically enumerate the ten physical parameters involved in the current 

problematic namely: the discharge Q, the upstream depth 1h  counted over the crest, the 

crest height P, the channel width B, the apex angle θ, the crest length L, the acceleration 

due to gravity g, the density of the flowing liquid ρ, the dynamic viscosity μ of the liquid, 

and the surface tension σ. These parameters are interrelated by the following functional 

relationship: 

( ) 0,,,,,,,, 1 = LBhgQf           (18) 

Using Vashy-Buckingham π theorem (Langhaar, 1951), the stage-discharge relationship 

as function of dimensionless parameters can be derived as follows: 
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












= 








 ,,,,, 111

2
1

2/3
1

2/1
2/5

1
2/1

P

h

B

h

L

hghhg
hgQ         (19) 

 denotes the function symbol expressing the discharge coefficient dC  relationship. One 

can notice that the first and the second quantities between the brackets correspond to the 

Reynolds number eR  and the Weber number eW  respectively. Consequently, the 

discharge coefficient dC  is functionally written as follows: 









=  ,,,,, 111

P

h

B

h

L

h
WRC eed          (20) 

It is worth noting that given the turbulent nature of the flow, the effect of the Reynolds 

number Re is not at all significant. In addition, the effect of the surface tension expressed 

by the Weber number We only appears for low flow rates Q and for small values of the 

apex angle  , that is to say for a tightened throat case. On the other hand, the influence 

of the length L can be neglected provided that the ratio 1/ hL  exceeds the threshold value 

defining the broad crested criteria. 

Taking all these considerations into account and considering )2/(tgm= , Eq. (20) reduces 

to: 









= m

P

h

B

h
Cd ,, 11         (21) 

On the other hand, combining the variables Bh /1  and m, one can form the dimensionless 

parameter BhmM /11 =  expressed by Eq. (3). Finally, Eq. (21) is written in its following 

final form: 

( )*
1,PMCd =          (22) 

Recall that *P  is defined by Eq. (9) as 1
* / hPP = . The  functional relationship will be 

theoretically defined in the next sections through the use of both momentum and energy 

equations. 

One of the simplified geometric configurations is that corresponding to a device devoid 

of crest height, i.e. P = 0 or P* = 0. In accordance with Eq. (22), the discharge coefficient 

for such a particular geometry depends solely on the dimensionless parameter

BhmM /11 = . Besides, this has been theoretically demonstrated by the authors in a recent 

study (Achour and Amara, 2022). 
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Theoretical relative depth and relative head relationships 

For the rest of the study, let us define the relative depth *
1h  as being the ratio between the 

upstream depth 1h  over the crest and the critical depth ch  in the section c-c inside the 

triangular gorge (Fig. 5). Thus: 

ch

h
h

1*
1 =         (23) 

It is worth noting that the relative depth *
1h  is greater than unity since the upstream depth 

1h  is greater than the critical depth ch . This can besides be observed in Fig. 5.  

Expressing the relationship which governs the relative depth *
1h  is fundamental for the 

theoretical development. For this, the resort to the momentum theorem, applied between 

two well-chosen sections of the flow, turns out to be very useful. The two sections 

involved are sections 1-1 and c-c shown in Fig. 5. However, it is agreed to allow some 

simplifying assumptions when applying the momentum equation, which are as follows: 

the pressure distribution is assumed to be hydrostatic in any section of the flow, whether 

in the supply channel or inside the device; the velocity distribution is assumed to be 

uniform in the chosen sections; the friction loss is assumed to be negligible over the short 

distance separating the two selected sections; the air resistance is negligible, and the effect 

of the streamline curvature is also neglected.  

The momentum equation translates that the variation in the quantity VQ  between the 

sections involved is equal to the sum of all the external forces which apply to these same 

sections. These forces must above all be projected onto a longitudinal axis, the direction 

of which is often that of flow. Let us define before that the following parameters namely: 

cc AQV /=  the critical velocity at section c-c (Fig. 5); cF  the pressure force acting on 

section c-c of cross-sectional area cA ; 1F  the pressure force acting on section 1-1 of cross-

sectional area 1A ; RF  the reaction force acting on the upstream side of the device of 

involved surface area RA . One may write rightly what follows: 

111 AhgF =           (24) 

where 1h  is the depth at the centroid of the cross-sectional area 1A  counted from the free 

surface flow. As section 1-1 is located in the rectangular part upstream of the device (Fig. 

5), and then one may write the following equations: 

2

1
1

Ph
h

+
=         (25) 

( )PhBA += 11         (26) 
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In the same form as Eq. (24), one can write the pressure force cF  as: 

ccc AhgF =          (27) 

where ch  is the depth at the centroid of the critical cross-sectional area cA  counted from 

the free surface flow. The section c-c (Fig. 5) being triangular, one may write what 

follows: 

3

c
c

h
h =         (28) 

and 

2
cc hmA =         (29) 

In the same way, the reaction force RF  can be written in the following form: 

RRR AhgF =           (30) 

where: 















+−

+−+
=

)(

)(23

6

)(

1

11

PhmB

PhmBPh
hR         (31) 

2
11 )( hmPhBAR −+=          (32) 

Application of the momentum equation in the longitudinal direction yields: 

Rcc FFFVVQ −−=− 11)(           (33) 

Replacing in Eq. (33) parameters by their respective expression and after making some 

simplifications and rearrangements, it follows that: 

0
)1(2

3

2

5
*

1
2*

1

5*
1 =

+
+−

P

M
hh         (34) 

Eq. (34) clearly shows that the relative depth *
1h  depends on both the dimensionless 

parameters BhmM /11 =  and 1
* / hPP = . 

Taking into account Eq. (8), Eq. (34) reduces to: 

0
2

3

2

5 2*
1

5*
1 =+− hh         (35) 

It is useful to remember that 0    ½ and 1*
1 h .  
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The graphic representation of Eq. (35) shows that *
1h decreases with increasing. Let us 

note two particular values resulting from Eq. (34): 

3572.1)0(*
1 ==h

 

and  

2667.1)2/1(*
1 ==h

 

One can therefore conclude that when  varies in the range [0; 0.5]. The relative depth 
*
1h  extends between the following extreme values: 1.2667 and 1.3572. 

As for the relative depth, the relative total head is defined as being the ratio between the 

upstream total head 1H  above the crest (Fig. 5) and the critical depth ch  inside the device 

in section c-c. That is: 

ch

H
H

1*
1 =         (36) 

Dividing both sides of Eq. (14) by ch  yields: 

2
1

2

2
*
1

*
1

)(2 PhhBg

Q
hH

c +
+=         (37) 

On the other hand, eliminating the discharge Q between Eqs. (11) and (37) results in: 

2
1

2

52
*
1

*
1

)(4 PhhBg

hmg
hH

c

c

+
+=         (38) 

After performing some transformations, Eq. (38) reduces to: 

2
1

4*
1

2
1*

1
*
1

)/1(4 hPh

M
hH

+

+=         (39) 

Eq. (39) can be simply rewritten as: 

4*
1

2
*
1

*
1

4 h

hH


+=         (40) 

As is Eq. (35), Eq. (40) is implicit in *
1h . However, what is of interest to point out is the 

fact that *
1H depends solely on  in accordance with both Eqs. (35) and (40). To avoid 

tedious calculations resulting from the simultaneous application of Eqs. (35) and (40), an 
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in-depth examination based on linear correlation analysis allowed deriving the following 

explicit )(
1*

1 
−

H  relationship: 

7368.00768.0
1

1*
1 +==
−


H

h
H

c
         (41) 

Eq. (41) was obtained with a very convincing coefficient of determination, i.e. 

9996.02 =R . In addition, the comparison between the approximate and exact values of
1*

1

−
H , computed using Eqs. (41) and (40) respectively, gave insignificant deviations. In 

fact, the maximum deviation observed in the whole aforementioned range values of  

was only 0.078% obtained for the largest value  = 0.5.  

Discharge and discharge coefficient relationships 

The theoretical flow rate relationship must be established imperatively taking into account 

the effect of the approach flow velocity. This effect is theoretically reflected in Eq. (17). 

Combining Eqs. (11), (15), (17), and (41) yields: 

( ) 2/5
1

2/52/5
12

2

1
hmgQ +=         (42) 

where the function  is governed by Eq. (41), that is to say: 

7368.00768.0)( +=        (41a) 

Inserting Eq. (42) into Eq. (17) and rearranging results in: 

( )
2

1

552
1

)/1(

1

4

1

hP

M

+

+
=


         (43) 

Let us define C  as the following function exclusively dependent on: 

2/5 =C         (44) 

Consequently, Eq. (43) reduces to: 

( )52 1
4

1
  += C         (45) 

It thus appears that the kinetic factor  depends solely on. It has been observed that 

throughout the range 0    ½ the kinetic factor  is much less than unity. Thus, as the 

result of a first order Taylor series expansion, it is relevant to write that ( )  511
5

++ . 

Inserting this result into Eq. (45) yields: 
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2

2

54 




C

C

−
=           (46) 

It is thus derived the explicit delta relationship which quantifies the effect of the approach 

flow velocity. This effect depends on the value of  through the C  function. The values 

of δ, grouped together in Table 1, clearly show that the effect of the approach flow 

velocity cannot be neglected, especially for large values of . 

Table 1: Values of the kinetic factor  according to Eq. (46) 

  ( ) 2/5
1 +  

0.10 0.00057339 1.00143409 

0.15 0.00132872 1.00332512 

0.20 0.00243675 1.00610301 

0.25 0.0039345 1.0098653 

0.30 0.00586608 1.01472979 

0.35 0.00828438 1.0208398 

0.40 0.01125336 1.02837129 

0.45 0.01485108 1.03754227 

0.50 0.01917377 1.04862592 

 

As an illustrative example that allows affirming that the effect of the approach flow 

velocity cannot be neglected in all cases, let us consider for this the value  = 0.40. 

According to table 1, the kinetic factor  is such that  = 0.01125336. The value of the 

quantity ( ) 2/5
1 +  involved in Eq. (42) expressing the flow rate Q is given by Table 1 as

( ) 05228911.11
2/5
=+ . This result reveals that, for  = 0.40, if one were to neglect the 

approach flow velocity, more than 5.2% of error would be then committed in the 

calculation of the flow rate Q. This would be detrimental in certain practical cases for 

which such imprecision is not advisable. 

Eq. (46) allows writing that: 

( )

2/5

2

2
2/5

4

5
1

1
1



















−

−
=+






C

C
        (47) 
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Thus, Eq .(42) is written as follows: 

2/5
1

2/5

2/5

2

2

4

5
1

1
2

2

1
h

C

C
mgQ 























−

−
=         (48) 

Eq. (48) is the first form of the stage-discharge relationship sought which can be written 

in the following reduced form usually assigned to triangular weirs: 

2/5
11, 2 hmgCQ d=         (49) 

where 1,dC is the discharge coefficient expressed as: 

2/5

2/5

2

2

1,

4

5
1

1

2

1







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














−

−
=

C

C
Cd         (50) 

Eq. (50) shows that the discharge coefficient depends solely on the dimensionless 

parameter  which is connected to the two variables 1M  and *P  according to explicit 

Eq. (8). According to this equation, the particular case where  → 0 corresponds either 

to 01 →M or to →*P . This results in the fact that 0=C  according to Eq. (44) and 

=0.7368 in accordance with Eq. (41a). Inserting these results into Eq. (50) yields: 

( ) 233.07368.0
2

1
0 2/5

1, ==→dC
 

On the other hand, for the greatest value of , i.e.  = 0.50, Eq. (41a) gives  = 0.7752 

and C  is as 264548.0=C  according to Eq. (44). Therefore, using Eq. (50) the discharge 

coefficient is such that: 

( ) 277.02774.07752.0

264548.0
4

5
1

264548.01

2

1
50.0 2/5

2/5

2

2

1, =



















−

−
==dC

 

These results allow concluding that in the range of variation of the parameter , that is to 

say 0    0.50, the discharge coefficient 1,dC  increases within the extreme values 0.233 

and 0.277. Fig. 6 below, plotted in accordance with Eq. (50), shows the variation of the 

discharge coefficient 1,dC  with respect to the dimensionless parameter . 
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Figure 6: Variation of the discharge coefficient 1,dC  with respect to  according to 

Eq. (50). 

 

The discharge coefficient can also be expressed in another form. For this, note that Eq. 

(48) can be written as follows: 
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After introducing the dimensionless parameter BhmM /11 =  and performing some evident 

simplifications, Eq. (48a) reduces to: 

2/3
1

2/5
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Eq. (51) can be written in the following simple form: 

2/3
12, 2 hBgCQ d=         (52) 

where 2,dC  is the new discharge coefficient which is expressed by the following 

relationship: 
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It is easy to demonstrate that Eq. (53) can also be written as follows: 
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C
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CPCd         (54) 

It is worth noting that the complete Eqs. (48) and (51) take into account the effect of the 

approach flow velocity through the quantities in parentheses. As it has been rightly 

mentioned before, this effect cannot always be neglected at the risk of introducing an 

undesirable imprecision in the calculation of the flow rate. To our knowledge, this is 

unfortunately often the case in previous studies relating to the flow measurement. 

Experimental validation 

The primary goal of this part of the study is to experimentally test Eq. (50) governing the 

theoretical discharge coefficient. It is a question of knowing if this relation is reliable such 

as it was expressed or if it will possibly be necessary to correct it in the case where the 

theoretical and experimental values of the flow are different. If this relation turns out to 

be faithful and accurate, then Eq. (48) which governs the flow rate would also be. For 

this, six devices were designed in thin metal and tested in a rectangular channel of 12 

meters long, 0.293 meter wide and 0.485 meter deep, fed by a pump providing a 

maximum flow rate slightly above 30 l/s. The hydraulic system used, made up of the test 

channel, pump and supply pipe, operates in a closed circuit to ensure permanent flow. 

Table 2 groups together the characteristics of these devices. 

Table 2: Geometric characteristics of the tested devices  

Device 
Height of the 

device (cm) 

Apex angle 

 (°) 

Crest height 

P (cm) 

Length L of 

the device 

(cm) 

Channel 

width B (cm) 

1 33 45 10.259 25 29.30 

2 33 45 8.232 25 29.30 

3 23 60 10.233 25 29.30 

4 23 60 8.232 25 29.30 

5 21 71 10.268 25 29.30 

6 21 71 8.136 25 29.30 

 

The flow rate Q has been varied in the wide range [0.79 l/s; 25.40 l/s] corresponding to 

measured upstream depths 1h covering the range [6.52 cm; 31.036 cm]. The crest heights 

P chosen as well as the upstream depth 1h  measured permit to the relative crest height 
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1
* / hPP =  varying within the following range 574.1292.0 *  P . The dimensionless 

parameter BhmM /11 =  has been varied in the following wide range 464.0138.0 1 M . 

Table 3 gives the ranges of the flow rates and upstream depths measured for each of the 

devices. As it can be seen, 122 couple of values (Q;h1) were obtained during the 

experimentation, which is a significant sample allowing a correct theoretical analysis. As 

many values were thus obtained for the experimental and theoretical discharge 

coefficients ExpdC ,  and ThdC ,  where subscripts “Exp” and “Th” denote “experimental” 

and “Theoretical” respectively. 

Table 3: Range of flow rates and depths used during the testing devices 

Device Number of 

measurements 
Flow rate range (l/s) 

Upstream depth range 

(cm)  (°) P (cm) 

45 
10.259 23 1.76  Q  25.40 11.01  h1  31.04 

8.232 19 1.705  Q  19.81 10.87  h1  28.18 

60 
10.233 20 1.355  Q  12.64 8.69  h1  20.72 

8.232 20 0.789  Q  12.68 7.01  h1  20.69 

71 
10.268 20 0.813  Q  12.81 6.52  h1  19.06 

8.136 20 0.89  Q  11.24 6.75  h1  18.09 

 

Since the present study is interested in the flow measurement in open channels, it is 

recommended to experimentally measure the flow rate Q with the greatest possible 

precision. To meet this requirement, an ultrasonic flowmeter, with an accuracy of around 

0.1 to 0.2 l/s, was used. As regards the upstream depth 1h , it is an important parameter in 

the evaluation of the flow rate. The more accurately the depth 1h  is performed, the more 

reliable and acceptable the flow rate evaluation. As indicated by Eq. (48) governing the 

flow rate Q, if a relative error  is made on the measurement of the depth 1h , this causes 

a 2.5 relative error on the flow rate evaluation. It is therefore recommended to take 

measurements of the flow depth using an apparatus as precise as possible. In order to 

minimize reading errors on the depth 1h , the double precision Vernier point-gauge 

graduated to 1/10th was used with an absolute error of 0.02 mm. 

For each test, i.e. for each pair of measured values ( ExpQ , 1h ), the experimental discharge 

coefficient of the tested device is calculated according to the following relationship in 

accordance with Eq. (49): 
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2/5
1

,
2 hmg

Q
C

Exp
Expd =       (49a) 

The experimental discharge coefficients ExpdC ,  thus calculated will be correlated to the 

theoretical discharge coefficients ThdC ,  given by Eq. (50) for knowing to what degree the 

two coefficients are related. The experimental values of the upstream depth 1h as well as 

the flow rates Q are given in tables 4 to 9 in the appendix, for the six tested devices. 

Thus, the calculation process of both ExpdC ,  and ThdC ,  described above was performed 

for the six tested devices which finally led to the plotting of their variation curve shown 

in Fig. 7.  

 

Figure 7: Variation of experimental discharge coefficient ExpdC , according to Eq. 

(49a) versus theoretical discharge coefficient ThdC , computed using Eq. 

(50). (- - -) Trend line 

 

Fig. 7 reveals that the experimental and theoretical values of the discharge coefficient 

align satisfactorily on a curve of linear trend which almost corresponds to the first bisector 

of equation ExpdC , = ThdC , . This important result highlights an outstanding agreement 

between experiment and theory which proves that the experimental tests were conclusive. 

Thus, it is quite fair to consider that the theoretical relationship (50) that governs the 

discharge coefficient is well-founded since it is accurate even though no calibration 

parameter has been employed. This has the logical consequence to state that Eq. (48) 

which governs the flow rate is also reliable. 

The use of linear least-squares fitting method involving experimental and theoretical data 

gave the following trend line relationship: 

ThdThdExpd CCC ,,, 9999.0 =           (55) 
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Eq. (55) was obtained with a coefficient of determination 9992.02 =R . 

It can be concluded with fulfillment that both the theoretical relationship (48) which 

governs the flow rate and Eq. (50) which gives the discharge coefficient do not need any 

correction. It has in fact been observed that the application of Eq. (50) in its current form 

causes a maximum deviation of less than 0.2% on the calculation of the discharge 

coefficient. Even better, it was found that in 73.8% of cases, Eq. (50) causes a deviation 

of less than 0.05%, while in 91.8% of cases the deviation remains less than 0.10%. 

CONCLUSION 

An in-depth theoretical as well as experimental study was carried out on a flow 

measurement device in open channels. It is a semi-modular triangular broad-crested weir 

provided with a crest height P. This is the general case of the study recently carried out 

by the authors on the same device without crest height.  

The primary intent of the study is to develop initially an efficient theory capable of 

deducing the equation governing the flow rate Q passing through the device and thus 

setting down the discharge coefficient relationship. However, the theoretical development 

foreseen should consider taking into account the effect of the approach flow velocity 

which is in most cases neglected in previous studies relating to flow measurement. For 

this, it has been judiciously recommended to rely on the momentum theorem associated 

with the energy equation. This is, without a doubt, a novelty in the theoretical 

development of flow metering.  

It is intended to design a device of a certain length L sufficient to accommodate a control 

section somewhere inside the triangular gorge faithfully illustrated in Fig. 5 (section c-c). 

The presence of a control section is the prerequisite for the correct functioning of the 

device as a flowmeter. 

The theory, later confirmed by experimental observations, predicted the change from 

subcritical flow upstream of the device to supercritical flow inside the gorge. These flow 

states are clearly recognizable in the photograph of Figs. 3 and 4. 

Choosing as reference sections 1-1 and c-c (Fig. 5), the theoretical development, based 

on the momentum and energy equations, has highlighted the complete form of the 

relationship governing the discharge while taking into account the effect of the approach 

flow velocity [Eq. (48)]. This is entirely in accordance with semi-modular devices since 

the flow rate is both dependent on the geometric characteristics of the device and on the 

upstream depth of the flow. From the theoretical equation governing the flow rate, it was 

then easy to deduce that which governs the discharge coefficient [Eq. (50)]. It is this 

relationship that is of primary interest to this study. As predicted by dimensional analysis, 

the theoretical relationship of the discharge coefficient confirmed that this one depends 

on both the effect of lateral and vertical flow contractions reflected by the dimensionless 
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parameters 1M  and *P  respectively [Eqs. (3) and (9)] grouped together in a single 

compound parameter  [Eq. (8)]. 

The study continued with the implementation of an intense experimental protocol aimed 

at verifying the reliability of the theoretical discharge coefficient relationship. For this, 

six devices of different geometries were designed and tested under appropriate hydraulic 

conditions (Table 3), having made it possible to collect no less than 122 experimental 

measurement points of the flow rate and the upstream depth. As many values were 

obtained for the experimental and theoretical discharge coefficients calculated according 

to equations (49a) and (50) respectively. The relative errors computed between these two 

discharges coefficients revealed an almost perfect agreement between the experimental 

measurements and the corresponding theoretical values (Fig. 7). The use of linear least-

squares fitting method involving experimental and theoretical data gave the following 

trend line relationship obtained with a coefficient of determination 9992.02 =R : 

ThdExpd CC ,, 9999.0=
  

It is therefore quite obvious that the theoretical relationship governing the discharge 

coefficient [Eq. (50)] requires no correction. Eq. (50) and therefore Eq. (48) which is 

closely associated with it can indeed be used with confidence due to their high accuracy. 

This claim is supported by the fact that the use of Eq. (50) causes, in the worst case, 0.2% 

maximum deviation between the theoretical and experimental discharges coefficients for 

the 122 collected measurement points.  

Some relevant advantages which characterize the device must be pointed out. It is in 

particular the triangular shape of the device which has the great advantage of allowing 

the measurement of both high and low flow rates with excellent accuracy when compared 

to the well-known rectangular notch. In fact, the accuracy on the measurement of high or 

low flow rates is the same due to the perfect geometric similarity which the triangular 

section provides. For the flow measurement in a narrow and deep rectangular approach 

channel, it is recommended to use such a device provided with a crest height in order to 

increase the opening angle and thus avoid the harmful effects of surface tension. Finally, 

it should be noted the ease of implementation of the device which is reduced to only 

welding thin plates to achieve the simple geometry of the device (Fig. 2). 

It should be noted that the disadvantage of the device lies in the fact that it is provided 

with a crest height in front of which solid debris can accumulate. The device thus designed 

is not therefore self-cleaning; on the contrary it requires often frequent manual cleaning 

for eliminating accumulated debris. 

 



Triangular broad crested weir theory and experiment  

59 

REFERENCES 

ACHOUR B., AMARA L. (2021). Discharge coefficient for a triangular notch weir 

theory and experimental analysis, Larhyss Journal, No 46, pp. 7-19. 

ACHOUR B., AMARA L. (2021). Discharge measurement in a rectangular open-channel 

using a sharp-edged width constriction - theory and experimental validation, Larhyss 

Journal, No 45, pp. 141-163. 

ACHOUR B., AMARA L. (2022). Flow measurement using a triangular broad crested 

weir - theory and experimental validation, Flow Measurement and Instrumentation, 

Vol. 83, 102088, pp. 1-10. 

ACHOUR B., BOUZIANE T., NEBBAR K. (2003). Débitmètre triangulaire à paroi 

épaisse dans un canal rectangulaire (Première partie), Triangular broad crested 

flowmeter in a rectangular channel (Part 1), Larhyss Journal, No 2, pp. 7-43, In 

French.  

BOS M.G. (1976). Discharge Measurement Structures, Laboratorium Voor Hydraulica 

Aan Afvoerhydrologie, Landbouwhogeschool, Report 4, Wageningen, May, The 

Netherlands. 

BOS M.G. (1989). Discharge Measurement Structures, Third Ed., Publication 20, 

International Institute for Land Reclamation and Improvement, Wageningen, The 

Netherlands. 

CARLIER M. (1998). Hydraulique Générale et Appliquée, General and Applied 

Hydraulics, Edition Eyrolles, EDF, Department of Studies and Research on French 

Electricity (EDF), 582p., In French. 

HAGER W.H. (1985). Modified Venturi channel, Proceedings, Journal of Irrigation and 

Drainage Engineering, American Society of Civil Engineers, ASCE, Vol. 111, IR1, 

pp. 19–35. 

HAGER W.H. (1986). Discharge Measurement Structures, Communication 1, 

Department of Civil Engineering, Federal Polytechnic School of Lausanne, 

Switzerland. 

HENDERSON F.M. (1966). Open Channel Flow, the McMillan Company, New York, 

N.Y, USA, 522p. 

LANGHAAR H.L. (1951). Dimensional Analysis and Theory of Models, John Wiley and 

Son Ltd, 1st Edition, 166p.  

SIA (1926). Contribution à l’étude des méthodes de jaugeage, Contribution to the study 

of gauging methods, Bulletin 18, Schw. Bureau Wasserforschung, Bern, Switzerland, 

In French. 



Achour B. & Amara L. / Larhyss Journal, 49 (2022), 37-66 

60 

TELEDYNE ISCO (2021). Open-Channel Flow Measurement Handbook,   

https://www.teledyneisco.com/en-us/water-and-wastewater/open-channel-flow-

measurement-handbook-request. 

VATANKHAH A.R., KHAMISABADI M. (2019). General stage-discharge relationship 

for sharp-crested power-law weirs: analytical and experimental study, Irrigation and 

Drainage, Vol. 68, Issue 4, pp. 808–821. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.teledyneisco.com/en-us/water-and-wastewater/open-channel-flow-measurement-handbook-request
https://www.teledyneisco.com/en-us/water-and-wastewater/open-channel-flow-measurement-handbook-request


Triangular broad crested weir theory and experiment  

61 

APPENDIX 

Table 4: Experimental values of h1and Q for the device defined by θ = 45°, 

m = 0.41421356, P = 0.10259 m, B = 0.293 m 

Run ExpQ (m3.s-1) 1h (m) 

1 0.00176 0.11008 

2 0.001975 0.11538 

3 0.002654 0.12962 

4 0.003447 0.14362 

5 0.005345 0.17042 

6 0.00625 0.1811 

7 0.00656 0.18462 

8 0.006915 0.18836 

9 0.007455 0.1941 

10 0.00812 0.20046 

11 0.0083295 0.20262 

12 0.00895001 0.2081 

13 0.009458 0.2127 

14 0.010242 0.21928 

15 0.01081 0.22386 

16 0.01128 0.2277 

17 0.012215 0.23482 

18 0.01418 0.24856 

19 0.016795 0.26536 

20 0.01748 0.26928 

21 0.0195 0.28078 

22 0.021585 0.29194 

23 0.0254 0.31036 
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Table 5: Experimental values of h1and Q for the device defined by θ = 45°, 

m = 0.41421356, P = 0.08232 m, B = 0.293 m 

Run ExpQ (m3.s-1) 1h (m) 

1 0.001705 0.10868 

2 0.001977 0.11524 

3 0.002575 0.12784 

4 0.002961 0.13504 

5 0.00441 0.15784 

6 0.00545 0.17144 

7 0.00637 0.18214 

8 0.006855 0.18752 

9 0.0074501 0.19354 

10 0.00818 0.2007 

11 0.00895 0.20788 

12 0.00955 0.21314 

13 0.01018 0.2184 

14 0.011604 0.2297 

15 0.012478 0.23628 

16 0.01407 0.24736 

17 0.01548 0.25654 

18 0.0175 0.26884 

19 0.01981 0.28184 
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Table 6: Experimental values of h1and Q for the device defined by θ = 60°, 

m = 0.57735027, P = 0.10233 m, B = 0.293 m 

Run ExpQ (m3.s-1) 1h (m) 

1 0.001355 0.08688 

2 0.001571 0.09214 

3 0.001803 0.09724 

4 0.00198333 0.10096 

5 0.002286 0.10678 

6 0.002452 0.10976 

7 0.002821 0.11598 

8 0.0031825 0.12156 

9 0.003672 0.12856 

10 0.004025 0.13326 

11 0.00448 0.1389 

12 0.005032 0.14536 

13 0.006712 0.16252 

14 0.00704 0.16552 

15 0.00764 0.1708 

16 0.00813 0.175 

17 0.008675 0.1794 

18 0.00928 0.1841 

19 0.010282 0.19152 

20 0.01264 0.20716 
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Table 7: Experimental values of h1and Q for the device defined by θ = 60°, 

m = 0.57735027, P = 0.08232 m, B = 0.293 m 

Run ExpQ (m3.s-1) 1h (m) 

1 0.0007896 0.07014 

2 0.001392 0.08774 

3 0.001501 0.09038 

4 0.001839 0.0979 

5 0.002038 0.1019 

6 0.002282 0.10658 

7 0.002692 0.11372 

8 0.002983 0.11834 

9 0.00421 0.13534 

10 0.00445 0.1383 

11 0.005695 0.15222 

12 0.00603 0.15562 

13 0.00643 0.1595 

14 0.00687 0.16364 

15 0.00755 0.16972 

16 0.00822 0.1753 

17 0.00908 0.18218 

18 0.01019 0.19038 

19 0.01131 0.1981 

20 0.012682 0.20694 
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Table 8: Experimental values of h1 and Q for the device defined by θ = 71°, 

m = 0.71329307, P = 0.10268 m, B = 0.293 m 

Run ExpQ (m3.s-1) 1h (m) 

1 0.000813 0.06522 

2 0.0011625 0.07512 

3 0.001361 0.07994 

4 0.00161667 0.08554 

5 0.00189 0.09098 

6 0.002157 0.0958 

7 0.0024895 0.10134 

8 0.002935 0.1081 

9 0.003372 0.1141 

10 0.003792 0.11942 

11 0.004015 0.12214 

12 0.004562 0.12832 

13 0.004795 0.13082 

14 0.006042 0.14306 

15 0.007254 0.15348 

16 0.00868 0.16442 

17 0.01005 0.1739 

18 0.01186 0.18522 

19 0.01238 0.1882 

20 0.01281 0.19064 
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Table 9: Experimental values of h1and Q for the device defined by θ = 71°, 

m = 0.71329307, P = 0.08136 m, B = 0.293 m 

Run ExpQ (m3.s-1) 1h (m) 

1 0.0008901 0.06752 

2 0.00118333 0.07558 

3 0.001363 0.07988 

4 0.001612 0.08534 

5 0.001828 0.08964 

6 0.002118 0.09498 

7 0.002597 0.10286 

8 0.002842 0.10654 

9 0.00321 0.11172 

10 0.003714 0.11824 

11 0.00442 0.12648 

12 0.004825 0.13086 

13 0.00553 0.13794 

14 0.00606 0.14286 

15 0.00651 0.14686 

16 0.007116 0.15198 

17 0.007915 0.1583 

18 0.00856 0.16308 

19 0.00949 0.1696 

20 0.01124 0.18086 

 

 


