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ABSTRACT 

An in-depth theoretical and experimental study is carried out on a semi-modular device 

for measuring flow in open channels, in the current instance a rectangular open-channel 

of width B. The device is provided with both a crest height P and a lateral contraction 

forming a gorge of opening width b extending over the entire length L of the apparatus. 

This is chosen so as to ensure in all cases the appearance of a control section inside the 

gorge. This is the prerequisite condition for the correct functioning of the apparatus as a 

flow measuring device. The flow undergoes the double effect of a lateral and vertical 

contraction which is reflected in the following dimensionless parameters Bb /=  and 

1
* / hPP =  where 1h  is the upstream flow depth counted over the crest height. It is shown 

that these two parameters can be grouped together in a single  variable such that

)1/( *P+=   varying in the range  1;0 .    

The main objective of the theoretical study is to derive the stage-discharge relationship 

(Q − 1h ) and therefore that of the discharge coefficient dC  of the device. This ultimate 

goal is comfortably achieved based on both the momentum theorem and the energy 

equation, after having made certain fully justified simplifying assumptions.  

The theoretical stage-discharge relationship thus obtained is consistent with semi-

modular devices since the flow rate Q depends both on the geometric characteristics of 

the device and on the upstream depth h1. Regarding the derived theoretical relationship 

governing the discharge coefficient, it explicitly indicates the dependence of Cd with 
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respect to the dimensionless parameter  exclusively, i.e.  and *P  parameters, which is 

predicted by dimensional analysis. 

The theoretical discharge coefficient relationship is subjected to an experimental program 

as intense as it is strict. The objective is either to validate this relationship or to correct it 

for the effect of a correction factor if the theoretical and experimental values present some 

deviations.  

No less than 240 measurement points are collected during tests carried out on thirteen 

devices with different geometric characteristics. The 240 experimental and theoretical 

values of the discharge coefficient are compared with each other revealing a near perfect 

agreement since the ratio ThdExpd CC ,, /  is extremely close to unity. This high-quality 

result suggests that the theoretical relationship governing the discharge coefficient can be 

used with confidence in its current form without undergoing any correction. Therefore, it 

is quite obvious to conclude that the theoretical relationship of the flow rate Q is also 

reliable and does not require any adjustment or correction. 

Keywords: Weir, discharge, flow measurement, rectangular broad-crested weir, Theory, 

Experiment, discharge coefficient. 

INTRODUCTION 

The measurement of the flow carried by a channel of given shape is often encountered in 

the practice of the hydraulic engineer. There are currently many flow measurement means 

and each of them has its own features, drawbacks and advantages. Whether the flow takes 

place in a pipe or in a free surface channel, the means of measuring flow differ (Bazin, 

1898: Lenz, 1943; De Coursey and Blanchard, 1970; Rehbock, 1929; SIA, 1926; 

Ramponi, 1949; Hager, 1986; Achour et al., 2003). 

Flow metering encompasses both conventional flow measurement devices using free 

overspill flow and for which the downstream head is low, as well as those relying on the 

ability of the hydraulic jump to raise the downstream water level. The first are designated 

by weirs provided with a crest height, while the second are called jump flow meters. 

Weirs are devices that utilize free flow over a vertical thin sill placed across the flow in a 

given cross-section of the channel, most often perpendicular to the longitudinal axis of 

the flow. They are called weirs and are based on a vertical contraction of the flow due to 

the presence of the crest height. This sill may have a rectangular, triangular, trapezoidal 

or circular notch. The flow carried by the channel is then determined by a simple point 

gauge reading of the upstream body of water above the crest of the weir as well as by the 

characteristics of the channel and of the measuring device. 

The thin-walled, non-lateral contraction weir is defined by its simple geometry 

represented by a vertical thin-walled sill. They are well-known in the literature as 

"suppressed weirs". This type of weir is one of the oldest, since the first research on this 
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device is due to Poleny in the 18th century more precisely in 1717 (SIA, 1926). The 

results could lead to the establishment of the relationship between the water level h of the 

flow above the crest and the unit flow rate q = Q / B, where Q and B represent respectively 

the discharge and the width of the rectangular channel in which the device is inserted. 

This relationship is well known in the literature as the "stage-discharge" relationship. For 

this type of weir, it has been shown theoretically that the discharge coefficient is of the 

order of 0.577, or exactly 1/3. However, Poleny's observations indicate that the 

discharge coefficient is equal to 0.64, which leads concluding to a deviation of about 11%. 

This difference was attributed by Boussinesq (1877) to the effect of the curvature of the 

liquid streamlines crossing the crest of the weir. This curvature plays a significant role 

and the increase in value of the discharge coefficient is mainly due to its effect. Several 

discharge coefficient relationships have been proposed in the past for this type of weir, 

the most important of which are those of Bazin (1898), Rehbock (1929), SIA (1924), 

Kindsvater-Carter (1957), and Sarginson (1972). 

In the Sarginson relationship, there is a parameter, noted W, which represents the Weber 

number. On the other hand, one may observe that all the discharge relationships, with the 

exception of the Kindsvater-Carter formula, contain three terms: i) a constant whose mean 

value is of the order of 0.61, ii) a term that takes into account the effect of surface tension 

and proportional to 1/h where h is expressed in meters. This term is found, through the 

Weber number, in Sarginson's relationship iii) a term which takes into account the effect 

of the approach flow velocity through the h/P ratio where P is the crest height. When h / 

P << 1, the effect of the approach flow velocity is weak and can be then neglected. This 

configuration in fact corresponds either to high crest heights P or to shallow upstream 

depths of the flow above the crest. 

The most widely accepted unit discharge relationship today is the second version of 

Rehbock's formula (1929). The unit discharge is expressed both as a function of the depth 

of the flow h above the crest of the weir and the ratio h / P. In this relation, h is expressed 

in meters. The relation is applicable for h / P < 0.5. The precision obtained on the flow 

measurement varies between 0.1 and 0.2%, provided that the geometry of the weir is 

respected, and that the downstream liquid nappe is completely aerated. 

As for the jump flow meters, these are devices presented in the form of a more or less 

long channel and which have a local reduction of the section or a minimum section. This 

reduction in the section is considered as a singularity and depending on the type of flow 

meter; it can be long or extremely small and can be characterized by a gradual or abrupt 

geometric variation. The shape of the cross section of the singularity can be arbitrarily 

chosen, but it is recommended that it be simple in order to avoid difficulties in its 

implementation. The bottom of the gauge channel may be horizontal or may have 

discontinuities. Some flow meters are characterized by a flat horizontal bottom and its 

section undergoes a gradual variation which results in a lateral contraction to a minimum 

section. They can also be characterized by an elevation of the bottom which results in an 

overhanging sill in the minimum contracted section. Finally, they can also be 

characterized by three sections which form a broken line. The sections located upstream 
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and downstream of the canal are horizontal, while the intermediate section is slightly 

inclined.  

The flat-bottom geometry has certain advantages over others, because it causes a 

minimum of head losses and allows easy evacuation of sediments which could 

accumulate in the presence of a sill which would in effect operate as a barrier. These 

devices are said to be self-cleaning because the solid sediments which accumulate at the 

bottom of the canal or the small debris which float on the surface of the water are easily 

evacuated by the flow downstream of the canal. These types of gauges are said “hydraulic 

jump flow meters” because they causes in their downstream part a hydraulic jump by 

transformation of the supercritical flow, immediately downstream of the contracted 

section, into a subcritical flow in the flared downstream part of the channel. 

The best known hydraulic jump flowmeter is the Parshall (Bos, 1976; Achour et al., 

2003). It has a converging section that ends with a narrowed section called a throat, 

followed by a negative step. This is extended by a short ascending section constituting 

the bottom of a slightly divergent section. The Parshall gauge is calibrated under a 

piezometric height h measured a few centimetres from the entrance of the converging 

section. The narrowed or divergent section results in the appearance of a supercritical 

flow regime flowing over the step. A critical flow depth hc appears in the throat. The 

divergent section located downstream of the device makes it possible to transform the 

supercritical flow into a subcritical flow by means of a hydraulic jump. 

There is also the Achour’s hydraulic jump flow meter (1989). The apparatus is composed 

of curved walls constituting the converging part of the device. These surfaces are 

designed in such a way that any cross section is represented by an isosceles triangle. The 

converging part of the device therefore constitutes a channel of triangular section with a 

variable opening angle. It is followed by a section of triangular channel with constant 

opening angle serving as a transition to the flow and in which the latter becomes critical. 

The whole assembly thus described has a single bottom of zero slope and a single 

longitudinal axis. It is thus self-cleaning. The flow passing through the Achour’s gauge 

depends on the depth of the flow at the immediate inlet of the device as well as its 

geometric characteristics, which is consistent with semi-modular devices. 

Another device, a hydraulic jump gauge, also well known is the Venturi flow meter (Bos, 

1976; Achour et al., 2003). The Venturi flow meter channel with a flat bottom consists of 

a channel of rectangular section with horizontal raft of width B which extends over a 

length equal to at least 1.25 m + 4hs, where hs is the maximum height of the body of water, 

of a rectilinear channel section of rectangular section of width b between 10 centimetres 

and 0.70B and which extends over a length L ≥1.5hs. The longitudinal axis of this section 

must coincide with that of the canal. However, we can tolerate a difference of 2 cm, of a 

diverging of a length D = 3(B - b) which can, if necessary be reduced by half, i.e. D = 

1.5(B - b). The walls of the Venturi meter channel must be smooth and vertical with a 

tolerance of 0.2%. All dimensions of the device must be observed with a tolerance not 

exceeding 2 mm. 
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The flow rate Q given by the Venturi meter depends in particular on two coefficients Ce 

and Cv. The coefficient Ce depends on the losses due to friction and turbulence and it is a 

function of h, b and L. It actually depends on the L / b and h / L ratios. Although Ce has 

been determined for L / b values between 0.20 and 5, the L / b = 2 value adopted by some 

manufacturers appears to be the most useful. The coefficient Cv depends on the velocity 

of the flow in the upstream channel. 

For all the flow rates to be measured by means of the flat-bottom Venturi meter channel, 

the following conditions must be met: if b/B is greater than 0.35, the height h of the 

upstream water body must be greater than or at the limit equal to 1.20ha, where ha is the 

downstream depth of the hydraulic jump, if b / B is less than 0.35, h must be greater than 

or equal to 1.30ha. 

The Parshall and Achour gauges, as well as the Venturi flow meter, are so-called semi 

modular, because the discharge Q is a function of both the upstream depth of the flow and 

their geometry. Their bottom is flat and their longitudinal axis merges with that of the 

channel in which they are inserted. This particularity gives these devices a self-cleaning 

character. 

Recent studies have revealed that both broad and thin crested flowmeters without crest 

height are a serious alternative for measuring flow rates in open channels (Achour, and 

Amara, 2021; 2022). For these, the theoretical flow rate relationship is very precise and 

they have many advantages especially broad crested weir designed in a triangular section. 

Such a section induces excellent precision in the evaluation of both high and low flow 

rates. 

The present study is interested in an extremely simple device which allows the 

measurement of the flow rate in an open-channel. It simply consists of a rectangular 

broad-walled U-shaped device with crest height and lateral contraction. The flow then 

undergoes the dual effect of the lateral and vertical contractions. The ultimate objective 

in studying this type of device is the theoretical determination of the crossing flow rate 

relationship that will allow deriving consequently that governing the discharge 

coefficient. The theoretical determination of the discharge relationship must be done with 

the requirement to take into account the effect of the approach flow velocity. As the 

literature indicates, few or even no theoretical previous studies on flow measurement take 

this effect into account.  

The theoretical discharge coefficient relationship will be subjected to an experimental 

program as intense as it is strict, the aim of which would be to confirm its validity or to 

correct it if the experimental and theoretical values present some deviations.  
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MATERIAL AND METHODS 

Description of the device and the flow 

Fig. 1 shows a schematic perspective representation of the device inserted in a rectangular 

approach channel of width B. The device is in the U shape with broad walls of height h0 

extending over a length L. One may perceive along the length L a gorge or a groove of 

width b through which the flow passes. This is a central opening contraction. 

 

Figure 1: Perspective view of the device placed in a rectangular approach channel 

of width B 

The device is removable and it can be placed momentarily in any cross-section of the 

approach channel to measure the flow rate Q. Once the measurement has been taken, the 

device is then removed. The apparatus is provided with a crest height P which is crossed 

by an upstream flow depth 1h .  

The particular case for the configuration represented by Fig. 1 is that for which P = 0. 

The apparatus is then reduced to two prismatic elements placed on either side of the walls 

of the approach channel. 

As clearly shown in Fig. 1, the width B of the rectangular approach channel suddenly 

narrows to a width b due to the presence of the device. The flow then undergoes a lateral 

contraction, the degree of which can be quantified by the ratio Bb /= . Furthermore, 

the following relationship gives the physical meaning of the ratio  :  

B

P

Ph +1

1h

P

Q

b

L

oh
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           (1) 

It is quite justified to write that 0 <   1 and that the limiting configuration  = 1 is 

reduced to a rectangular broad-crested sill widely cited in the specialized literature (SIA, 

1936; Henderson, 1966; Bos, 1976; 1979; Achour et al., 2003). This simple configuration 

is in use as a standard discharge measuring device and, as such, is clearly described in the 

British Standard 3680 of 1969. On the other hand, due to the presence of the crest height 

P (Fig. 1), the flow further undergoes a vertical contraction.  

The double effect of lateral and vertical contractions can be expressed by the following 

dimensionless parameter: 

)( 1

1

PhB

hb

+
=           (2) 

It is justified to write that the parameter, therefore, represents the ratio of the section 

located above the crest height to the full section located upstream of the device. After 

some manipulations, Eq. (2) reduces to: 

*1 P+
=


           (3) 

where *P is the relative crest height expressed as: 

1

*

h

P
P =             (4) 

For a given value of , i.e. for a given installation, it is obvious to write that  → 0 when

→*P . This configuration is obtained for large values of the crest height P, i.e. P →, 

or for low values of the upstream depth 1h , i.e. 01 →h .  In general, whatever the value 

taken by the parameters  and *P , the dimensionless parameter  is always less than 

unity and goes in the range 0 <  < 1. 

In the next sections, it will be demonstrated the important role that the dimensionless 

parameter  plays in the flow rate and discharge coefficient relationships. 

Fig. 2 schematically shows the longitudinal profile of the flow upstream and inside the 

device. This profile can be clearly seen in Fig. 3 and what was observed on the thirteen 

tested devices.  

Both in Fig. 2 and Fig. 3, a subcritical flow upstream of the device takes place, while a 

supercritical flow originates inside the device. The passage between these two natures of 

the flow is accompanied by the appearance of a control section c-c where the depth of the 
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flow, denoted ch , is critical. Fig. 3 illustrates the rectangular test channel and the device 

in operation as well as the resulting flow confirming that the flow upstream of the device 

is calm and quiet, showing no appreciable disturbance of the free surface. 

The device in operation and the flow produced therein are also shown in Fig. 4 from a 

downstream view. 

On the other hand, the presence of a control section is the prerequisite condition for the 

correct functioning of the device as a flow measuring means as long as the length L is 

sufficient for the emerging of a control section. 

For the case of a rectangular section, the critical depth ch is written as: 

3/1

2

2














=

bg

Q
h c           (5) 

where g is the acceleration due to gravity.  

 

 

Figure 2: Schematic longitudinal profile of the flow; Subcritical upstream flow in 

section 1-1; Critical flow depth hc in section c-c; Supercritical flow inside 

the device. 
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Figure 3: Snapshot of longitudinal profile of the flow upstream and inside the device; 

flow from right to left. 

 

Figure 4: View of the downstream side of the device in operation 
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The total upstream head above the crest, denoted by 1H (Fig. 2), is governed by the 

following relationship: 

g

V
hH

2

2
1

11 +=           (6) 

where 1V denotes the mean flow velocity given by the ratio 1/ AQ  where 1A  is the water 

area in section 1-1 expressed as: 

( )PhBA += 11             (7) 

Thus, Eq. (6) reduces to: 

2
1

2

2

11
)(2 PhBg

Q
hH

+
+=           (8) 

Eq. (8) can be rewritten as: 

12
11

2

2

1
)(2

1 h
PhhBg

Q
H















+
+=           (9) 

Eq. (9) takes the following form: 

( ) 11 1 hH +=         (10) 

where  can be interpreted as a kinetic factor governed by the following relationship:  

2
11

2

2

)(2 PhhBg

Q

+
=          (11) 

Eq. (11) simply translates the fact that the kinetic factor  is such that: 

1

2
1 2/

h

gV
=         (12) 

In other words, it amounts to writing that gVh 2/2
11 =  thus reflecting the fact that the 

approach velocity head is a fraction  of the upstream depth 1h .   

It is self-evident that the kinetic factor   is less than unity, varying within the range 

10  . It is easy to show that when the flow is critical the value of  is 1/2. For the case 

where  → 0, the approach flow velocity is then insignificant implying that the total head 

1H  can be assimilated to the upstream depth 1h  in accordance with Eq. (10). 

It will be seen in an appropriate section that Eq. (11) will play a momentous role in taking 

into account the approach flow velocity when deriving the theoretical discharge 
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relationship. It should be emphasized that this effect has been unfairly overlooked in 

previous studies related to flow metering that could cause appreciable errors when 

calculating the flow rate. This issue will be highlighted in the section devoted to discharge 

and discharge coefficient. 

Dimensional analysis and discharge coefficient dependency 

What is expected from the dimensional analysis is to identify the dimensionless 

parameters on which the discharge coefficient Cd of the device depends through a 

qualitative functional relationship. In the current problem which interests the study, one 

can enumerate ten parameters which influence the phenomenon namely: the discharge Q, 

the upstream depth 1h , the crest height P, the channel width B, the central opening width 

b, the crest length L, the acceleration due to gravity g, the density of the flowing liquid ρ, 

the dynamic viscosity μ of the liquid, and the surface tension σ. These parameters are 

interrelated by the following functional relationship: 

These parameters are interrelated by the following functional relationship: 

( ) 0,,,,,,,,, 1 = PLbBhgQf           (13) 

Using Vashy-Buckingham π theorem (Langhaar, 1951), the stage-discharge relationship 

as function of dimensionless parameters can be derived as follows: 





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2/1 ,,,,








         (14) 

Taking into account the form of the weir equation, one can deduce that  denotes the 

function symbol expressing the discharge coefficient relationship. one may thus easily 

recognize the Reynolds number Re as well as the Weber number We represented by the 

first and the second term in parentheses respectively. Consequently, the discharge 

coefficient dC is functionally written as follows: 














=

P

h

b

h

B

h

L

h
WRC eed

1111 ,,,,,          (15) 

It is useful to specify that given the turbulent nature of the flow, the effect of the Reynolds 

number Re is not at all significant. Moreover, the effect of the surface tension expressed 

by the Weber number We only appears for low flow rates Q and for small values of the 

central opening width b, that is to say for a tightened gorge case. On the other hand, the 

influence of the length L can be neglected provided that the ratio L/h1 exceeds the lower 

limit value defining the broad crested criteria. Taking all these considerations into 

account, Eq. (15) reduces to: 
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







=

P

h

b

h

B

h
Cd

111 ,,         (16) 

On the other hand, combining the variables Bh /1 and bh /1 , i.e. by making their ratio, 

one can form the dimensionless parameter Bb /= already expressed by Eq. (1). On the 

other hand, considering the inverse of the parameter Ph /1 , i.e. *
1/ PhP = , Eq. (16) can 

be then written in its following final form: 

( )*, PCd =          (17) 

It is thus demonstrated that the discharge coefficient Cd  of the considered device depends 

on both  and *P . It is useful to recall that these two dimensionless parameters have been 

grouped together in the single variable  expressed by Eq. (3). 

The functional relationship  will be theoretically defined in the next sections through the 

use of both momentum and energy equations. 

Theoretical relative depth and relative total head relationships 

The relative depth, noted *
1h , is the ratio of the upstream depth 1h to the critical depth ch

inside the device in section c-c (Fig. 2). Thereby: 

ch

h
h

1*
1 =         (18) 

It was found that the relative depth *
1h  could be expressed by a relationship derived from 

the application of the momentum equation. It is worth noting that the momentum equation 

applies while assuming some simplifying assumptions which considerably simplify the 

problem presently handled. These hypotheses result from the fact that hydraulic 

phenomena occurring in the subject tackled by the study are not yet mastered from a 

theoretical point of view. Recent studies have clearly shown that these simplifying 

assumptions are fully justified having no real impact on the final experimental results 

(Achour and Amara, 2021; 2022). These are namely: The pressure distribution is assumed 

to be hydrostatic in any section of the flow, outside or inside the device; in the selected 

sections 1-1 and c-c (Fig. 2), the flow velocity is assumed to be uniform; the friction loss 

between the selected sections, separated by a short distance, is assumed to be 

insignificant, and both effects of air resistance and of the streamlines curvature are 

neglected. 

The momentum theorem states that the variation of the quantity VQ  is equal to the 

algebraic sum of all the external forces acting on the selected sections, after having 

projected them on a longitudinal axis. It is simple to consider the direction of this axis as 

being that of the flow. 
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Let us define the external forces that act on the selected sections 1-1 of water area 1A  and 

c-c of water area cA  as: 1F  the pressure force acting on the section 1-1, cF  the pressure 

force acting on the selected critical section c-c, and RF  the reaction force acting on the 

upstream side of the device. The hydrostatic pressure forces 1F  and cF  can be 

respectively written as: 

( )2
11

2

1
PhBgF +=           (19) 

2

2

1
cc hbgF =           (20) 

while RF  is governed by the following relationship: 

RRR AhgF =          (21) 

where Rh  is the depth at the centroid of the upstream cross-section area RA  of the device 

on which the reaction force RF  is acting. Note that the vertical distance Rh  must be 

counted from the free surface flow. It is easy to show that: 

R
R

A

hbPhB
h

2
1

2
1 )(

2

1 −+
=          (22) 

where RA is as: 

11 )( hbPhBAR −+=          (23) 

After projecting the three acting forces on the longitudinal axis, the momentum equation 

becomes: 

( ) Rcc FFFVVQ −−=− 11                     (24) 

cV  denotes the mean velocity at the critical cross-section c-c (Fig. 2). Taking into account 

Eqs. (19), (20), (21), (15), along with considering that )/(/ ccc hbQAQV ==  and 

)](/[/ 111 PhBQAQV +== , Eq. (24) reduces to: 

0
1

2
3

*

*
1

3*
1 =

+
+−

P
hh


         (25) 

Let us recall that the dimensionless parameters  and *P are defined by Eqs. (1) and (4) 

respectively and which are both grouped in the same parameter  according to Eq. (3). 

Therefore, Eq. (25) can be rewritten as follows: 

023 *
1

3*
1 =+− hh         (26) 
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Thus, according to Eq. (26), the relative depth *
1h  depends solely on the dimensionless 

compound parameter .  

Eq. (26) is a third degree equation without second order term. It admits three real roots, 

only one of which satisfies the physical condition 1*
1 h , since chh 1 . Using the method 

described by Spiegel (1974), the only solution of Eq. (26) which must be retained is: 

( )







−= − 1*

1 cos
3

1
cos2h          (27) 

As with the relative upstream depth *
1h , the relative upstream total head *

1H  is defined as 

the ratio of the total head 1H  in the section 1-1 (Fig. 2) to the critical depth ch  in the 

section c-c inside the device, i.e.: 

ch

H
H

1*
1 =           (28) 

On the other hand, dividing both sides of Eq. (8) by ch  yields: 

chPhBg

Q
hH

2
1

2

2
*
1

*
1

)(2 +
+=        (29) 

Eliminating the discharge Q between Eqs. (5) and (29) results in: 

c

c

hPhBg

hbg
hH

2
1

2

32
*
1

*
1

)(2 +
+=        (30) 

After some simplifications and rearrangements, Eq. (30) reduces to: 

2*
1

2
*
1

*
1

2h

hH


+=         (31) 

With regard to Eqs. (27) and (31), it is obvious to conclude that the relative upstream total 

head *
1H  is exclusively dependent on the dimensionless compound parameter . Inserting 

Eq. (27) into Eq. (31) results in: 

( )
( )








−

+







−=

−

−






12

2
1*

1

cos
3

1
cos8

cos
3

1
cos2H          (32) 
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Eq. (32) is valid for 0 <  < 1. For a designated installation characterized by a given value 

of both  and *P , i.e. for a specified parameter, Eq. (32) allows explicitly calculating 

the relative total head *
1H . However, the form of Eq. (32) is somewhat complicated and 

inappropriate, not facilitating the simplicity of the theoretical equations expected during 

the remainder of the study. Therefore, it is recommended to use in place of Eq. (32) the 

following explicit relationship, simple and useful, resulting from an in-depth correlation 

analysis: 

( ) 5789.0103.0
1

1*
1 +===
−


H

h
H

c
          (33) 

Eq. (33) is valid in the wide range 0.1    0.65, thus encompassing most of the practical 

cases. It was obtained with the following quality coefficient of determination 9991.02 =R

. In the above stated range of the dimensionless parameter, the maximum relative 

deviation caused by the use of the approximate Eq. (33) on the 
1*

1

−
H  calculation is only 

0.16%, observed for the greatest considered value of , i.e.  = 0.65. The simple form of 

Eq. (33) will be very useful for the remainder of the theoretical development which is not 

the case by making use of the original Eq. (32). 

Discharge and discharge coefficient relationships 

Combining Eqs. (5), (10) and (33) yields: 

( ) ( ) 1

3/1

2

2

1 h
gb

Q
hc +=














=         (34) 

The following result can then be easily obtained: 

( ) 3
1

3322 1 hbgQ +=        (35) 

Elimination 2Q between Eqs. (11) and (35) and rearranging results in: 

( )32 1
2

1
 +=        (36) 

where the function  is governed by the following relationship depending solely on : 

2/3 =        (37) 

Eq. (36) can be rewritten as:  

( )
2

3
21
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
=

+
        (38) 
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It is quite obvious that the kinetic factor  depends only on the parameter . In the whole 

range 0 <  < 1, it is easy to observe that the kinetic factor  is always less than unity. 

This allows writing that ( ) ( ) 311
3

++ resulting from the first order Taylor series 

expansion. Inserting this convenient result into Eq. (38) results in: 

2

2

32 




−
=        (39) 

Eq. (39) along with Eq. (37) allows explicitly computing the kinetic factor   that reflects 

the effect of the approach flow velocity, depending solely on the dimensionless parameter 

.  Table 1 groups together the calculated values of the kinetic factor  for a given value 

of the relative crest height *P . As it can be seen, the effect of the approach flow velocity 

cannot always be neglected, in particular for large values of .  

Table 1: Values of the kinetic factor   for some values of the parameter  according 

to Eq. (39) along with Eq. (37) 

*P      2/3)1( +  

0.40 

0.1 0.07142857 0.032063 0.00051481 1.00077232 

0.15 0.10714286 0.04854788 0.00118263 1.00177447 

0.2 0.14285714 0.06533689 0.00214821 1.00322405 

0.25 0.17857143 0.08243145 0.00343246 1.0051531 

0.3 0.21428571 0.09983296 0.00505894 1.007598 

0.35 0.25 0.11754282 0.00705435 1.01060017 

0.4 0.28571429 0.13556241 0.00944905 1.01420701 

0.45 0.32142857 0.15389312 0.01227771 1.01847297 

0.5 0.35714286 0.17253634 0.0155801 1.02346094 

0.55 0.39285714 0.19149344 0.01940207 1.02924382 

0.6 0.42857143 0.21076578 0.02379676 1.03590667 

0.65 0.46428571 0.23035473 0.02882606 1.04354921 

 

As an illustrative example that allows affirming that the effect of the approach flow 

velocity cannot be neglected in all cases, let us consider for this the value  = 0.50. 

According to table 1, the kinetic factor  is such that  = 0.0155801. Let us then calculate 
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the quantity ( ) 2/3
1 +  involved in Eq. (35) expressing the flow rate Q. The calculation 

gives: 

( ) 02346094.11
2/3
=+  

When taking for example the case corresponding to  = 0.50 and *P = 0.40, if one were 

to neglect the approach flow velocity, more than 2.3% of error would be then committed 

in the calculation of the flow rate Q. This result would be undesirable in certain practical 

cases that would require more precision.  

Eq. (39) allows writing that: 

( )

2/3

2

2
2/3

2

3
1

1
1













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



−

−
=+




          (40) 

Inserting Eq. (40) into Eq. (35) yields: 
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=          (41) 

Eq. (41) can be rewritten as: 

2/3
1

2/3

2/3

2

2

2

3
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1
2

2

1
hbgQTh 


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
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






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



−

−
=         (42) 

The subscript « Th » denotes « Theoretical ». 

It is useful to remember that the functions  and  are governed by Eqs. (33) and (37) 

respectively. Eq. (42) is the first form of the flow rate Q passing through the device. Eq. 

(42) clearly shows that the flow rate is a function both of the geometric characteristics of 

the device and of the upstream depth of the flow. It therefore perfectly conforms to the 

so-called semi-modular devices.  

Eq. (42) can be written in the following reduced form like that of rectangular weirs: 

2/3
11, 2 hbgCQ d=         (43) 

where the discharge coefficient 1,dC  is as follows depending solely on the dimensionless 

parameter : 
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2/3
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22/3
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
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






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



−

−
=




dC           (44) 

It is the theoretical relationship of the discharge coefficient of the considered device, 

taking into account the effect of the approach flow velocity reflected by the quantity in 

parentheses. It is this relationship that will have to be compared with experimental results. 

On the other hand, rearranging Eq. (42) results in the following second formulation of the 

discharge Q: 

2/3
1

2/3

2

2

2

3
1

1
2

2

1
hBgQTh 







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












−

−
=        (45) 

Eq. (45) can be written in the form of Eq. (43) yielding: 

2/3
12, 2 hBgCQ d=        (46) 

where the discharge coefficient 2,dC  is governed by the following relationship: 

2/3

2

2
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2
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1

1

2


















−

−
=


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dC        (47) 

It is worth noting that Eq. (42) or Eq. (45) governing the flow rate is conforms to that of 

a semi-modular apparatus since Q is given as a function of the geometric characteristic 

of the device represented by the width b of the contraction central opening and of the 

upstream depth 1h  as well. 

Experimental validation 

The main objective of this part of the study is the experimental verification of Eq. (44) 

governing the discharge coefficient dC  of the device. It could be that Eq. (44) either 

validated in its current form or corrected if deviations between the experimental and 

theoretical values are observed.  If the validity of Eq. (44) would be confirmed, then Eq. 

(42) which governs the flow rate Q would also be.  

To carry out the experimental program implemented, no less than thirteen devices with 

different geometric characteristics were designed and carefully tested. They were 

designed in transparent Plexiglass. 
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The channel used for the tests is a rectangular channel 12 meters long, 0.293 meter wide 

and 0.485 meter deep the overall view of which is shown in Fig. 5.  

 

Figure 5: Overview of the rectangular test channel. 

The channel is supplied by a pump providing a maximum discharge Q slightly above 30 

l/s. The entire hydraulic system operates in a closed circuit to ensure a permanent flow. 

Table 2 shows the data relating to the thirteen tested devices, more specifically their 

geometric characteristics, as well as the ranges of the flow rate Q used for each of them. 

It also indicates the ranges of values of the measured upstream depths 1h corresponding 

to each flow rate range. For all the tests carried out, the length L of the tested devices was 

kept constant equal to L = 0.25 m, which was sufficient for the appearance of the control 

section inside the gorge. 

As can therefore be seen from Table 2, no less than 240 measurement points of the pair 

of parameters (Q, 1h ) were collected and the values of which are fully reported in the 

tables 3 to 15 in appendix. It is a sufficiently representative sample to perform a reliable 

experimental analysis.  
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Table 2: Geometric characteristics, range of flow rate and upstream depth used 

during the thirteen tested devices   

 = b/B 

Crest 

height P 

(cm) 

Number of 

Measurements 
Discharge range (l/s) 

Range of upstream 

depth (cm) 

0.5017 10 18 2.11  Q  26.68 4.630  h1  23.972 

0.5017 8 19 1.48  Q  23.57 3.662  h1  21.990 

0.5017 6 18 2.00  Q  23.22 4.412  h1  21.620 

0.4505 8 19 1.63  Q  24.67 4.258  h1  24.698 

0.4505 6 19 2.03  Q  21.53 4.800  h1  22.324 

0.3993 10 17 2.42  Q  22.50 5.908  h1  25.332 

0.3993 8 20 1.68  Q  24.96 4.642  h1  27.020 

0.3993 6 17 1.92  Q  19.76 5.028  h1  23.074 

0.3481 8 18 2.06  Q  18.86 5.834  h1  24.834 

0.3481 6 19 2.93  Q  23.72 7.300  h1  28.744 

0.3003 10 18 2.72  Q  18.40 7.764  h1  27.204 

0.3003 8 20 2.81  Q  18.46 7.892  h1  27.202 

0.3003 6 18 1.43  Q  17.87 5.056  h1  26.534 

 

As the study focuses on the problem of a flowmeter and mainly the validation of the 

discharge coefficient relationship, it is therefore recommended to measure the hydraulic 

parameters involved with irreproachable precision. As will be seen later, the hydraulic 

parameters which are involved in the experimental discharge coefficient are both the flow 

rate Q and the upstream depth 1h . To meet this requirement, an ultrasonic flowmeter, with 

an accuracy of around 0.1 to 0.2 l/s, was used for the measurement of the flow rate Q. As 

for the upstream depth 1h , it was measured using a double-precision Vernier point-gauge 

graduated to 1/10th in order to minimize reading errors on the depth causing an absolute 

error of 0.02 mm only. 

For each test, i.e. for each pair of measured values ( ExpQ , 1h ), the experimental discharge 

coefficient ExpdC , of the tested device is calculated in accordance with Eq. (43). That is to 

say: 
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2/3
1

,
2 hbg

Q
C

Exp
Expd =         (48) 

where the subscript “Exp” denotes “Experimental”. Eq. (48) was used to calculate every 

experimental discharge coefficient of the same device corresponding to all the flow rates 

belonging to the tested series. The corresponding theoretical discharge coefficients ThdC ,

were calculated according to Eq. (44) in which fully parameters are known, especially the 

two functions  and .   

At the end of the calculations, 240 experimental discharge coefficients ExpdC ,  and as 

many theoretical discharge coefficients ThdC ,  were obtained. The 240 values of ExpdC ,

and ThdC ,  were compared and their variation plotted in Fig. 6. 

 

Figure 6: Variation of experimental discharge coefficient ExpdC ,  versus theoretical 

discharge coefficient ThdC ,  computed according to Eq. (44). (- - -) Trend 

line 

Through Fig. 6, one may observe with satisfaction an almost perfect alignment of the 

experimental and theoretical values of the discharge coefficient on a straight line. 

Experience thus proves the validity of the theory, in this instance Eq. (44) governing the 

theoretical discharge coefficient, even though no calibration parameter was employed. 

The use of linear least-squares fitting method involving experimental and theoretical data 

gave the following trend line relationship: 

ThdExpd CC ,, 9999.0=           (49) 
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Eq. (49) was obtained with a coefficient of determination 9995.02 =R . Eq. (49) clearly 

shows that the ratio ExpdC , / ThdC ,  is extremely close to unity, which allows concluding 

that the theoretical Eq. (44) does not need any correction. It can be used with confidence 

to estimate with a great precision the discharge coefficient of the device. Thus, this is 

obviously also the case for the theoretical relationship (42) governing the flow rate Q. 

CONCLUSION 

The semi-modular rectangular cross-section flow meter with a lateral contraction has been 

rigorously subjected to theoretical and experimental investigations. The theoretical 

development had the dual ambition of deriving the relationship that governs the flow rate 

Q and consequently that of the discharge coefficient dC while taking into account the 

effect of the approach flow velocity.  As the literature has shown, this effect has always 

been overlooked in previous studies on flow metering in open channels.  

This dual objective was achieved with ease and rigor by making use of the momentum 

theorem and the energy equation as well. This choice was motivated by the fact that the 

momentum theorem and the energy equation have unmistakably proved their worth in 

recent studies carried out by the authors. This is how the theoretical Eqs. (42) and (44) 

which govern the flow Q and the discharge coefficient dC respectively have been 

successfully established. The flow rate relationship was in accordance with semi-modular 

devices since Q depends both on the geometric characteristics of the device as well as on 

the upstream depth of the flow.  

Eq. (44) that governs the discharge coefficient dC contains two functions  and  

depending exclusively on the dimensional parameter  defined as being the contraction 

rate of the inflow cross-section. It reflects at the same time the double effect of the lateral 

and vertical contractions of the flow.  

The study continued with an experimental program that was both intense and exacting. 

The ultimate goal was to corroborate or possibly correct the theoretical Eq. (44) governing 

the discharge coefficient dC , knowing that if it would be verified then Eq. (42) which 

governs the flow rate Q would also be.  

For this, no less than thirteen devices with different geometric characteristics have been 

designed and tested in an appropriate hydraulic installation. Each of the devices was 

placed in the test channel and underwent a series of values of the flow rate Q which 

generated as many values of the upstream depth 1h . In total, 240 experimental points for 

the couple (Q, 1h ) were collected for the thirteen devices involved during the tests. It is 

an extremely representative sample which would allow a reliable experimental analysis. 
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The experimental values of the discharge coefficient calculated according to Eq. (48) 

were compared with those of the theoretical discharge coefficient resulting from Eq. (44). 

It was then observed with complete satisfaction an excellent agreement between them as 

clearly shown in Fig. (6). This confirmed on one hand the correctness of the theoretical 

approach and that on the other hand the simplifying assumptions on which it was based 

were founded since they had no effect on the quality of the results. 

Ultimately, the use of linear least-squares fitting method involving experimental and 

theoretical data showed, with an excellent coefficient of determination, that the ratio 

ExpdC , / ThdC , ratio was very close to unity. This high-quality result allowed affirming that 

the theoretical Eq. (44) governing the discharge coefficient did not need any correction 

and, therefore, can be used with complete confidence in its current form. 

It is desirable to end this conclusion by stating some advantages and disadvantages of the 

apparatus advocated in the present study. The device has many advantages namely : it is 

simple in design; it can be placed in any section of the canal as it is removable; it allows 

easily calculating the flow rate carried by the channel by an extremely reliable theoretical 

relationship which only requires knowing the geometric characteristic of the device as 

well as the upstream depth of the flow; the theoretical flow rate relationship does not 

require any correction and the device does not need to be calibrated. 

On the other hand, two main disadvantages should be noted. The first relates to the 

rectangular shape of the device. It is well known in the field of flow measurement that 

the rectangular section does not allow good precision in the gauging of low flow rates, 

unlike the triangular section. This imprecision is mainly due to the reading of shallow 

depths and it is therefore recommended to measure them with a high precision device 

such as that used in the present study in order to minimize reading errors. The second 

disadvantage is that the apparatus is provided with a crest height P which acts as a barrier 

resulting in the accumulation of solid deposits. Due to the presence of the crest height P, 

the device is unfortunately not self-cleaning requiring periodic cleaning. 
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APPENDIX 

Table 3: Experimental values of h1 and Q for the device defined by b = 0.147 m,  

P = 0.10 m, B = 0.293 m 

Run 1h (m) ExpQ  (m3.s-1) 

1   

2 0.0463 0.002115 

3 0.09542 0.00644 

4 0.10986 0.007995 

5 0.11901 0.00905 

6 0.12902 0.01025 

7 0.13788 0.011367 

8 0.14786 0.01265 

9 0.15674 0.01385 

10 0.16466 0.01494 

11 0.17476 0.01638 

12 0.18346 0.01766 

13 0.1912 0.01882 

14 0.20136 0.0204 

15 0.20832 0.0215 

16 0.21544 0.02264 

17 0.2248 0.02415 

18 0.23316 0.02555 

19 0.23972 0.02668 
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Table 4: Experimental values of h1 and Q for the device defined by b = 0.147 m, 

P = 0.08 m, B = 0.293 m 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.03662 0.001487 

2 0.04432 0.001994 

3 0.06076 0.00324 

4 0.0721 0.004215 

5 0.08564 0.005498 

6 0.10076 0.00707 

7 0.109 0.00798 

8 0.12104 0.00938 

9 0.13256 0.010797 

10 0.1425 0.01208 

11 0.1548 0.01373 

12 0.16186 0.0147 

13 0.1704 0.01592 

14 0.17986 0.01729 

15 0.18698 0.01836 

16 0.19706 0.0199 

17 0.2048 0.021137 

18 0.21236 0.02234 

19 0.2199 0.02357 

 

 

 

 

 

 

 

 



Achour B. & Amara L. / Larhyss Journal, 49 (2022), 85-122 

112 

Table 5: Experimental values of h1 and Q for the device defined by b = 0.147 m,  

P = 0.06 m, B = 0.293 m 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.04412 0.002002 

2 0.0543 0.002755 

3 0.0664 0.00376 

4 0.0823 0.00524 

5 0.09366 0.0064 

6 0.09948 0.00702 

7 0.10654 0.007805 

8 0.11622 0.00893 

9 0.12494 0.00998 

10 0.13412 0.01113 

11 0.14524 0.012585 

12 0.15878 0.01444 

13 0.16682 0.01558 

14 0.1767 0.01703 

15 0.18178 0.01778 

16 0.19536 0.01987 

17 0.2072 0.02175 

18 0.2162 0.02322 
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Table 6: Experimental values of h1 and Q for the device defined by b = 0.132 m,  

P = 0.08 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.04258 0.001673 

2 0.05792 0.002685 

3 0.0718 0.00373 

4 0.0849 0.00483 

5 0.0987 0.00609 

6 0.11106 0.0073 

7 0.11986 0.00821 

8 0.13274 0.0096 

9 0.14228 0.01068 

10 0.1534 0.012 

11 0.16412 0.0133 

12 0.17118 0.0142 

13 0.18568 0.0161 

14 0.19708 0.01764 

15 0.2086 0.01925 

16 0.21904 0.02072 

17 0.22948 0.02225 

18 0.2365 0.0233 

19 0.24698 0.0249 
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Table 7: Experimental values of h1 and Q for the device defined by b = 0.132 m,  

P = 0.06 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.048 0.00203 

2 0.05196 0.002295 

3 0.06288 0.003078 

4 0.08324 0.00474 

5 0.09348 0.00566 

6 0.10924 0.0072 

7 0.12132 0.00845 

8 0.13082 0.00949 

9 0.14044 0.01058 

10 0.14612 0.01125 

11 0.15456 0.01227 

12 0.16604 0.0137 

13 0.1785 0.01529 

14 0.18498 0.01615 

15 0.19306 0.01725 

16 0.19988 0.0182 

17 0.2076 0.01927 

18 0.21452 0.02025 

19 0.22324 0.02153 
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Table 8: Experimental values of h1 and Q for the device defined by b = 0.117 m,  

P = 0.10 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.05908 0.00242 

2 0.10974 0.006245 

3 0.1202 0.00718 

4 0.12902 0.008 

5 0.14092 0.00916 

6 0.15022 0.0101 

7 0.1577 0.01088 

8 0.16368 0.01153 

9 0.1735 0.0126 

10 0.18382 0.01376 

11 0.19038 0.01452 

12 0.20072 0.01575 

13 0.20998 0.01686 

14 0.21878 0.01796 

15 0.23034 0.01945 

16 0.2421 0.02097 

17 0.25332 0.0225 
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Table 9: Experimental values of h1 and Q for the device defined by b = 0.117 m,  

P = 0.08 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.04642 0.001684 

2 0.05914 0.00244 

3 0.10884 0.00621 

4 0.12532 0.00771 

5 0.1384 0.00897 

6 0.14928 0.01008 

7 0.1626 0.01148 

8 0.17556 0.01293 

9 0.18898 0.01445 

10 0.20246 0.01606 

11 0.20902 0.01686 

12 0.21588 0.01772 

13 0.22328 0.01867 

14 0.22948 0.01944 

15 0.23568 0.02028 

16 0.24244 0.02115 

17 0.24884 0.02201 

18 0.25558 0.02292 

19 0.26172 0.02377 

20 0.2702 0.02496 
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Table 10: Experimental values of h1 and Q for the device defined by b = 0.117 m,  

P = 0.06 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.05028 0.00192 

2 0.07726 0.00371 

3 0.0863 0.00439 

4 0.10596 0.00602 

5 0.1157 0.00688 

6 0.12402 0.00765 

7 0.13758 0.00897 

8 0.1441 0.00963 

9 0.15408 0.01067 

10 0.16426 0.01178 

11 0.17112 0.01252 

12 0.18132 0.01369 

13 0.18958 0.01465 

14 0.19954 0.01584 

15 0.2101 0.01715 

16 0.2202 0.0184 

17 0.23074 0.01976 
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Table 11: Experimental values of h1 and Q for the device defined by b = 0.102 m,  

P = 0.08 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.05834 0.002067 

2 0.06214 0.002276 

3 0.08306 0.00355 

4 0.09474 0.00434 

5 0.11632 0.00593 

6 0.12266 0.00644 

7 0.1319 0.007195 

8 0.1399 0.00787 

9 0.14826 0.00859 

10 0.16436 0.01006 

11 0.17394 0.01097 

12 0.18298 0.01185 

13 0.19564 0.01312 

14 0.20824 0.01443 

15 0.21934 0.01562 

16 0.22912 0.016704 

17 0.2378 0.01766 

18 0.24834 0.01886 
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Table 12: Experimental values of h1 and Q for the device defined by b = 0.102 m,  

P = 0.06 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.073 0.002935 

2 0.08562 0.003745 

3 0.09738 0.00456 

4 0.11028 0.00551 

5 0.1254 0.00671 

6 0.13848 0.0078 

7 0.15236 0.00902 

8 0.16692 0.01037 

9 0.17882 0.01152 

10 0.20098 0.01376 

11 0.20876 0.01458 

12 0.2196 0.01575 

13 0.229 0.01678 

14 0.23718 0.0177 

15 0.24946 0.01912 

16 0.26044 0.02042 

17 0.26814 0.02132 

18 0.27718 0.02242 

19 0.28744 0.02372 
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Table 13: Experimental values of h1 and Q for the device defined by b = 0.088 m,  

P = 0.10 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.07764 0.002725 

2 0.08758 0.003275 

3 0.10814 0.00452 

4 0.13258 0.00616 

5 0.14586 0.00713 

6 0.15866 0.008101 

7 0.16576 0.00865 

8 0.17596 0.00947 

9 0.18346 0.0101 

10 0.19088 0.01072 

11 0.20066 0.01158 

12 0.21186 0.01257 

13 0.22566 0.01384 

14 0.24266 0.01545 

15 0.24932 0.0161 

16 0.25616 0.01677 

17 0.2641 0.01757 

18 0.27204 0.0184 
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Table 14: Experimental values of h1 and Q for the device defined by b = 0.088 m,  

P = 0.08 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.07892 0.00281 

2 0.08596 0.0032 

3 0.09446 0.003691 

4 0.10628 0.00442 

5 0.11874 0.00523 

6 0.1282 0.00588 

7 0.14108 0.0068 

8 0.14796 0.00732 

9 0.163 0.00848 

10 0.17566 0.0095 

11 0.18276 0.01009 

12 0.19116 0.010798 

13 0.2018 0.01173 

14 0.20858 0.01234 

15 0.21848 0.01324 

16 0.22906 0.01423 

17 0.23954 0.01523 

18 0.24978 0.01622 

19 0.26028 0.01726 

20 0.27202 0.01846 
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Table 15: Experimental values of h1 and Q for the device defined by b = 0.088 m,  

P = 0.06 m, B = 0.293 m 

 

Run 1h (m) ExpQ  (m3.s-1) 

1 0.05056 0.001435 

2 0.05708 0.001726 

3 0.06724 0.002215 

4 0.07558 0.0026465 

5 0.08714 0.00329 

6 0.09804 0.003936 

7 0.13988 0.00676 

8 0.1515 0.00763 

9 0.16204 0.00845 

10 0.17156 0.009228 

11 0.18216 0.0101 

12 0.1972 0.0114 

13 0.2072 0.01228 

14 0.22044 0.0135 

15 0.23086 0.01446 

16 0.2445 0.01577 

17 0.2561 0.01692 

18 0.26534 0.01787 

 


