COMPUTATION OF 1D SIDE WEIR FLOW BY FINITE ELEMENT METHOD
Abstract
Keywords
Full Text:
PDF (Français)References
AMARA L., BERREKSI A., ACHOUR B., ABDOUNE K. (2014). Numerical Computation of Water Level Fluctuation in Surge Tanks Using the Galerkin Method. Dam Engineering, vol. 25, no 1, pp. 23-35.
BALMFORTH D. J., SARGINSON E. J. (1983). The effects of curvature in supercritical side weir flow. Journal of Hydraulic Research, vol. 21, no 5, pp. 333-343.
CASTRO-ORGAZ O., HAGER W. H. (2011). Spatially-varied open channel flow equations with vertical inertia. Journal of Hydraulic Research, vol. 49, no 5, pp. 667-675.
CASTRO-ORGAZ O., HAGER W. H. (2012). Subcritical side-weir flow at high lateral discharge. Journal of Hydraulic Engineering, vol. 138, no 9, pp. 777-787.
CONNOR J. J., BREBBIA C. A. (1976). Finite element techniques for fluid flow. Newness-Butterworths, London, 310 p.
DE MARCHI G. (1934). Saggio di teoria funzionamento degli stramazzi laterali. Energia Elettrica, 11, pp. 849-860.
FAVRE H., BRAENDLE F. (1937). Expériences sur le mouvement permanent de l'eau dans les canaux découverts, avec apport ou prélèvement le long du courant. Bulletin Technique de la Suisse Romande, vol. 63, pp.93-96, pp.109-114, pp.129-134.
FEATHERSTONE R. E., NALLURI C. (1995). Civil engineering hydraulics: Essential theory with worked examples. Blackwell Science Ltd, 401 p.
GHODSIAN M. (2003). Supercritical flow over a rectangular side weir. Canadian Journal of Civil Engineering, vol. 30, no 3, pp. 596-600.
GRANATA F., DE MARINIS G., GARGANO R. (2013). A Flow Power Based Approach For Side Weirs. In : 35 th IAHR Congress, Chengdu, China.
HAGER W. H. (1981). Die Hydraulik von Verteikanaelen (L’hydraulique des canaux à débit décroissant). Thèse de Doctorat en sciences techniques, Ecole Polytechnique Fédérale de Zurich, ETH, Zurich, Suisse, N°6948, partie I, 332 p, partie II, 322 p.
HAGER W. H. (1986). L'écoulement dans des déversoirs latéraux. Canadian Journal of Civil Engineering, vol. 13, no 5, pp. 501-509.
HAGER W. H. (1987). Lateral outflow over side weirs. Journal of Hydraulic Engineering, vol. 113, no 4, pp. 491-504.
HAGER W. H., HAGER K. (1985). Streamline curvature effects in distribution channels. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 199, no 3, pp. 165-172.
HAGER W. H., VOLKART P. U. (1986). Distribution channels. Journal of Hydraulic Engineering, vol. 112, no 10, pp. 935-952.
MAY R. W. P., BROMWICH B. C., GASOWSKI Y., RICKARD C.E. (2003) Hydraulic design of side weirs. Thomas Telford, London, 133 p.
MICHELAZZO G. (2015). New analytical formulation of De Marchi’s model for a zero-height side weir. Journal of Hydraulic Engineering, vol. 141, no 12, pp. 04015030.
MIZUMURA K., YAMASAKA M., ADACHI J. (2003). Side outflow from supercritical channel flow. Journal of Hydraulic Engineering, vol. 129, no 10, pp. 769-776.
RAO K. D., PILLAI C. R. S. (2008). Study of flow over side weirs under supercritical conditions. Water resources management, vol. 22, no 1, pp. 131-143.
REDDY J. N. (2005). An introduction to the finite element method, Me Graw Hill, India, 755 p.
ROBINSON D. I., MCGHEE T. J. (1993). Computer modeling of side-flow weirs. Journal of irrigation and drainage engineering, vol. 119, no 6, pp. 989-1005.
SUBRAMANYA K., AWASTHY S. C. (1972). Spatially varied flow over side-weirs. Journal of the Hydraulics Division, vol. 98, no 1, pp. 1-10.
SUBRAMANYA K. (2009). Flow in Open Channels. 3e, Tata McGraw-Hill Education, New Delhi, 547 p.
ZIENKIEWICZ O. C., TAYLOR R. L. (2000). The finite element method: The basis (Vol. 1). Butterworth-heinemann, 689 p.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.