REMOVAL OF AZO TOXIC DYE FROM AQUEOUS SOLUTIONS USING DRY SPEARMINT SPRIGS

A. BOUDAOUD, C. AD, M. DJEDID, M. GUERMIT, M. BENALIA, A. SOLTANI

Abstract


The main objective of this study was to investigate the mechanism of mеthyl violеt 10B dyе adsorption onto dry sprigs of Spearmint, determine the most suitable kinetic and isothermal models for the adsorption process, and estimate the maximum adsorption capacity for the dye. The experimental results revealed that the optimal adsorption conditions were achieved with an adsorbent mass of 0.01 grams, a pH of 5, and an equilibration time of 30 minutes. The adsorption capacity of the mеthyl violеt 10B dye increased with increasing initial dye concentration but decreased as the temperature increased. The pseudo-second-order kinetic model provided the best fit to the experimental data. The Temkin isotherm model demonstrated the best fit, and the maximum adsorption capacity for monolayer adsorption was 84.83 mg/g. The thermodynamic parameters confirmed that the adsorption process was spontaneous (ΔG°<0), exothermic (ΔH°<0), and random (ΔS°<0). The adsorbent exhibited promising results, including high removal efficiency of mеthyl violеt 10B, low cost, and environmental friendliness. These findings suggest that the adsorbent has the potential to serve as a viable alternative for sustainable wastewater treatment.

Keywords


Mеthyl violеt 10B dyе, Sustainable Adsorbent, Dry Spearmint Sprigs, Kinetics, Isotherm, Thermodynamics.

Full Text:

PDF

References


ABBA P., PENGOU M., BALKISSOU S., BADJOUKOUN Y., DELSIA L.J., DANGA R., ABDOUL W. (2019). Removal of purple of bromocresol from aqueous solutions by biosorption on a tropical biomass: the triplochiton scleroxylon (ayus) saw, Larhyss Journal, No.39, pp. 59–76.

ADAK A., BANDYOPADHYAY M., PAL A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separation and Purification Technology, Vol. 44, pp. 139–144, doi: 10.1016/j.seppur.2005.01.002.

ADAPA P. K., TABIL L. G., SCHOENAU G. J., CANAM T., DUMONCEAUX T. (2011). Quantitative Analysis of Lignocellulosic Components of Non-Treated and Steam Exploded Barley, Canola , Oat and Wheat Straw Using Fourier Transform Infrared Spectroscopy. Journal of Agricultural Science and Technology, Vol. B1 pp. 177–188.

ADESANM B.M., PAUL H., HUHNKE C., ADESANMI B.M., HUNG Y., PAUL, H.H., HUHNKE C.R. (2022). EngagedScholarship @CSU Civil and Environmental Engineering Faculty Comparison of dye wastewater treatment methods : A review . Comparison of dye wastewater treatment methods : A review. GSC Advanced Research and Reviews, Vol. 10, pp. 126–137.

AGARWALA R., MULKY L. (2023). Adsorption of Dyes from Wastewater : A Comprehensive Review, ChemBioEng Reviews, Vol. 10, No. 3, pp. 326–335,

doi: 10.1002/cben.202200011.

AL-SAEEDI S.I., ASHOUR M., ALPROL A.E. (2023). Adsorption of toxic dye using red seaweeds from synthetic aqueous solution and its application to industrial wastewater effluents, Frontiers in Marine Science, Vol. 10, No August, pp. 1–20,

doi: 10.3389/fmars.2023.1202362.

AL-SHAMMARI, N.H., AL-MAMMAR, D.E. (2022). Equilibrium and kinetic modeling studies for the adsorption-desorption of methyl violet 10B onto leather waste, Eurasian Chemical Communications, Vol. 4, No 2, pp. 175–189,

doi: 10.22034/ecc.2022.317547.1274.

AL-TOHAMY R., ALI S.S., LI F., OKASHA K.M., MAHMOUD Y.A., ELSAMAHY T., JIAO H., et al. (2022). Ecotoxicology and Environmental Safety A critical review on the treatment of dye-containing wastewater : Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety, Elsevier Inc., Vol. 231, p. 113160, doi: 10.1016/j.ecoenv.2021.113160.

AROUA-BERKAT S., AROUA N. (2022), Opportunities and Challenges for Wastewater Reuse in Algeria, Larhyss Journal, No. 51, pp. 7–17.

AYAWEI N., EBELEGI A.N., WANKASI D. (2017). Modelling and Interpretation of Adsorption Isotherms, Journal of Chemistry, Article ID 3039817, doi: 10.1155/2017/3039817.

BELHOUALA K., BENARBA B. (2021). Medicinal Plants Used by Traditional Healers in Algeria: A Multiregional Ethnobotanical Study, Frontiers in Pharmacology, Vol. 12, pp. 1–23, doi: 10.3389/fphar.2021.760492.

BENJELLOUN M., MIYAH Y., AKDEMIR G., ZERROUQ F., LAIRINI S. (2021). Recent Advances in Adsorption Kinetic Models : Their Application to Dye Types, Arabian Journal of Chemistry, Vol. 14, No. 4, Paper 103031. doi: 10.1016/j.arabjc.2021.103031.

BENSLAMA H. BOUKET A.C., POURHASSAN Z., ALENEZI F.N., SILINI A. (2021). Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods, Applied Sciences, Vol. 11, No. 14, pp. 1–21.

BERRADI M., HSISSOU R., KHUDHAIR M., ASSOUAG M., CHERKAOUI O., EL BACHIRI A., EL HARFI A. (2019). Textile finishing dyes and their impact on aquatic environs, Heliyon, Vol. 5, No. 11, doi: 10.1016/j.heliyon.2019.e02711.

CASTELLAR-ORTEGA G.C., CARDOZO-ARRIETA B.M., JARAMILLO-COLPAS J.E., MORENO-ALDANA L.C. (2022). Journal of Applied Research and Technology, Vol. 20, pp. 387–398.

CHAUHAN S.S., DIKSHIT P.K.S. (2023). Cadmium Metal Scavenging Capability of Spent Tea Grains-an Agricultural Biomass Waste As a Low-Cost Adsorbent, Larhyss Journal, No. 55, pp. 161–189.

CHERUIYOT G.K., WANYONYI W.C., KIPLIMO J.J., MAINA E.N. (2019). Adsorption of toxic crystal violet dye using coffee husks : Equilibrium , kinetics and thermodynamics study, Scientific African, Vol. 5, pp. 1–11. doi: 10.1016/j.sciaf.2019.e00116.

DENG Z., XIA A., LIAO Q., ZHU X., HUANG Y., FU Q. (2019). Biotechnology for Biofuels Laccase pretreatment of wheat straw : effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis, Biotechnology for Biofuels, BioMed Central, Vol.12, pp. 1–13, doi: 10.1186/s13068-019-1499-3.

DJEHAF K., BOUYA A.Z., OUHIB R., BENMANSOUR H., BENTOUAF A., MAHDAD A., MOULAY N. (2019). Textile wastewater in Tlemcen (Western Algeria): Impact, treatment by combined process, Chemistry International, Vol. 3, No. 4, pp. 314–319.

DOCAMPO R., MORENO S.N. (1990). The metabolism and mode of action of gentian violet, Drug Metabolism Reviews, Vol. 22, Issues 2-3, pp. 161–178.

EHIOMOGUE P., AHUCHAOGU I.I., AHANEKU I.E. (2022). Review of adsorption isotherms models, Acta Technica Corviniensis, Vol. 14, No. 4, pp. 87–96.

EL NAEEM, G.A., ABD-ELHAMID A.I., FARAHAT O.O.M., EL-BARDAN A.A., SOLIMAN H.M.A., NAYL, A.A. (2022). Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse : characterization , kinetic and isotherm studies, Journal of Materials Research and Technology, Vol. 19, pp. 3241–3254, doi: 10.1016/j.jmrt.2022.06.045.

ENENEBEAKU C.K., OKOROCHA N.J., ENENEBEAKU U.E., ONYEACHU, B.I. (2016). Removal of Crystal Violet Dye by Adsorption onto Picrilima Nitida Stem Bark Powder : Kinetics and Isotherm Studies, IOSR Journal of Applied Chemistry, Vol. 9, No. 8, pp. 14–23, doi: 10.9790/5736-0908011423.

GEMICI B.T., OZEL H.U., OZEL H.B. (2023). Adsorption property and mechanism of forest wastes based naturel adsorbent for removal of dye from aqueous media, Biomass Conversion and Biorefinery, Vol. 13, pp. 13653–13665.

GUFFANTI S., VISCONTI C.G., GROPPI G. (2021). Model Analysis of the Role of Kinetics , Adsorption Capacity , and Heat and Mass Transfer Effects in Sorption Enhanced Dimethyl Ether Synthesis, Vol. 60, No. 18, pp. 6767-6783,

doi: 10.1021/acs.iecr.1c00521.

HAMZA H., MOKRANI D., NIA B., TOUIL A. (2022). Use of traditional medicine in Algeria as an alternative treatment against COVID-19 in the context of modern medicine: a survey-based study, Infectious Diseases Research, Vol. 3, No. 2, p. 7,

doi: 10.53388/idr20220525007.

IMRAN M.S., JAVED T., AREEJ I., HAIDER N.M.,(2022). Sequestration of crystal violet dye from wastewater using low-cost coconut husk as a potential adsorbent, Water Science & Technology, Vol. 85, No. 8, pp. 2295–2317. doi: 10.2166/wst.2022.124.

ISHAQ M., JAVED F., AMAD I., ULLAH H., HADI F., SULTAN S. (2016). Adsorption of Crystal Violet dye from aqueous solutions onto low-cost untreated and NaOH treated almond shell, Iranian Journal of Chemistry and Chemical Engineering, Vol. 35, No. 2, pp. 97–106.

JASPER E.E., AJIBOLA V.O., ONWUKA J.C. (2020). Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon, Applied Water Science, Vol. 10, No. 6, pp. 1–11,

doi: 10.1007/s13201-020-01218-y.

JIA P., TAN H., LIU K., GAO W. (2018). Applied sciences Removal of Methylene Blue from Aqueous Solution by Bone Char, Applied Sciences, Vol. 8, No. 10, Paper 1903, doi: 10.3390/app8101903.

JOHN A., YANG H., MUHAMMAD S., KHAN Z.I., YU H., LUQMAN M., TOFAIL M., et al. (2022). Applied sciences Cross Talk between Synthetic Food Colors (Azo Dyes), Oral Flora , and Cardiovascular Disorders, Applied Sciences, Vol. 12, No. 14, Paper 7084, doi:10.3390/app12147084

KANT A., GAIJON P., NADEEM U. (2014). Adsorption Equilibrium and Kinetics of Crystal Violet Dye from Aqueous Media onto Waste Material, Chemical Science Review and Letters, Vol. 3, No.11S, pp. 1–13.

KHELIFI O., MEHREZ I., YOUNSI M., NACEF M., AFFOUNE A.M. (2018). Methyl orange adsorption on biosorbent derived from Mango seed kernels, Larhyss Journal, No. 36, pp. 145–156. (In French)

KHELIFI O., MEHREZ I., BEN SALAH W., BEN SALAH F., YOUNSI M., NACEF M., AFFOUNE A.M. (2016). Study of methylene blue (MB) adsorption from aqueous solutions on biosorbent prepared from Algerian datte stones, Larhyss Journal, No 28, pp. 135-148. (In French)

KHELILI H., ACHOUR S., KONAN K.G., GUELLAL M. (2024). Kinetic and isotherm study of Methylene blue adsorption on orange peel activated carbon, Larhyss Journal, No 58, pp. 89-103.

KYI P.P., QUANSAH J.O., LEE C.G., MOON J.K., PARK S.J. (2020). The Removal of Crystal Violet from Textile Wastewater Using Palm Kernel Shell-Derived Biochar, Applied Sciences, Vol. 10, No. 7, Paper 2251.

LAIRINI S., EL MAHTAL K., MIYAH,Y., TANJI,K., GUISSI S., BOUMCHITA S., ZERROUQ F. (2017). The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): Equilibrium and kinetic studies, Journal of Materials and Environmental Science, Vol. 8, No. 9, pp. 3252–3261.

LARGITTE L., PASQUIER R. (2016). Chemical Engineering Research and Design A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chemical Engineering Research and Design, Institution of Chemical Engineers, Vol. 109, pp. 495–504, doi: 10.1016/j.cherd.2016.02.006.

LIMA E.C., BANDEGHARAEI A.H., PIRAJAN J.C.M. (2018). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, Journal of Molecular Liquids, Vol. 273, pp. 425–434,

doi: 10.1016/j.molliq.2018.10.048.

LOULIDI I., BOUKHLIFI F., OUCHABI M., AMAR A., JABRI M., KALI A., CHRAIBI S., et al. (2020). Adsorption of Crystal Violet onto an Agricultural Waste Residue : Kinetics , Isotherm , Thermodynamics , and Mechanism of Adsorption, Hindawi, Vol. 2020. Article ID 5873521, doi:10.1155/2020/5873521

MABUZA M., PREMLALL K., DARAMOLA M.O. (2022). Modelling and thermodynamic properties of pure CO2 and flue gas sorption data on South African coals using Langmuir, Freundlich, Temkin, and extended Langmuir isotherm models, International Journal of Coal Science and Technology, Springer Nature Singapore, Vol. 9, No. 1, doi: 10.1007/s40789-022-00515-y.

MAHMOOD H., MAHMOOD F. (2023). Ficus Benjamin’s leaf, a native sorbent for the exclusion of Methyl violet 10B from aquatic media, Heliyon, Vol. 9, No. 3, Paper e14295, doi: 10.1016/j.heliyon.2023.e14295.

MANI S., BHARAGAVA R.N. (2016). Exposure to Crystal Violet , Its Toxic , Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety, Reviews of Environmental Contamination and Toxicology, Vol. 237, pp. 71-104, doi: 10.1007/978-3-319-23573-8.

MESSAOUD-BOUREGHDA M.Z., AKSAS H., LOUHAB K., (2013). The study of potable water treatment process in Algeria ( Boudouaou station ) -by the application of life cycle assessment ( LCA ), Journal of Environmental Health Science & Engineering, pp. 1–9.

MRE (Algerian Ministry of Water Resources) (2022). The volume of treated wastewater is estimated at 500 million m3/year, Algeria Press Service, https://www.aps.dz/economie/136888-le-volume-des-eaux-usees-epurees-estime-a-500-millions-m3-an, 10 March 2022. (In French)

OKOROCHA N.J., OKOJI J.J., OSUJI C. (2016). Adsorption of Basic and Acidic Dyes onto Agricultural Wastes, International Letters of Chemistry, Physics and Astronomy, Vol. 70, pp. 12–26, doi: 10.56431/p-7cw7it.

OUETTAR L.,GUECHI E.,OUALID HAMDAOUI O., FERTIKH N., SAOUDI F., ABUDULAZIZ ALGHYAMAH A. (2023). Biosorption of Triphenyl Methane Dyes (Malachite Green and Crystal Violet) from Aqueous Media by Alfa (Stipa tenacissima L.) Leaf Powder, Molecules, Vol. 28, No. 8, Paper ID 3313.

OUAKOUAK A.K., YOUCEF L. (2016). Adsorption of Cu2+ ions on powder activated carbon and a sodique bentonite, Larhyss Journal, No 27, pp. 39-61. (In French)

PENNINKS A., BAERT K., LEVORATO S., BINAGLIA M. (2017). Dyes in aquaculture and reference points for action, European Food Safety Authority (EFSA), Vol. 15, doi: 10.2903/j.efsa.2017.4920.

PANDEY K.K., PITMAN A.J. (2003). FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi, International Biodeterioration & Biodegradation, Vol. 52, No.3, pp. 151–160, doi: 10.1016/S0964-8305(03)00052-0.

PETKOVA I.L., KIRILOVA D.A., STOYANOVA V.P. (2019). Characterization of Two Bulgarian Herbs for Use as Biosorbents for Copper (II) Characterization of Two Bulgarian Herbs for Use as Biosorbents for Copper (II) Lidia Petkova Ivanova, Albena Kirilova Detcheva & Paunka Stoyanova, Analytical Letters, Vol. 0 No. 0, pp. 1–13, doi: 10.1080/00032719.2019.1587447.

PRIYANTHA N., ROMZI A.A., CHAN C.M., LIM L.B.L. (2021). Enhancing adsorption of crystal violet dye through simple base modification of leaf adsorbent: Isotherm, kinetics, and regeneration, Desalination and Water Treatment, Vol. 215, pp. 194–208, doi: 10.5004/dwt.2021.26758.

QIU Y., ZHENG Z., ZHOU Z., SHENG G.D. (2009), Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresource Technology, Elsevier Ltd, Vol. 100, No. 21, pp. 5348–5351, doi: 10.1016/j.biortech.2009.05.054.

REHMAN F., SAYED M., KHAN J.A.L.I., KHAN H.M. (2017). Removal of crystal violet dye from aqueous solution by gamma irradiation, Journal of the Chilean Chemical Society, Vol.62, No.1, pp. 3359–3364.

REN S., GUO J., ZENG G., SUN, G. (2006). Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain, Appl Microbiol Biotechnol, Vol.72, No.6, pp. 1316–1321,

doi: 10.1007/S00253-006-0418-2.

REVELLAME E.D., LORD D., SHARP W., HERNANDEZ R., ZAPPI M.E. (2020). Adsorption kinetic modeling using pseudo first order and pseudosecond order rate laws : A review, Cleaner Engineering and Technology, Vol. 1, Paper 100032,

doi: 10.1016/j.clet.2020.100032.

REZAZADEH M., BAGHDADI M., MEHRDADI N., ABDOLI M.A. (2021). Adsorption of crystal violet dye by agricultural rice bran waste: Isotherms, kinetics, modeling and influencing factors, Environmental Engineering Research, Vol. 26, No. 3, pp. 0–2, doi: 10.4491/eer.2020.128.

SAMAI I., NEBBACHE S., AOUNALLAH O., RAMDANI H. MEGHLAOUI Z. (2023). Water pollution of the Oued D’Hous River (Algeria) and its potential impact on fauna and flora, Journal of Animal Behaviour and Biometeorology, Vol. 11, No. 1, pp. 1–9, doi: 10.31893/jabb.23006.

SHUKLA S.P., KISKU G.C. (2015). Linear and Non-Linear Kinetic Modeling for Adsorption of Disperse Dye in Batch Process, Research Journal of Environmental Toxicology, Vol. 9, No. 6, pp. 320–331, doi: 10.3923/rjet.2015.320.331.

SOLTANI A.,FARAMARZI M., ABOUTALEB S., PARSA M., (2021). A review on adsorbent parameters for removal of dye products from industrial wastewater”, Water Quality Research Journal, Vol. 56, No. 4, pp. 181–193.

doi: 10.2166/wqrj.2021.023.

SMOCZYNSKI L. PIEROZYNSKI B., MIKOŁAJCZYK T. (2020). Processes The Effect of Temperature on the Biosorption of Dyes, Processes, Vol. 8, No. 6, Paper 636, doi:10.3390/pr8060636

SULYMAN, M., NAMIEŚNIK, J., GIERAK, A. (2016). Adsorptive Removal of Aqueous Phase Crystal Violet Dye by Low-Cost Activated Carbon Obtained from Date Palm (L .) Dead Leaflets, Engineering and Protection of Environment, Vol. 19 No. 4, pp. 611–631, doi: 10.17512/ios.2016.4.14.

SUN M., RICKER K., OSBORNE G. (2019). Evidence on the Carcinogenicity of Gentian Violet, Reproductive and Cancer Hazard Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency, No. January, Paper 117.

SRINIVAS C.V.S., ABHISHAY A.D., KUSUMA A., GOWTHAMI Y. (2023). Optimization, kinetics and thermodynamics for the removal of crystal violet dye using synthesized FeNPs from Carica papaya leaves extract, Materials Today: Proceedings, doi: 10.1016/j.matpr.2023.04.035.

YEDDOU MEZENNER N., BENSAADI Z., LAGHA H. BENSMAILI A. (2012). Study of the adsorption of a mixture of biorecalcitrant compounds in an aqueous medium, Larhyss Journal, No 11, pp. 7-16. (In French)

YOUCEF L., OUAKOUAK A., BOULANOUAR D., ACHOUR S. (2014). Study of the adsorbent power of powdered activated carbon for the elimination of phosphates from natural waters, Larhyss Journal, No 17, pp. 35-46. (In French)

YUNUSA U., IBRAHIM M.B. (2020). Adsorptive Removal of Basic Dyes and Hexavalent Chromium from Synthetic Industrial Effluent : Adsorbent Screening , Kinetic and Thermodynamic Studies, I. J. Engineering and Manufacturing, Vol. 5 No. August, pp. 54–74, doi: 10.5815/ijem.2020.04.05.

ZAMOUCHE M., HABIB A., SAAIDIA K., BENCHEIKH L.M. (2020). Batch mode for adsorption of crystal violet by cedar cone forest waste, SN Applied Sciences, Springer International Publishing, Vol. 2, No. 2, pp. 1–9, doi: 10.1007/s42452-020-1976-0.

WANG J., GUO X.G. (2022). Rethinking of the intraparticle diffusion adsorption kinetics model_ Interpretation, solving methods and applications - ScienceDirect, Chemosphere, Vol. 309, ID. 136732. doi: 10.1016/j.chemosphere.2022.136732.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.