CONTRIBUTION TO THE STUDY OF THE DAM BREAK WAVE PROPAGATION VIA FINITE DIFFERENCES FORMULATIONS

T. IKNI, A. BERREKSI, M. HAMIDOU, M. BELHOCINE, M.L. NEBBAR, R. BENKADJA

Abstract


In this study two explicit schemes of Lax-Friedrichs and MacCormack are used to simulate the dam break wave problem. In order to improve the results of numerical simulations, two interface dissipations (ID) are used to reduce the numerical oscillations. We performed a comparative study of these dissipations and their different locations in the numerical scheme. These comparisons allow us to choose the numerical method adapted to the simulation of the dam break wave. The results are presented in one dimension and verifications were made with the analytical and experimental solution of other authors. Good agreement was found between the simulated, analytical and experimental results regardless of the flow regime. This technique allows to simulate the dam failure wave without taking into account the flow regime and to keep the solution stable for the values of the Courant-Friedrichs-Lewy (CFL) number up to a value close to unit.

Keywords


Fluvial, Supercritical, Transcritical, Artificial viscosity, Dam failure, Saint Venant

Full Text:

PDF (Français)

References


AHMAD M.F., MAMAT M., RIZKI S., MOHD I., ABDULLAH I. (2011). The development of numerical method for shock waves and wave propagation on irregular bathymetry, Applied Mathematical Sciences, Vol.5, Issue 6, pp. 293-308.

AHMAD M.F., MAMAT M., WAN NIK W.B., KARTONO A. (2013). Numerical method for dam break problem by using Godunov approach, Applied Mathematical and Computation, Vol.2, Issue 1, pp. 95-107.

BAGHERI J., DAS S.K. (2013). Modelling of shallow water equations by using higher-order compact scheme with application to dam-break problem, Journal of Applied and Computational Mathematics, Vol.2, Issue 3, pp. 1-9, DOI: 10.4172/2168-9679.1000132.

BELLOS V., HRISSANTHOU V. (2011). Numerical simulation of a dam-break flood wave. European Water, Vol.33, pp. 45-53.

BURGUETE J., GARCIA-NAVARRO P. (2004). Implicit schemes with large time step for non-linear equations: application to river flow hydraulics, International Journal for Numerical Methods in Fluids, Vol.46, Issue 6, pp. 607-636.

CHANSON H. (2005). Applications of the Saint-Venant equations and method of characteristics to the dam break wave problem, Report No. CH55/05, Department of Civil Engineering, The University of Queensland, Brisbane, Australia, May, 135 p.

CHANSON H. (2006). Solutions analytiques de l’onde de rupture de barrage sur plan horizontal et incline, La Houille Blanche, Vol.3, pp. 76-86.

CUNGE J.A., HOLLY F.M.JR., VERWEY A. (1980). Practical aspects of computational river hydraulics, Pitman Advanced Publishing Program, Boston.

DAS S.K., BAGHERI J. (2015). Modelling of shallow-water equations by using compact MacCormack-Type schemes with application to dam-break problem, International Journal of Advances in Applied Mathematics and Mechanics, Vol.2, Issue 3, pp. 60-71.

DRESSLER R.F. (1952). Hydraulic resistance effect upon the dam-break, Journal of Research of the National Bureau of Standards, Vol.49, Issue 3, pp. 217-225.

DRESSLER R.F. (1954). Comparison of theories and experiments for the hydraulic dam-break wave, International Association of Hydrological Sciences, Vol.38, pp. 319-328.

FREAD D.L. (1993). Flow Routing in Handbook of Hydrology, McGraw-Hill Inc., New York, USA, pp.1-36.

GARCIA-NAVARRO P., ALCRUDO F., SAVIRON J.M. (1992). 1-D open channel flow simulation using TVD-MacCormack scheme, Journal of Hydraulic Engineering, Vol.118, pp. 1359-1372.

GARCIA-NAVARRO P., FRAS A., VILLANUEVA I. (1999). Dam-break flow simulation: some results for one dimensional models of real cases, Journal of Hydrology, Vol. 216, pp. 227-247.

GERBEAU J.F., PERTHAME B. (2001). Derivation of viscous Saint-Venant system for laminar shallow water : numerical validation, Discrete and Continuous Dynamical Systems, Series B, Vol.1, Issue 1, pp. 89-102.

HELFRICH K.R., ALLEN C.K., PRATT L.J. (1999). Nonlinear Rossby adjustment in a channel, Journal of Fluids Mechanics, Vol.390, pp. 187-222.

HIRCH C. (1990). Numerical computation of internal and external flows, Vol.2: Computational Methods for Inviscid and Viscous Flows, Wiley, Chichester.

HSU C-T., YEH K-C. (2002). Iterative explicit simulation of 1D surges and dam-break flows, International Journal of Numerical Methods in Fluids, Vol.38, pp. 647-675, DOI: 10.1002/fld.236.

JOVANOIÉ M., DJORDJEVIÉ D. (1995). Experimental verification of the MacCormacK numerical scheme, Advances in Engineering Software, Vol.23, pp. 61-77.

KOUTITAS CH. (1982). Computational Hydraulics, Xanthi, 199 p.

KURGANOV A., LEVY D. (2002). Central-upwind schemes for the Saint-Venant system, Mathematical Modelling and Numerical Analysis, Vol.36, pp. 397-425.

MAMBRETTI S.E., DE WRACHIEN D. (2008). 1D modelling of dam-break surges with floating debris, Biosystems Engineering, Vol.100, pp. 297-308.

MARCHE F. (2007). Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, European Journal of Mechanics B/Fluids, Vol.26, pp. 49-63.

MOHAPATRA P.K., BHALLAMUDI S.M. (1996). Computation of a dam-break flood wave in channel transitions, Advances in Water Resources, Vol.19, Issue 3, pp. 181-187.

NEMA M., DESMUKH DR.T.S. (2016). Dam break-review, International Journal of Advanced Engineering Research and Science, Vol.3, Issue 6.

POPINET S. (2011). Quadtree-adaptative tsunami modelling, Ocean Dynamics, Vol.61, Issue 9, pp.1261-1285.

REHMAN K., CHO Y.S. (2016). Bed evolution under rapidly varying flows by a new method for wave speed estimation, Water, Vol.8, Issue 212, Doi:10.3390/w8050212.

RITTER A. (1892). Die fortpfazung der wasser-wellen Zeitschrift des Vereins, Deutscher Ingenieure. Vol.36, Issue 33, pp. 947-954.

SAIKIA M.D., SARMA A.K. (2006). Analysis for adopting logical channel section for 1D dam break analysis in natural channels, ARPN Journal of Engineering and Applied Sciences, Vol.1, Issue 2.

SAINT-VENANT A.J.C. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction de marées dans leurs lits. Comptes rendus de l’Académie des Sciences, Vol.36, pp. 154-174.

SARMA A.K., SAIKIA M.D. (2006). Dam break hydraulics in natural channel, World Environmental and Water Resources Congress, 21-25 May, Omaha, Nabeska, USA.

SENTÜRK F. (1994). Hydraulics of dams and reservoirs, Water Resources Publications, Highlands Ranch, Colorado, USA.

SINGH J., ALTINAKAR M.S., DING Y. (2011). Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme, Advances in Water Resources, Vol. 34, pp. 1366-1375. Doi:10.1016/j.advwatres.2011.07.007.

SMITH M.W., COX N.J., BRACKEN L.J. (2007). Applying flow resistance equations to overland flows, Progress in Physical Geography, Vol.31, Issue 4, pp. 363-387.

SOLEYMANI S., GOLKAR H., YAZD H., TAVOUSI M. (2015). Numerical modeling of dam failure phenomenon using software and finite difference method, Journal of Materials and Environmental Science, Vol.6, Issue 11, pp. 3143-3158.

STOKER J.J. (1952). Water waves, Wiley Classics Library Edition Published.

STOKER J.J. (1957). Water waves, Interscience Publishers Inc., Wiley and Sons, New York, U.S.A.

TOWNSON J.M., AL-SALIHI A.H. (1989). Models of dam-break flow in R-T space. Journal of Hydraulic Engineering, Vol.115, Issue 5, pp. 561-575.

TSENG M.H. (1999). Verification of 1-D Transcritical flow model in channels, Proceedings of the National Science Council, Republic of China, Vol.23, Issue 5, pp. 654-664.

VALIANI A., CALEFFI V., ZANNI A. (2002). Case study: Malpasset dam-break simulation using a two-dimensional finite volume method, Journal of Hydraulic Engineering, Vol. 128, Issue 5, pp. 460-472.

WU C. (1986). Ritter’s solution of dam-breaking wave in trapezoid cross-section channel, Advances in Hydrodynamics, Vol.1, Issue 2, pp. 82-88.

XING Y.L., SHU C.W. (2014). A survey of high order schemes for the shallow water equations, Journal of Mathematical Study, Vol.47, pp. 221-249.

XING Y.L., SHU C.W. (2015). High order finite difference WENO schemes with the exact conservation property for the shallow water equations, Journal of Computational Physics, Vol.208, pp. 206-227.

XIONG T., QIU J.M., XU Z. (2013). A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows, Journal of Computational Physics, Vol. 252, pp. 310-331.

YU G., DUAN J.G. (2014). High resolution numerical schemes for solving kinematic wave equation, Journal of Hydrology, Vol. 519, pp. 823-832.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.