EXPERIMENTAL STUDY OF MASS TRANSPORT IN SATURATED POROUS MEDIA: "MODELING IN THE LABORATORY"

T. IKNI, A. BERREKSI, M. BELHOCINE, M.L. NEBBAR, R. BENKADJA

Abstract


This work is part of the understanding of the mechanisms of transport and retention of suspended matter in a saturated porous medium. It concerns the transport of suspended particles (SP) and the dissolved tracer (DT). The experiments are based on instantaneous injections of these two tracers (SP and DT). The tracing was carried out for a Darcy velocity range from 0.052 to 0.285 cm/s, the purpose of which is to study the influence of flow velocity on the phenomenon of transport and deposition of suspended particles. An analytical model of convection-dispersion with first order deposition kinetics made it possible to adjust the restitution curves and to deduce the hydro-dispersive parameters. This experimental study made it possible to demonstrate that the particles in suspension arrive behind the dissolved tracer (fluorescein). This difference in behavior is attributed mainly to the weights, size and frequency of collision of the particles with the grains of the medium. This study also showed that the rate of restitution and dispersion increase with speed. The retention rate and the filtration coefficient decrease as the speed increases.


Keywords


Porous media, suspended particles, tracers, colloids, pollution, dispersion.

Full Text:

PDF (Français)

References


ADAMCZYK Z., SIWEK B., SZYK L. (1995). Flow-induced surface blocking effects in adsorption of colloid particles. Journal of Colloid and Interface, Science 174, 130–141.

AHFIR N.D., WANG H.Q., BENAMAR A., ALEM A. (2007). Transport and deposition of suspended particles in saturated porous media: hydraulic effect. Hydrogeology Journal, 15, 659-668.

AHFIR N.D, BENAMAR A., ALEM A., WANG H.Q. (2009). Influence of Internal Structure and Medium Length on Transport and Deposition of Suspended Particles: A Laboratory Study. Transp Porous Med. 76, 289-307, DOI 10.1007/s11242-008-9247-3.

ALBERS B., WILMANSKI K. (2006). Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials. Arch. Mech., 58, No 4-5, 313-325.

ALEM A., ELKAWAFI A., AHFIR N.-D., WANG H.Q. (2013). Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21, 573–586.

AMITAY-ROSEN T., CORTIS A., BERKOWITZ B. (2005). Magnetic Resonance Imaging and Quantitative Analysis of Particle Deposition in Porous Media. Environ. Sci. Technol., 39 (18) 7208-7216.

BELHOCINE, F., DERIBLE, S., FRANKLIN, H. (2007). Transition term method for the analysis of the reflected and the transmitted acoustic signals from water-saturated porous plates. J. Acoust. Soc. Am., 122(3), 1518-1526.

BENAMAR A., WANG H.Q., AHFIR N.D., ALEM A., MASSÉI N., DUPONT J.P. (2005). Effets de la vitesse d’écoulement sur le transport et la cinétique de dépôt de particules en suspension en milieu poreux saturé. C. R. Geoscience, 337, 497–504.

BENAMAR A., AHFIR N.D., ABDELLAH ALEM A., WANG H.Q. (2007). Particle transport in saturated porous medium. pore structure effects. C .R.Geoscience 10/2007: 339(10) 674-681.

BENNACER L., AHFIR N.D., BOUANANI A., ALEM A., WANG H.Q. (2013). Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects. Transp Porous Med DOI 10.1007/s11242-013-0220-4.

BOLSTER C.H., MILLS A.L., HORNBERGER G. M., HERMAN J.S. (1999). Spatial distribution of deposited bacteria following miscible displacement experiments in intact cores. Water Resour. Res., 35, 1797–1807, doi:10.1029/1999WR900031.

Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J., 2002. Physical factors affecting the transport and fate of colloids in saturated porous media. Water resources research, 38(12), 1327-1338.

BUFFIÈRE P., MOLETTA R. (2000). Collision frequency and collisional particle pressure in three-phase fluidized beds. Chem. Eng. Sci., 55, 5555-5563.

COMPÈRE F., POREL G., DELAY F. (2001). Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. Journal of Contaminant Hydrology, 49, 1-21.

CORAPCIOGLU M.Y., JIANG S. (1993). Colloid-facilitated groundwater contaminant transport. Water Resour. Res. 29, 2215–2226.

DE MARSILY G. (1986). Quantitative Hydrogeology. Groundwater Hydrology for Engineers. Academic Press Inc, New York (1986).

DJEHICHE A., CANSECO V., OMARI A., BERTIN H. (2009). Étude expérimentale du dépôt de particules colloïdales en milieu poreux : Influence de l’hydrodynamique et de la salinité. Publié par Elsevier Masson SAS 2009. doi:10.1016/j.crme.2009.08.002.

DI MARZIO E.A., GUTTMAN C.M. (1970). Separation by flow. Macromolecules, 3 (2)131-146.

ELIMELECH M., O’MELIA C.R. (1990). Kinetics of deposition of colloidal particles in porous media. Environ. Sci. Technol., 24, 1528–1536, 1990.

GOHR PINHEIRO I., SCHMITZ P., HOUI D. (1999). Particle capture in porous media when physicochemical effects dominate. Chem. Eng. Sci. 54 (1999) 3801–3813.

GROLIMUND D., BORKOVEC M., BARMETTLER K., STICHER H. (1996). Colloid-Facilitated Transport of Strongly Sorbing Contaminants in Natural Porous Media: A Laboratory Column Study. Environ. Sci. Technol., 30, 3118-3123.

GROLIMUND D., ELIMELICH M., BORCOVEC M., BARMETTLER K., KRETZSCHMAR R. H., STICHER H. (1998). Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol.32, 3562 – 3569.

GROLIMUND D., ELIMELICH M., BORCOVEC M. (2001). Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloids and Surfaces A: Physicochem. Eng. Aspects 191, 179 – 188.

HERZIG J.P., LECLERC D.M., LE GOFF P. (1970). Flow of suspension through porous media, Application to deep bed filtration. Industrial and Engineering Chemistry, 62, 8–35.

HU Q., BRUSSEAU M.L. (1994). The effect of solute size on diffusive-dispersion transport in porous media. Journal of Hydrology, 158, 305-317.

IKNI T., BENAMAR A., KADRI M., AHFIR N.D., WANG H.Q. (2013). Particle transport within water-saturated porous media: Effect of pore size on retention kinetics and size selection. Hydrology, environment, C. R. Geoscience 345 (2013) 392–400.

IKNI T., BERREKSI A., BENKADJA R., NEBBAR M.L., KADRI M., BENAMAR A. (2016). Étude expérimentale du transport de particules en suspensions et du traceur dissout (fluorescéine) dans un milieu poreux saturé. Larhyss Journal, ISSN 1112-3680, n°27, Sept 2016, pp. 153-174.

JORDAN R., YONGE D., HATHHORN W. (1997). Enhanced mobility of Pb in the presence of dissolved organic matter. J. Contam. Hydrol., 29: 59-80.

KO C.H., ELIMELECH M. (2000). The “Shadow Effect” in colloid transport and deposition dynamics in granular porous media: measurements and mechanisms. Environmental Science & Technology, 34, 3681-3689.

KRETZSCHMAR R., BARMETTLER K., GROLIMUND D., YAN Y., BORKOVEC M., STICHER H. (1997). Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Ressources Research, Vol.33, No.5, p.1129-1137, 1997.

LAHAV N., TROPP D. (1980). Movement of synthetic microspheres in saturated soil columns. Soil Sci., 130, 151–156, 1980.

MASSEI N., LACROIX M., WANG H.Q., DUPONT J.P. (2002). Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Cont. Hydrol. 57, 21- 39.

MAYS D.C., HUNT J.R. (2005). Hydrodynamic aspects of particle clogging in porous media. Environ. Sci. Technol., 39, 577-584.

MCCARTHY J.F., ZACHARA J.M. (1989). Subsurface transport of contaminants. Environnemental Sciences Technologies, Vol.23, No. 5, p. 496-502, 1989.

MCDOWELL-BOYER L. M., HUNT J.R., SITAR N. (1986). Particle transport through porous media. Water Resour. Res., 22, 1901–1921, 1986.

MOGHADASI J., JAMIALAHMADI M., SHARIF A. (2004). Theoretical and experimental study of particle movement and deposition in porous media during water injection. Journal of Petroleum Science and Engineering, vol. 43, 163-181.

NIEHREN S., KINZELBACH W. (1998). Artificial colloid tracer tests: development of a compact online microsphere counter and application to soil-column experiments. Journal of Hydrology, Vol.35, p. 249-259.

PFANNKUCH H.O. (1963). Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux. Rev Inst Fr Pétrol. 18, 215–270.

PORUBCAN ALEXIS A., XU S.P. (2011). Colloid straining within saturated heterogeneous porous media. Water Res. 45, 1796 -1806.

ROQUE C., CHAUVETEAU G., RENARD M., THIBAULT G., BOUTECA M. (1995). Mechanisms of formation damage by retention of particles suspended in injection water. Society of Petroleum Engineers SPE 30110, 329-343.

ROYCHOUDHURY A.N. (2001). Dispersion in unconsolidated aquatic sediments. Stuarine, Coasal and Shelf Science, 53, 745-757.

RYAN J.N., ELIMELECH M. (1996). Colloid mobilization and transport in groundwater. Colloids Surf. A 107 (1996) 1–56.

SAIERS J.E., HORNBEGER G.M. (1994). First-and second-order kinetics approaches for modelling the transport of colloidal particles in porous media. Water Resources Res. 30, 2499-2506.

SANTOS A., BARROS P.H.L. (2010). Multiple particle retention mechanisms during filtration on porous media. Environ. Sci. Technol., 44(7), 2515-2521.

SAUTY J.P. (1978). Identification des paramètres hydrodispersifs dans les aquifères par interprétation de traçages en écoulement cylindrique convergent ou divergent. Journal of Hydrology, 39, 68-103.

SCHIJVEN J.F., HASSANIZADEH S.M. (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Crit. Rev. Environ. Sci. Technol., 30, 49–127.

SEN T.K., KHILAR K.C. (2006). Review on subsurface colloids and colloids-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, Volume 119, Issues 2-3, Pages 71-96.

SETA A.K., KARATHANASIS A.S. (1997). Atrazine adsorption by soil colloids and co-transport through subsurface environments. Soil Science Society of American Journal, Vol.61, No.2, p.612-617, 1997.

SILLIMAN S.E. (1995). Particles transport through two-dimensional saturated porous media: influence of physical structure of the medium. J. Hydrol. 167, 79-98.

SIRIVITHAYAPAKORN S., KELLER A. (2003). Transport of colloids in saturated porous media: a pore scale observation of the size exclusion effect and colloid acceleration. Water Resour. Res. 39 (4) (2003) 1109.

TOBIASON E.J., JOHNSON S.G., WESTERHOFF K.P., VIGNESWARAN B. (1993). Particle Size and Chemical Effects on Contact Filtration Performance. J. Environ. Eng., 119(3), 520-540.

TRAN D.H., DERIBLE S., FRANKLIN H., BENAMAR A., WANG H.Q. (2012). Ultrasonic measurements of particle retention by a porous medium. Ultrasonics, Volume 52, Issue 1, January 2012, Pages 62–68.

WANG H.Q., CRAMPON N., GARNIER J.M., HUBERSON S. (1987). A linear graphical method for determining hydrodispersive characteristics in tracer experiments with instantaneous injection. J. Hydrol. 95, 143–154.

WANG H.Q., LACROIX M., MASSEI N., DUPONT J.P. (2000). Transport des particules en milieu poreux: détermination des paramètres hydrodispersifs et du coefficient de dépôt. CRAS-Series IIA - Earth and Planetary Science, 331, 97-104.

YAN Y.D. (1996). Pulse-injection chromatographic determination of the deposition and release rate constants of colloidal particles in porous media. Langmuir, No.12, p. 3383-3388, 1996.

ZENIT R., HUNT M.L., BRENNEN C.E. (1997). Collisional particle pressure measurements in solid-liquid flows. J. Fluid Mech., 353, 261-283.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.