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ABSTRACT 

The experimental study of hydraulic jump characteristics is always a difficult task, 

particularly regarding the instantaneous velocity, which is difficult to measure 

experimentally because of its fluctuation and the presence of air bubbles, mainly at the 

level of the hydraulic jump. However, it is possible to experimentally measure velocities 

in two-phase flows (air‒water) using an intrusive measuring instrument such as a 

Microreel. This work will experimentally examine two different hydraulic jumps with 

two flow rates (26.78 l/s and 17.82 l/s) controlled by two thin sills (HS = 14 cm and HS = 

15 cm) in a channel composed of a trapezoidal shape with a rectangular base. The 

results of the measurements of the velocities (relative velocity 𝑉∗𝑒𝑥𝑝 = 𝑉 𝑉0⁄ ) as a 

function of the positions (relative positions 𝑋∗ = 𝑋 𝐿𝑠⁄ ). The relationship 𝑉∗𝑒𝑥𝑝 =
𝑓(𝑋∗) was analyzed by multiple regression and given a second-degree polynomial 

function. The coefficients of determination of this function are very high (R2 

approximately 0.9), which describes a strong relationship between speeds and distances. 

These results allow us to reflect on the application of learning techniques (ML) to 

predict relative velocities at any position of the hydraulic jump. Three learning 

techniques were tested: RBFNN, MPLNN, and GRNN. However, the results prove that 

the RBFNN has a very accurate speed productivity and records the lowest deviations 

from the experimental results. Its performance indicators are RMSE = 0.0163 and MAE 
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= 0.0085 for level 1, RMSE = 0.0138 and MAE = 0.0089 for level 2, and RMSE = 

0.0166 and MAE = 0.0099 for level 3. However, the MLPNN model gives competitive 

results to the RBFNN precisely at level 4, where it registers the smallest deviation 

(RMSE = 0.0457, MAE = 0.0308). 

Keywords: Compound Channel, Hydraulic Jump, Machine learning, Relative velocity, 

Two-phase flow, Velocity Distribution. 

INTRODUCTION 

The distribution of velocities in free surface flows (compound bed) is essential for the 

design and stabilization of hydraulic structures, flood control, and river development 

projects (Achour and Debabèche, 2003) and (Bousmar et al., 2005). Many experimental 

investigations have been carried out to clarify the distribution of flow velocities in 

compound channels, such as the works of (Shiono and Knight, 1991) and (Tominaga 

and Nezu, 1991), and more particularly, for our area of interest, the work of Chen et al. 

(2014). 

For the passage from a supercritical flow to a subcritical flow in an open channel, the 

phenomenon of hydraulic jump is the most appropriate, provoking it to occur 

downstream of hydraulic structures, such as normal weirs, gates and ogee spillways 

(Saghebian, 2019). The difficulty of studying the hydraulic jump phenomenon in 

compound channels is due to the implicit interaction between the floodplains (high 

channel) and the main channel (low channel). This type of flow has yet to be well 

considered. The few pieces of research that have been conducted are from (Achour and 

Debabeche, 2003), (Parsaie et al., 2016) and (Benabdesselam et al., 2017). Measuring 

velocities in the hydraulic jump is one of the most significant difficulties in this field 

because of their two-phase flows (air‒water). (Maatooq and Taleb, 2018) and (Peltier et 

al., 2013) employed the micropropeller velocimeter in their research work, which is 

intended for measuring the instantaneous velocities of two-phase flows. Rajaratnam & 

Subramanya (1968) studied the velocity distribution by measuring the void ratio (air 

bubble) in the jump (Wang and Chanson, 2015). 

The numerical modeling of a hydraulic jump is still a challenging task, owing to its 

complexity, which involves the rapidly moving free surface, its inherent unsteadiness, 

which determines the fluctuating position of the roller, strong turbulence effects and the 

presence of multiphase flow (De Padova et al., 2023). As numerical modeling of the 

hydraulic jump also still lacks proper validation to accurately calculate air 

concentration, velocity distribution, and energy dissipation (Carvalho et al., 2008) and 

(Viti et al., 2018), physical modeling (experimental study) remains the most reliable 

method for studying the jump (Lubin and Glockner, 2013); (Peltier et al., 2013); 

(Prosperetti and Tryggvason, 2009). Therefore, the accurate prediction of a numerical 

model depends on the use of experimental data such as the geometric characteristics and 

the entry conditions of a flow (the conjugate depths, length of the roll, length of the 
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jump, mean free surface profile, air concentrations, etc.) (De Padova and Mossa, 2021). 

Studying flows in compound channels with different experimental configurations is 

generally associated with artificial intelligence methods. In the same context, we can 

cite the work of (Mansour-Bahmani et al., 2021) and (Benabdesselam et al., 2022), who 

deal with the compound channel and modeling via artificial neural network (ANN) 

methods. 

Our work is devised in two parts. The first is physical modeling (experimentation), 

which consists of carrying out velocity measurements employing a Microreel 

velocimeter in a hydraulic jump controlled by a thin sill evolving in a channel composed 

of a trapezoidal shape (major bed) with a rectangular base (minor bed) and zero slope. 

These measurements are presented in the form of the values of the relative velocities 

“V*exp” (dimensionless values) on longitudinal profiles according to the relative 

positions “X*. To demonstrate their correlation, a multiple regression analysis was 

conducted for the two variables V*=f(X*). The second part is devoted to numerical 

modeling using machine learning (ML) techniques to predict the relative velocities 

(V*pred) at any position (X*) in our jump configuration, taking into account their 

hydraulic and geometric characteristics (Q, V0, H0, HS, LR, LJ, LS) and position (X*, 

Y) as ''input'' data of our models. Three models of artificial neural networks have been 

used: the radial basis function neural network (RBFNN), the multilayer perception 

neural network (MLPNN), and the generalized regression neural network (GRNN). 

These three models aim to find the best-predicted velocity values by comparing the 

performance indices (MAE, RMSE, R2) for the two testing and training phases or by 

exploiting the experimental velocity results. 

MODELS AND EXPERIMENTAL METHODS 

Physical model 

The experimental model (Figs. 1 and 2) consists of a 5 m channel with zero slope, 

which has a composite shape with a rectangular base (0.2 m*0.2 m) and a trapezoidal 

cross-section (with a 45° angle of wall inclination). The channel works as a closed 

circuit being served by a supply basin and draining into another channel of rectangular 

cross section (0.6 m*0.6 m), in which a rectangular spillway is inserted to allow the 

direct measurement of the flow. Downstream, a 115 mm diameter pipe in which a pump 

supplies a box connected to a convergent that flows into the main channel. 

The measurement of local (instantaneous) velocity is carried out by a micropropeller 

velocimeter consisting of a Low-Speed Probe 403 NEXON (range 5-150 cm/sec, 

accuracy +/- 2% of true velocity) and a digital indicator 430 NEXON, which is 

connected to a computer to display and record the velocity values. The average velocity 

is calculated from the downstream measured flow and the surface of the outlet section 

of the convergent, according to the continuity equation (V0 = 𝑄 𝐴0⁄ ). 
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The average horizontal velocities recorded are measured from a three-dimensional mesh 

network (XYZ). Along the ''y'' axis, seven (07) longitudinal sections were distributed 

over the width of the canal at positions Y (cm) = 0 (central), -4, +4, -8, +8, -10, and 

+10. Along the ''Z'' axis, four levels, 10 cm apart between each two successive positions 

on the ''X'' axis, were considered. 

To properly consider this three-dimensional mesh, we equipped our experimental model 

with a trolley in the channel, which makes it possible to easily and accurately move the 

velocimeter probe in the three directions (XYZ). Two rectangular steel sills of different 

heights (S = 14 cm; S = 15 cm) were designed and included in the channel. 

 
Figure 1: 3D view of the physical model 

 

 

Figure 2: Photographs showing the physical model and the shape of the canal 
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Artificial neural networks 

Neural network model description 

The flowchart in Fig. 3 illustrates the process of predicting relative velocities (V*) in a 

certain position at several planes (Z1, Z2, Z3, Z4) of the flow in the hydraulic jump 

using three ML models (RBFNN, MLPNN, GRNN) and taking into account input 

parameters (Q, V0, H0, HS, LR, LJ, LS, X*, Y). 

 
Figure 3: Flow chart of ML processes for predicting relative velocities (V*) 

Radial Basis Function Neural Network 

In several engineering fields, radial basis function neural networks (RBFNNs) are used 

for predictive modeling. The RBFNN is illustrated in Fig. 4 as a three-layer architecture. 

The first layer receives inputs, the second layer is an intermediate layer that includes a 
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nonlinear RBF activation function, and the third layer makes the prediction (Moody and 

Darken, 1989); (Haykin, 2009). The following is the RBFNN output equation: 

𝑦 = ∑ 𝜔𝑗𝑘𝜃𝑘(𝑋)
𝑚
𝑘=1                                                                                         (1) 

where m is the number of basis functions; X is the input data vector; 𝜔𝑗𝑘 is the weight 

of the connection between the basis function and output layer; and 𝜃𝑘 is the nonlinear 

function of unit ‘j’, which is usually Gaussian, described by the following expression: 

𝜃𝑘(𝑋) = 𝑒𝑥𝑝 (−
‖𝑋−𝜇𝑘‖

2

2𝜎𝑘
2 )                                                                            (2) 

where X and 𝜇 are the input and center of the RBF unit, respectively. 𝜎𝑘 is the spread of 

the Gaussian basis function. 

The weights connecting the hidden neurons to the outputs, centers, and width are 

regarded as crucial keys in the RBFNN's creation and training. 

 

Figure 4: Structure of a radial basis function neural network (RBFNN). 

Multilayer Perceptron Neural Network 

The multilayer perceptron model is the most commonly used machine learning 

approach for feed-forward neural networks. In the hypothesis form 𝑌 = ∑ 𝑋𝑖 + 𝑏𝑛
𝑖=1 , the 

inputs are multiplied by arbitrary weights (wi) and summed by arbitrary bias (b). Then, 

the hypothesis is nonlinearized using hyperbolic tangent (tansig) as the activation 

function. In the output layer, a linear function (pureline) was used as the transfer 

function. Fig. 5 shows a schematic illustration of the multilayer perceptron neural 

network (MLPNN) architecture. The multilayer perceptron is a type of universal 

approximator (Haykin, 2009). Using trial and error, the optimal number of perceptrons, 

hidden layers, and activation functions were obtained. 
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Figure 5: Schematic representation of the MLPNN model 

Generalized regression neural network 

The generalized regression neural network (GRNN) is a type of RBNN built on kernel 

regression. It is an excellent coherent network that may achieve near-zero prediction 

error with simple function constraints over an extensive training set. Its benefits are tied 

to consistency. The GRNN architecture is shown in Fig. 6. It does not need an iterative 

learning process like a back-propagation network. 

In GRNN simulations, the problem of local minima does not exist (Specht, 1991). The 

input vector is stored in a specially built hidden neuron layer. The desired value is 

assigned to the weights between the output layer and the newly generated hidden layer. 

The fundamental difference between the two neural networks (GR and RBF) is in the 

calculation of the values (wij). All the ML models were built in the MATLAB 2019b 

environment, and the results of this study were carried out using a PC ASUS TUF 

FX505DT equipped with an AMD Rayzen TM 5 R5-3550H CPU processor at 3.7 GHz 

and 16 GB of RAM. 

 
Figure 6: Structure a generalized regression neural network (GRNN) model. 
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Application of the proposed (ML) models 

In the design function approximation of ML models, where we used 70% of the 

experimental data, one (1) hidden layer is sufficient (Hecht-Nielsen, 1990). Determining 

the appropriate number of hidden nodes (NHNs) in each layer is one of the core tasks of 

ML design, and unfortunately, there is no hard and fast rule. 

The trial-and-error approach was carried out to find the optimum number of neurons in 

the hidden layer of the models. The model was determined by varying the number of 

neurons, starting with a minimum of 3 (√9), with N number of inputs and N number of 

outputs (Masters 1993), then increasing the network size to 19 by adding one neuron 

each time. It should be noted that 19 is the upper limit for the number of hidden layer 

neurons needed to map any continuous function work (Hecht-Nielsen, 1990). The 

training process of the ML model was stopped when the minimum value of MSE for the 

cross-validation data set was reached. 

MLPNN 

The output is the values of the relative velocities (V*pred) of the hydraulic jump in each 

level Z=1, 2, 3 and 4. On the other hand, as shown above, the inputs are nine parameters 

(Q, V0, H0, HS, LR, LJ, LS, X*, Y). No theory exists of how many hidden units are 

needed to approximate a given function. The optimal determination of the number of 

neurons in the hidden layer is the challenge of a test (MATLAB results), which was 

verified by modifying the number of iterations to reach the best performance values 

(RMSE and R2). The activation and transfer function used in the study is the hyperbolic 

tangent (tanh) function. 

RBFNN and GRNN 

With the same input‒output considerations, both models consist of nine inputs, and 

concerning the hidden layers, the RBFNN and the GRNN are composed of 90 and 280 

neurons, respectively. The spread value proposed for this study was equal to 0.2. 

The proposed model is brought to apply a spread that will lead to the most suitable 

performance with an adaptive value, and it turns out to be unnecessary to modify it in 

the current study. 

PRESENTATION OF RESULTS 

Experimental results 

The experimental results come from two measurement ranges: 

• A first series of velocity measurements with 648 points was carried out in the 

controlled jump caused by a thin sill (HS=15 cm) with a convergent initial height 
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(H0=3 cm), which gives an initial velocity (V0= 446.26 cm/s). The flow in the 

canal has a flow rate of Q= 26.78 l/s with a Froude number of F=8.22. 

• A second series to confirm the results was carried out at 286 points under entirely 

different conditions with a second thin sill (HS = 14 cm) and a new initial height h1 

with a new convergent (H0 = 2 cm), which gives a new initial velocity (V0 = 445 

cm/s) with a flow (Q = 17.82 l/s) and at a Froude number, F = 10.06. 

Due to the very high initial velocities (V0 = 446.26 m/s and 445 m/s) at the exit of the 

convergent (start of the hydraulic jump), we were unable to measure the velocity over a 

distance of approximately 110 cm from the convergent for the first range of 

measurements and 130 cm for the second range. 

After the complete formation of the hydraulic jump, we have for each sill height S1 and 

S2 at their positions LS1 and LS2 and their initial heights h0 the hydraulic characteristics. 

These are shown in Tables 1 and 2 for the first and the second series of measurements, 

respectively. 

Relative parameters are calculated from the raw experimental results, such as relative 

velocity (V*exp) and relative position (X*). This approach aims to find a relationship 

between the relative velocities and the relative position "𝑉∗ = 𝐹(𝑋∗)". Therefore, the 

experimental curves were drawn as a function of the values of the relative velocities 

(V*exp) and the relative positions (X*). 

First series of measurements 

This first series was obtained for a flow rate Q = 26.78 l/s (Table 1), while Fig. 7 shows 

the variation in the relative mean velocity (V*) as a function of the relative position 

(X*) for various Y. 

 

Table 1: Hydraulic characteristics of the controlled hydraulic jump for the first 

series of measurements 

Fr 
Q 

(l/s) 

V0 

cm/s) 

H0 

(cm) 

HS 

(cm) 

LS 

(cm) 

LR 

(cm) 

LJ 

(cm) 

8,22 26,78 446,26 3 15 400 189 232 
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Figure 7: Variation of relative mean velocity (V*) as a function of the relative 

position (X*) for Y=0, Y=-4, Y=+4, Y=- 8, Y=+8, Y=-10, Y= +10 
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Figure 8: Variation of relative mean velocity (V*) as a function of the relative 

position (X*) for Y=0, Y=-4, Y=+4, Y=-8, Y=+8, Y=-10, Y= +10 
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Predictive modeling results 

Taking 70% of the experimental data, models were trained and applied to the other 30% 

(other positions). Figs. 9, 10 and below illustrates the behavior of the relationship 

between experimental relative velocities (V*exp) and predictive relative velocities 

(V*pred) in four levels of measurement (Z1, Z2, Z3, Z4). 

 

 

 

 
Figure 9: Performance of the RBFNN model in the test phase for the prediction of 

relative velocities 
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Figure 10: Performance of the RBFNN model in the test phase for the prediction of 

relative velocities 
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Figure 11: Performance of the GRNN model in the test phase for the prediction of 

relative velocities 
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RESULTS AND DISCUSSION 

Discussion of experimental results 

The two experiments, being identical in terms of the general distribution of velocities 

(V*exp) as a function of positions (X*), enabled us to draw the following conclusions: 

• At the convergent exit, a high-velocity water jet (V0 approximately 445 cm/s) was 

generated, causing a flow with very high speeds at the channel bottom (V*exp > 

0.33 V0), which cannot be measured until the position X* = 0.5 (Figure 7 and 8). 

This also occurred in (Chen et al., 2014) experiments. We also noted that for a 

shallow flow counted from the channel bottom and upstream of the step, the 

velocities were very high at all points when approaching convergence. 

• The high velocities in the upstream part of the hydraulic jump cause a significant 

flow disturbance (Wang and Chanson, 2015) caused by the high intensity of 

turbulence occurring near the hydraulic jump's start, which is reduced with 

distance (Figs. 7 and 8). This turbulence has a significant role in roll generation 

and creating air bubbles of different sizes. (Chanson, 2009) mentioned in their 

studies that a hydraulic jump is characterized by large-scale turbulence resulting in 

the entrainment of air bubbles and a high energy dissipation rate. 

• At the end of the hydraulic jump near the sill (approximately X*> 0.84), the velocity 

at the bottom reaches its minimum value of less than 6 cm/s, while the surface 

velocity always remains higher in comparison to the bottom (Figs. 7 and 8). As a 

consequence of this decrease in velocity in the flow, the roll will end with the 

disappearance of air bubbles, and the water waves decrease; this makes the flow 

stable (almost uniform), which helps us to determine the final flow height (H2) by 

continuous observation. At this height, we conclude the approximate length of the 

jump Lj. 

• The average velocity, velocity fluctuation and turbulence intensity are all relatively 

high in the central zone of the flow. Moreover, all these flow parameters decrease 

toward the lateral walls. These observations are essential for understanding 

turbulence creation, sediment transport processes, and bank erosion mechanisms; the 

same conclusion was demonstrated by (Bhowmik et al., 1995). High turbulence 

levels were recorded in the region of the free surface of the roll. Additionally, some 

air bubbles in the flow have an opposite direction. 

• The equitable distribution of flow between the minor bed (rectangle) and the major 

bed (trapezium) in our case of the compound channel is made simultaneously with 

the formation of the roll, and each time the flow increases, a long roll is therefore 

built (Tables 1 and 2). (Bousmar et al., 2005) noted that a longer distance is needed 

to balance the flow distribution between the minor bed and major bed subsections. 
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Discussion of predictive modeling results 

To achieve the objective of predicting the relative velocities of the hydraulic jump, 12 

models were built (an MLPNN model for 4 levels, an RBFNN model for 4 levels and a 

GRNN model for 4 levels), and their quality was evaluated by means of three 

parameters: the root mean square error (RMSE), the mean absolute error (MAE) and the 

coefficient of determination (R). As shown in Table 3, the best model to predict the 

relative velocity values (V*pred) at the 4 levels (Z1, Z2, Z3 and Z4) is the RBFNN with 

the lowest RMSE and MAE and the highest R values for the test phase. The RBFNN 

therefore has the best prediction capabilities for the 4 considered levels. The graphic 

representation is given in Figs. 9, 10 and 11 for the test phases for the 4 levels. 

Table 2: Performance parameters of different ML models. 

  

  

TRAIN  TEST 

RMSE MAE R  RMSE MAE R 

Z1 RBFNN 0.0163 0.0085 0.9586  0.0044 0.0017 0.9844 

GRNN 0.0410 0.0212 0.7936  0.0130 0.0048 0.9486 

MLPNN 0.0226 0.0128 0.9193  0.0083 0.0043 0.9455 

         

Z2 

 

RBFNN 0.0138 0.0089 0.9828  0.0129 0.0057 0.9580 

GRNN 0.0458 0.0271 0.8666  0.0243 0.0099 0.9226 

MLPNN 0.0238 0.0169 0.9478  0.0160 0.0082 0.9366 

         

Z3 

 

RBFNN 0.0166 0.0099 0.9852  0.0069 0.0053 0.9829 

GRNN 0.0487 0.0312 0.9089  0.0224 0.0173 0.8379 

MLPNN 0.0235 0.0159 0.9706  0.0236 0.0149 0.8349 

         

Z4 

 

RBFNN 0.0457 0.0308 0.9122  0.0882 0.0650 0.6761 

GRNN 0.0479 0.0388 0.8809  0.0877 0.0616 0.5751 

MLPNN 0.0430 0.0291 0.9207  0.0914 0.0650 0.6174 

 

The performance parameters of diverse ML models are displayed in Table 3. These are 

the results found. First, during the training phase, the RBFNN model showed the lowest 

errors: RMSE = 0.0163, MAE = 0.0085, for level 1, RMSE = 0.0138, MAE = 0.0089 

for level 2, RMSE = 0.0166, MAE = 0.0099, for level 3. However, the level 4 MLPNN 

model scores the lowest errors (RMSE = 0.0457, MAE = 0.0308). The RBFNN model 

presents the highest accuracy (R = 0.9586) for level 1, R = 0.9828 and R = 0.9852 for 

level 2 and level 3, respectively. In level 4, the MLPNN model (RMSE = 0.0430, 

MAE= 0.0291, R = 0.9207) remains the best model. 

During the testing phase, the RBFNN model proves strong robustness in the prediction 

task with the lowest errors RMSE= 0.0044, MAE= 0.0017, RMSE= 0.0129, MAE= 

0.0057, RMSE= 0.0069, MAE= 0.0053, RMSE= 0.0882, MAE= 0.0650 in levels 1, 2, 

3, and 4, respectively. In level 4, one more RBFNN model demonstrates better 

modeling capacities with the highest accuracy (R = 0.6761). 
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The Taylor diagram was used as a basic tool to illustrate the prediction model 

characteristics (Taylor, 2001). Because of the benefits of integrating and assessing 

various statistical performance indicators, it is the most general proposed diagram for 

comparing accuracy. It was also employed as a simple tool to represent the details of the 

predictive models in this study. When the predicted values are closer to the 

experimental values, this indicates that the proposed model has excellent generalization 

capabilities, which are manifested by a standard deviation (SD) value very close to the 

observed value (SD), higher R, close to 1, and root mean square deviation (RMSD) 

minimal and close to 0. 

 

 
Figure 12: Taylor diagram showing the performance of ML models applied for 

different levels. 

Fig. 12 illustrates the efficiency of the RBFNN model in predicting relative velocity. 

The correlation decreases if a value goes to higher zones in the diagram. The RMSD 

shows the quality of the ML model. Based on Table 4, the SD of the predicted values 

generated by the RBFNN models is closer to the SD of the experimental data for the 

four levels. High R = 0.9654, 0.9818, 0.9864, and 0.8597 for levels 1, 2, 3 and 4, 
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respectively, show a high level of harmony between the experimental and predicted 

values. 

Table 3: Statistics parameters (SD, RMSD) of different ML models. 

 RMSD  SD 

 Z1 Z2 Z3 Z4  Z1 Z2 Z3 Z4 

Exp. Data 0 0 0 0  0.0532 0.0717 0.0881 0.0928 

RBFNN 0.0139 0.0135 0.0144 0.0551  0.0513 0.0704 0.0868 0.1081 

GRNN 0.0339 0.0385 0.0414 0.0553  0.0284 0.0441 0.0604 0.0875 

MLPNN 0.0195 0.0218 0.0235 0.0556  0.0498 0.0693 0.0849 0.1068 

To confirm the robustness of the proposed model, the analysis of the RMSD values of 

the different models applied to levels 1, 2, 3 and 4 shows that the RMSD values of the 

RBFNN model are very close to 0. 

CONCLUSION 

In this work, a physical model of a compound channel was used to form two different 

hydraulic jumps and allow point velocity measures in the hydraulic jumps, which were 

used to construct machine learning models and predict velocities in other locations. The 

models were compared to each other and with the remaining experimental data. We 

employed three models of machine learning techniques to predict relative velocities in 

the hydraulic jumps. The comparison of the different models (RBFNN, MLPNN and 

GRNN), taking into account all the characteristics of the hydraulic jump and the 

location point (Q, V0, H0, HS, LR, LJ, LS, X*, Y), shows that RBFNN gives the best 

results for “TEST » and « TRAIN » compared to the other two models. Thus, RBFNN 

can predict relative velocity ratios with high accuracy compared to other models. At the 

same time, MLPNN remains a competitive model with RBFNN, especially in the 

channel bottom velocity (level 4), where there is high flow turbulence. 

The recommended ML models (RBFNN and MLPNN) in this study have shown that 

they can capture the processes of the hydraulic jump phenomenon from the input 

information and predict velocity results very similar to the experimental data. We can 

then consider the high predictive potential of the models as a tool for modeling, as from 

part of the experimental data (inputs), they can easily and quickly predict the velocity in 

other locations of hydraulic jumps with great accuracy. 

It is worth mentioning that the present models can work and give the four-level 

velocities (Z1, Z2, Z3, Z4) of the hydraulic jump in a compound channel. These models 

are confined to an interval of flow rate (Q= 17,82 l/s and Q= 26,78 l/s), as shown above. 

These results motivate us to work on the realization of the models with a considerable 

interval in terms of flow rate so that they have wide use in the field. 
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The variation in the relative velocities (V*exp) along the relative positions (X*) is 

translated by a second-degree polynomial function for all the longitudinal sections ''Y'', 

with very high coefficients of determination (an average of R2 ≈ 0,9). 
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