EXPERIMENTAL STUDY OF THE TRANSPORT OF SUSPENDED PARTICLES AND DISSOLVED TRACER (FLUORESCEIN) IN SATURATED POROUS MEDI

T. IKNI, A. BERREKSI, R. BENKADJA, M.L. NEBBAR, M. KADRI, A. BENAMAR

Abstract


In this article, we presented the results of an experimental study of transport and deposition of silt suspended particles (modal diameter 7 μm) in a laboratory column filled with gravel. The tracer tests are performed at different velocities by continuous injections of suspended particles and of dissolved tracer. The hydro-dispersive parameters are determined from the experimental calibration curves by the analytical solution for a continuous injection of the convection-dispersion equation with the deposition kinetics of first order. The results show that the restitution of particles and deposition kinetics, increase with the flow velocity. The kinetics of deposit increases with speed and follows a power law. The retention decreases with flow velocity. The dispersion of the particles is slightly higher than that of the dissolved tracer; it increases with the pore velocity in a non-linear way. The analysis of the size distribution of restituted particles by the laser granulometer showed that the larger particles arrive first and then the fine for all tested speeds. The restituted particles size increases with speed. The suspended particles are carried with a delay relative to the dissolved tracer.


Keywords


Filtration, particle’s transport, porous medium, deposition kinetics, tracing.

Full Text:

PDF (Français)

References


Abboud, N.M., 1998. Numerical solution and sensitivity analysis of pore liquid pressure and cake porosity to model parameters. Transport in Porous Media, 30 (2), 199-216.

Ahfir, N.D., Wang, H.Q., Benamar, A., Alem, A., 2007. Transport and deposition of suspended particles in saturated porous media: hydraulic effect. Hydrogeology Journal, 15, 659-668.

Ahfir, N.D, Benamar, A., Alem, A., Wang, H.Q., 2009. Influence of Internal Structure and Medium Length on Transport and Deposition of Suspended Particles: A Laboratory Study, Transp Porous Med. 76, 289-307, DOI 10.1007/s11242-008-9247-3

Benamar, A., Wang, H.Q., Ahfir, N.D., Alem, A., Masséi, N., Dupont, J.P., 2005. Effets de la vitesse d’écoulement sur le transport et la cinétique de dépôt de particules en suspension en milieu poreux saturé. C. R. Geoscience, 337, 497–504

Bennacer, L., Ahfir, N-D., Bouanani, A., Alem, A., Wang, H.Q., 2013 Suspended Particles Transport and Deposition inSaturated Granular Porous Medium: Particle Size Effects. Transp Porous Med. DOI 10.1007/s11242-013-0220-4,©Springer Science+Business Media Dordrecht 2013.

Brusseau, M.L., 1993. The influence of solute size, pore water velocity, and intraparticle porosity on solute dispersion and transport in soil. Water Resour. Res. 29 (04), 1071-1080.

Compère, F., Porel, G., Delay, F., 2001. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. Journal of Contaminant Hydrology, 49, 1-21.

Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport. Water Resour. Res. 29, 2215–2226.

Di Marzio, E.A., Guttman, C.M., 1970. Separation by flow. Macromolecules, 3 (2)131-146.

Elkawafi, A., 2010. Colmatage d’un milieu poreux soumis à un écoulement chargé de particules. Thèse de doctorat, Université de Havre (France), Laboratoire Ondes et Milieux Complexes, LOMC-FRE 3102, CNRS

Elimelech, M., O’Melia, C.R., 1990. Kinetics of deposition of colloidal particles in porous media. Environnemental Sciences Technologies, 24, 1528-1536.

Grindrod, P., Edwards, M.S., Higgo, J.J.W., Williams, G.M., 1994. Analysis of colloidal and tracer breakthrough curves. Intera Information Technologies Ltd, Henley-on-Thames. British Geological Survey, Keyworth, UK.

Herzig, J.P., Leclerc, D.M., Le Goff, P., 1970. Flow of suspension through porous media, Application to deep bed filtration. Industrial and Engineering Chemistry, 62, 8–35.

Hu, Q., Brusseau. M.L., 1994. The effect of solute size on diffusive-dispersion transport in porous media. Journal of Hydrology, 158, 305-317.

Johnson, W.P., Li, X., Assemi, S., 2007. Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Advanced in Water Res. 30, 1432-1454.

Kanti sen, T., Khilar, C.K., 2006. Review on subsurface colloids and colloid-assosiated contaminant transport in saturated porous media. Advances In Colloid and Interface Science, 119, 71-96.

Koltz, D., K.-P. Seiler, H. Moser, F. Neumaier., 1980. Dispersivity and velocity relationship from laboratory and field experiments. Journal of Hydrology, 45, 169-184.

Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y., Borkovec, M., Sticher, H., 1997. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Ressour. Res. 33 (5), 1129-1137.

Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M., 1999. Mobile subsurface colloïds and their role in contaminant transport. Adv. Agron. 66, 121-193.

Lahav, N., Tropp, D., 1980. Movement of synthetic microspheres in saturated soil columns. Soil Science, 130 (3), 151-156.

Malkovsky, V.I., Pek, A.A., 2009. Effect of elevated velocity of particles in groundwater flow and its role in colloid-facilitated transport of radionuclides in underground Medium. Transport in Porous Media, 78, 277-294.

Massei, N., Lacroix, M., Wang, HQ., Dupont, J-P., 2002. Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Cont. Hydrol. 57, 21- 39

Moghadasi, J., Jamialahmadi, M., Sharif, A., 2004. Theoretical and experimental study of particle movement and deposition in porous media during water injection. Journal of Petroleum Science and Engineering, vol. 43, 163-181.

Pfannkuch, H.O., 1963. Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux. Rev Inst Fr Pétrol. 18, 215–270.

Porubcan, Alexis A., Xu, S.P., 2011. Colloid straining within saturated heterogeneous porous media. Water Res. 45, 1796 -1806.

Ryan, J.N., Elimelech, M., 1996. Colloid Mobilization and Transport in Groundwater. Col. Surfaces A. 107, 1-56

Reddi, L.N., Xiao M., Hajra, M.G., Lee I.M., 2005. Physical Clogging of Soil Filters Under Constant Flow Rate vs. Constant Head. Canadian Geotechnical Journal, 42, 804-811.

Roque, C., Chauveteau, G., Renard, M., Thibault, G., Bouteca, M., 1995. Mechanisms of formation damage by retention of particles suspended in injection water. Society of Petroleum Engineers SPE, 30110, 329-343.

Roychoudhury, A.N., 2001. Dispersion in unconsolidated aquatic sediments. Stuarine, Coasal and Shelf Science, 53, 745-757.

Santos, A., Barros, P.H.L., 2010. Multiple particle retention mechanisms during filtration on porous media. Environ. Sci. Technol. 44(7), 2515-2521.

Sauty, J.P., 1978. Identification des paramètres hydrodispersifs dans les aquifères par interprétation de traçages en écoulement cylindrique convergent ou divergent. Journal of Hydrology, 39, 68-103.

Sébillotte, M., Meynard, JM., 1990. Systèmes de culture, systèmes d’élevage et pollutions azotées. In: Nitrates, Agriculture, Eau, R Calvet (ed), INRA Editions, Paris, 289-312.

Sen, T.K., Khilar, K.C., 2006. Review on subsurface colloids and colloids-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 119 (2-3), 71-96.

Silliman, S.E., 1995. Particles transport through two-dimensional saturated porous media: influence of physical structure of the medium. J. Hydrol. 167, 79-98

Tran, D.H., 2012. Caractérisation du milieu poreux : approches mécanique et acoustique Thèse de doctorat, Université de Havre (France), 156 pages. Laboratoire Ondes et Milieux Complexes, LOMC-FRE 3102, CNRS

Tufenkji, N., Redman, J.A., Elimelech, M., 2003. Interpreting deposition patterns of microbial particles in laboratory-scale column experiments, Environ. Sci. Technol. 37, 616–623.

Van Genuchten, M.T., 1981. Analytical solution for chemical transport with simultaneous adsorption zero order production and first order decay, jHydro.49

Wang, H.Q., Crampon N., Garnier J.M., Huberson S., 1987. A linear graphical method for determining hydrodispersive characteristics in tracer experiments with instantaneous injection. J. Hydrol. 95, 143–154.

Wang H.Q., Lacroix M., Masséi, N. & Dupont, J-P., 2000. Transport des particules en milieu poreux : détermination des paramètres hydrodispersifs et du coefficient de dépôt. CRAS-Series IIA - Earth and Planetary Science, 331, 97-104.

Wang, H.Q., 2001. Transferts de matières en milieu saturé : Outils mathématiques et modélisation numérique. Habilitation à diriger des recherches (H.D.R.), Université de Rouen, 88p.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.