The presence of nitrate is one of the factors limiting the quality of groundwater resources, particularly in arid and semi-arid regions. Geostatistical methods have been used widely as a convenient tool to make a decision on the management of the behavior of hydrochemical parameters in groundwater. The purpose of this study is to evaluate the accuracy of several spatial interpolation methods, comparing inverse distance weighting (IDW), simple kriging, ordinary kriging, and universal kriging methods using nitrate concentration data from 305 groundwater wells in the synclinal of Ain el bel-Sidi Makhlouf (Algeria). To select the best interpolation method, errors of predicted values were determined by Mean Error (ME) and Root Mean Square Standardized Error (RMSS). The results make clear that Kriging methods performed better, showing greater consistency in the generated surfaces, fewer interpolation errors, and lower biases. However, universal kriging was determined to be the optimal method, striking a balance between accuracy and simplicity and gives a good spatial distribution of the nitrate contents in the syncline of Ain el bel and Sidi Makhlouf.


Geostatistics, Groundwater; Nitrate concentration, Spatial interpolation methods, Ain el bel Sidi Makhlouf syncline

Full Text:



ABDOLAHI MANSORKHANI M., MOHAMMADZADEH H,. AMINI M. (2012). Evaluation of Nitrat Spatial variations in Shahrekord aquifer using Geostatistical methods. In: National Conference on Water Flow and Pollution, University of Tehran, Iran, pp. 1-9.

AKRAMKHANOV A., MARTIUS C., PARK SJ., HENDRICKX JMH. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain, The Global Journal of Soil Science, Vol. 163, No 1-2, pp. 55-62.

ANSELIN L., GETIS A. (1992). Spatial statistical analysis and geographic information systems. Annals of Regional Science, Vol. 26, pp. 19–33.

ARSLAN H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey, Agricultural Water Management, Vol. 113, pp.57-63.

ASHRAF M., LOFTIS JC., HUBBARD KG. (1997). Application of geostatistics to evaluate partial weather station networks, Agricultural and Forest Meteorology, Vol. 84, pp. 255–271.

AZPURUA MA., RAMOS KD. (2010). A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude, Progress In Electromagnetics Research, Vol. 14, pp. 135–145.

BANNISTER R., KENNELLY P. (2016). Incorporating stream features into groundwater contouring tools within GIS, Groundwater, Vol. 54, N°2, pp. 286–290.

BASSETO D., GUILLEMO J. (1971). Notice explicative de la carte géologique au 1/200 000 d’Ain Rich, Publications de service Géologique de l’Algérie, p74.

BENSLIMANE M., HAMIMED A., KHALDI A., EL ZERAY W. (2015). Approche méthodologique d’évaluation de la politique de gestion de l’eau des zones humides cas du chott chergui (sud-ouest algérien), Larhyss Journal, ISSN 1112-3680, No22, pp. 167-181.

BUCHANAN S., TRIANTAFILIS J. (2009). Mapping water table depth using geophysical and environmental variables, Groundwater, Vol. 47, No1, pp.80–96.

CARUSO C., QUARTA F. (1998). Interpolation methods comparison, Computers & Mathematics with Applications, Vol. 35, No12, pp.109–126.

CHILDS C. (2004). Interpolating Surfaces in ArcGIS Spatial Analyst. ArcUser, ESRI Education Services, ESRI-ARC GIS, pp. 32–35.

http://webapps.fundp.ac.be/geotp/SIG/interpolating.pdf> (accessed 12.08.2020).

COLLINS FC., BOLSTAD P.V. (1996). A comparison of spatial interpolation techniques in temperature estimation. In Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, National Center for Geographic Information Analysis (NCGIA): Santa Fe, NM, Santa Barbara, CA: January 21–25.

CURTARELLI M., LEÃO J., OGASHAWARA I., LORENZZETTI J., STECH J. (2015). Assessment of spatial interpolation methods to map the bathymetry of an Amazonian hydroelectric reservoir to aid in decision making for water management, International Journal of Geo-Information, Vol. 4, No1, pp. 220–235.

DELHOMME JP. (1978). Kriging in the hydrosciences, Advances in Water Resources, Vol. 1, No 5, pp. 251-266.

FALLAHZADEH RA, ALMODARESI SA., DASHTI MM, FATTAHI A., SADEGHNIA M., ESLAMI H, (2016). Zoning of nitrite and nitrate concentration in groundwater using Geografic information system (GIS), case study: drinking water wells in Yazd City, Journal of Geoscience and Environment Protection, Vol. 4, No 3, pp. 91-96.

GHAZI A., MOGHADAS NH., SADEGHI H., GHAFOORI M., LASHKARIPOUR GR (2014). Spatial variability of shear wave velocity using geostatistical analysis in Mashhad City, NE Iran, Open Geology Journal, Vol. 4, pp.354–363.

HERIARIVONY S., RAZANAMPARANY B., RAKOTOMALALA J. (2016). Space-time changes in physicochemical parameters of ground water of rural municipality of antanifotsy, vakinankaratra, Madagascar, Larhyss Journal, ISSN 1112-3680, No27, Sept 2016, pp. 239-255.

JOHNSTON K., VER HOEF J., KRIVORUCHKO K., AND LUCAS N. (2001). Using ArcGIS Geostatistical Analyst, Redlands: Esri, Vol. 380.

KAHOUL M., DERBAL N., ALIOUA A., AYAD W. (2014). Evaluation de la qualité physico-chimique des eaux de puits dans la région de Berrahal (Algérie), Larhyss Journal, ISSN 1112-3680, N°18, pp. 169-178.

KERBOUB D., CHAMEKH K., FEHDI C., BOUDOUKHA AR. (2016). Contribution of G.I.S in mapping pollution, case of the El-Kantara plain, South East of Algeria, Larhyss Journal, ISSN 1112-3680, No27, pp. 175-185.

KOZIEL S., BANDLER JW. (2012). accurate modeling of microwave devices using kriging-corrected space mapping surrogates International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 25, No1, pp. 1-14.

MANGOUA M J., YAO A B., DOUAGUI GA., KOUASSI KA., GOULA B T A., BIEMI J. (2019). Assessment of the groundwater potentialities of cracked aquifers in the Bandama watershed (côte d'ivoire), Larhyss Journal, ISSN 1112-3680, No37, pp. 53-74.

MERWADE V. (2009). Effect of spatial trends on interpolation of river bathymetry, Journal of Hydrology, Vol. 371, No 1-4, pp. 169-181.

MITAS L., MITASOVA H. (1999). Spatial interpolation. Geographical information systems: principles, techniques, management and applications. Second edition, John Wiley & Sons, pp. 481-492.

MOUSAVIFAZL H., ALIZADH A., GHAHRAMAN B. (2013). Application of Geostatistical Methods for Determining Nitrate Concentrations in Groundwater (Case Study of Mashhad Plain, Iran). International Journal of Agriculture and Crop Sciences, Vol. 5, pp. 318-328.

NALDER IA., WEIN RW. (1998). spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and forest meteorology, Vol. 92, No 4, pp. 211-225.

NAOUM S., TSANIS I. (2004). Ranking spatial interpolation techniques using a GIS-based DSS, Global Nest Journal, Vol. 6, No 1, pp. 1–20.

NASRI B., BENATIALLAH A., KALOUM S., SOULIMANI S. (2017). Nitrate Impact on the Groundwater Quality Degradation in Arid Areas (Timiaouine Region South of Algeria). In: Euro-Mediterranean Conference for Environmental Integration. Springer, Cham, pp. 669-672.

OHMER M., LIESCH T., GOEPPERT N., GOLDSCHEIDER N. (2017) .On the optimal selection of interpolation methods for groundwater contouring: an example of propagation of uncertainty regarding inter-aquifer exchange. Advances in Water Resources, Vol. 109, pp. 121–132.

OKOBIAH O., MOHANTY SP., KOUGIANOS E. (2013). Geostatistical-inspired fast layout optimisation of a nano-CMOS thermal sensor. IET Circuits, Devices & Systems, Vol, 7, No5, pp. 253–262.

POUGET M. (1977). Géomorphologie, Pédologie groupement végétaux région d’Ain EL Bel-Messad (Algérie), Edition ORSTOM, Paris, 90p.

RABAH FKJ. GHABAYEN SM., SALHA AA. (2011). Effect of GIS interpolation techniques on the accuracy of the spatial representation of groundwater monitoring data in Gaza Strip. Journal of Environmental Science and Technology, Vol. 4, No6, pp. 579-589.

SAFARBEIRANVND M., AMANIPOOR H., BATTALEB-LOOIE S., GHANEMI K., EBRAHIMI B. (2018). Quality Evaluation of Groundwater Resources using Geostatistical Methods (Case Study: Central Lorestan Plain, Iran), Water Resources Management, Vol. 32, No11, pp. 3611-3628.

SAHOO S., JHA M. (2014). Analysis of spatial variation of groundwater depths using geostatistical modeling, International Journal of Applied Engineering Research, Vol. 9, No 3, pp. 317-322.

SALAH A., AMOR H., ANTHONY J., FABIENNE T., GUILHEM B. (2012). Anthropogenic contamination of groundwater with nitrate in arid region: case study of southern Hodna (Algeria), Environmental Earth Sciences, Vol. 70 N°5, pp.2129-2141.

TAGHIZADEH-MEHRJARDI R., ZAREIAN-JAHROMI M., MAHMOODI S., HEIDARI A., SARMADIAN F. (2009). Investigation of Interpolation Methods to Determine Spatial Distribution of Groundwater Quality in Rafsanjan, Iranian Journal of Watershed Management Science, Vol. 2, pp. 63-70.

TRIKI FOURATI H., BOUAZIZ M., BENZINA M., BOUAZIZ S. (2017). Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques, Environmental Monitoring and Assessment, Vol. 189, No4, pp.177-189.

UYAN, M., CAY, T. (2010). Geostatistical Methods for Mapping Groundwater Nitrate Concentrations, third International Conference on Cartography and GIS, Nessebar, Vol. 1520, pp. 732-741.

ZAMICHE S., HAMAIDI-CHERGUI F., DEMIAI A. (2018). Pollution of the quaternary aquifer of Mitidja (Algeria) by nitrates: origins and impacts on the quality of water for human consumption, Journal of Fundamental and Applied Sciences, Vol.10 N°1, pp. 113-131.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.