MODERN WATER SUPPLY MANAGEMENT TECHNIQUES AND METHODS: A REVIEW
Abstract
Water management has become one of the priorities for all countries due to water scarcity and population growth. However, the traditional methods used in this field need much time and high costs to be implemented. Therefore, recent research has focused on developing new alternatives for efficient water management. This review aims to survey the techniques and methods of water distribution management applied in different categories of applications. These are inequity in intermittent water supply (IWS), water demand forecasting (WDF), smart water management using the Internet of Things (IoT), and water leakage monitoring. This review mentions the proposed methods for improving equity in intermittent water supply systems. In addition, it discusses the application of machine learning algorithms to predict future water demand based on water consumption and climate variables. We also cite the application of IoT technology in water management through installing sensors along the network that allow real-time monitoring of WDSs. Finally, we discuss hardware and software methods used to monitor water leakage in WDNs.
Keywords
Full Text:
PDFReferences
ABDUL AZIZ N.A.A., MUSA T.A., MUSLIMAN I.A., OMAR A.H., WAN ARIS W.A. (2022). Smart water network monitoring: A case study at universiti teknologi malaysia, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 46, Issue 4/W3, pp. 3-7.
doi: 10.5194/ISPRS-ARCHIVES-XLVI-4-W3-2021-3-2022
ADEDEJI K.B., HAMAM Y., ABE B.T., ABU-MAHFOUZ A.M. (2017). Towards Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water Piping Networks: An Overview, IEEE Access, Vol. 5, pp. 20272-20285. doi: 10.1109/ACCESS.2017.2752802
AL-ZAHRANI M.A., ABO-MONASAR A. (2015). Urban residential water demand prediction based on artificial neural networks and time series models, Water Resources Management, Vol. 29, pp. 3651-3662. doi: 10.1007/S11269-015-1021-Z
ALGHAMDI A.M., KHAIRULLAH E.F., AL MOJAMED M.M. (2022). LoRaWAN Performance Analysis for a Water Monitoring and Leakage Detection System in a Housing Complex, Sensors, Vol. 22, Issue 19. doi: 10.3390/S22197188
ALI A.S., ABDELMOEZ M.N., HESHMAT M., IBRAHIM K. (2022). A solution for water management and leakage detection problems using IoTs based approach, Internet of Things, Vol. 18, Paper 100504. doi: 10.1016/j.iot.2022.100504
ALVISI S., FRANCHINI M., MARINELLI A. (2007). A short-term, pattern-based model for water-demand forecasting, Journal of Hydroinformatics, Vol. 9, Issue 1, pp. 39-50. doi: 10.2166/HYDRO.2006.016
ARGAZ A. (2018). 1D model application for integrated water resources planning and evaluation: case study of Souss river basin, Morocco, Larhyss Journal, No 36, pp. 217-229.
ÁVILA C.A.M., SANCHEZ-ROMERO F.J., LOPEZ-JIMENEZ P.A., PÉREZ-SÁNCHEZ M. (2022). Improve leakage management to reach sustainable water supply networks through by green energy systems. Optimized case study, Sustainable Cities and Society, Vol. 83, Paper 103994. doi: 10.1016/J.SCS.2022.103994
BABEL M.S., SHRESTHA A., ANUSART K., Shinde V. (2021). Evaluating the potential for conserving water and energy in the water supply system of Bangkok, Sustainable Cities and Society, Vol. 69. doi: 10.1016/j.scs.2021.102857
BAKKER M., VAN DUIST H., VAN SCHAGEN K., VREEBURG J., RIETVELD L. (2014). Improving the performance of water demand forecasting models by using weather input, Procedia Engineering, Vol. 70, pp. 93-102.
doi: 10.1016/j.proeng.2014.02.012
BEHBOUDIAN S., TABESH M., FALAHNEZHAD M., GHAVANINI F.A. (2014). A long-term prediction of domestic water demand using preprocessing in artificial neural network, Journal of Water Supply: Research and Technology - AQUA, Vol. 63, Issue 1, pp. 31-42. doi: 10.2166/AQUA.2013.085
BELLO O., ABU-MAHFOUZ A.M., HAMAM Y., PAGE P.R., ADEDEJI K.B., PILLER O. (2019). Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models, Water, Vol. 11, Issue 3, pp. 562-591. doi: 10.3390/W11030562
BRAGALLI C., D'AMBROSIO C., LEE J., LODI A., TOTH P. (2012). On the optimal design of water distribution networks: A practical MINLP approach, Optimization and Engineering, Vol. 13, pp. 219-246. doi: 10.1007/S11081-011-9141-7
BRENTAN B.M., LUVIZOTTO E., HERRERA M., IZQUIERDO J., PÉREZ-GARCÍA R. (2017). Hybrid regression model for near real-time urban water demand forecasting, Journal of Computational and Applied Mathematics, Vol. 309, pp. 532-541. doi: 10.1016/J.CAM.2016.02.009
CAMBRAINHA G.M., FONTANA M.E. (2018). A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems, Production, Vol. 28. doi: 10.1590/0103-6513.20170062
CHANDAPILLAI J., SUDHEER K.P., SASEENDRAN S. (2012). Design of Water Distribution Network for Equitable Supply, Water Resources Management, Vol. 26, pp. 391-406. doi: 10.1007/S11269-011-9923-X/METRICS
DE SOUZA GROPPO G., COSTA M.A., LIBÂNIO M. (2019). Predicting water demand: A review of the methods employed and future possibilities, Water Science and Technology: Water Supply, Vol. 19, Issue 8, pp. 2179-2198.
doi: 10.2166/WS.2019.122
DONG X.L., LIU S.Q., TAO T., LI S.P., XIN K.L. (2012). A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems, Journal of Zhejiang University: Science A, Vol. 13, pp. 674-686.
doi: 10.1631/JZUS.A1200072
EL ACHI N., ROUSE M.J. (2020). A hybrid hydraulic model for gradual transition from intermittent to continuous water supply in Amman, Jordan: a theoretical study, Water Supply, Vol. 20, Issue 1, pp. 118-129. doi: 10.2166/WS.2019.142
FENG Y.X., ZHANG H., RAD S., YU X.Z. (2021). Visual analytic hierarchical process for in situ identification of leakage risk in urban water distribution network, Sustainable Cities and Society, Vol. 75. doi: 10.1016/j.scs.2021.103297
GAO J., QI S., WU W., HAN A., CHEN C., RUAN T. (2014). Leakage control of multi-source water distribution system by optimal pump schedule, Procedia Engineering, Vol. 70, pp. 698-706. doi: 10.1016/j.proeng.2014.02.076
GOTTIPATI P.V.K.S.V., NANDURI U.V. (2014). Equity in water supply in intermittent water distribution networks, Water and Environment Journal, Vol. 28, Issue 4, pp. 509-515. doi: 10.1111/WEJ.12065
GULLOTTA A., CAMPISANO A., CREACO E., MODICA C. (2021). A Simplified Methodology for Optimal Location and Setting of Valves to Improve Equity in Intermittent Water Distribution Systems, Water Resources Management, Vol. 35, pp. 4477-4494. doi: 10.1007/s11269-021-02962-9
HABI M., KLINGEL P., VOGEL M. (2016). Domestic water consumption in Algeria – case study Tlemcen, Larhyss Journal, No 27, pp. 125-136.
HANAEI S., LAKZIAN E. (2022). Numerical and experimental investigation of the effect of the optimal usage of pump as turbine instead of pressure-reducing valves on leakage reduction by genetic algorithm, Energy Conversion and Management, Vol. 270, Paper 116253. doi: 10.1016/j.enconman.2022.116253
HERRERA M., GARCÍA-DÍAZ J.C., IZQUIERDO J., PÉREZ-GARCÍA R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series, Stochastic Analysis and Applications, Vol. 29, Issue 6, pp. 998-1007.
doi: 10.1080/07362994.2011.610161
HERRERA M., TORGO L., IZQUIERDO J., PÉREZ-GARCÍA R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, Vol. 387, Issues 1-2 pp. 141-150. doi: 10.1016/j.jhydrol.2010.04.005
HU X., HAN Y., YU B., GENG Z., FAN J. (2021). Novel leakage detection and water loss management of urban water supply network using multiscale neural networks, Journal of Cleaner Production, Vol. 278. doi: 10.1016/j.jclepro.2020.123611
ILAYA-AYZA A.E., CAMPBELL E., PEREZ-GARCIA R., IZQUIERDO J. (2016). Network capacity assessment and increase in systems with intermittent water supply, Water (Switzerland), Vol. 8, Issue 4. doi: 10.3390/w8040126
ILAYA-AYZA A.E., MARTINS C., CAMPBELL E., IZQUIERDO J. (2018). Gradual transition from intermittent to continuous water supply based on multi-criteria optimization for network sector selection, Journal of Computational and Applied Mathematics, Vol. 330, pp. 1016-1029. doi: 10.1016/j.cam.2017.04.025
JENSEN T.N., KALLESØE C.S., WISNIEWSKI R., BENDTSEN J.D. (2018). Residual generation for leakage signatures in water supply networks with multiple inlets, Vol. 51, Issue 24, pp. 717-722. doi: 10.1016/j.ifacol.2018.09.654
KIZILÖZ B., ŞIŞMAN E., ORUÇ H.N. (2022). Predicting a water infrastructure leakage index via machine learning, Utilities Policy, Vol. 75. doi: 10.1016/j.jup.2022.101357
LANDICHO J., ESICHAIKUL V., LANDICHO J.A., SAENGARUNWONG A. (2019). Modelling Domestic Water Demand and Management Using Multi-Criteria Decision Making Technique, Mindanao Journal of Science and Technology, Vol. 17.
LATCHOOMUN L., AH KING R.T.F., BUSAWON K.K., GINOUX J.M. (2020). Harmonic oscillator tank: A new method for leakage and energy reduction in a water distribution network with pressure driven demand, Energy, Vol. 201.
doi: 10.1016/j.energy.2020.117657
LI R., HUANG H., XIN K., TAO T. (2015). A review of methods for burst/leakage detection and location in water distribution systems, Water Science and Technology: Water Supply, Vol. 15, Issue 3, pp. 429-441. doi: 10.2166/ws.2014.131.
LI W., LING W., LIU S., ZHAO J., LIU R., CHEN Q., QU J. (2011). Development of systems for detection, early warning, and control of pipeline leakage in drinking water distribution: A case study, Journal of Environmental Sciences, Vol. 23, Issue 11, pp. 1816-1822. doi: 10.1016/S1001-0742(10)60577-3
MANOHAR U., KUMAR M.S.M. (2013). Modeling Equitable Distribution of Water: Dynamic Inversion-Based Controller Approach, Journal of Water Resources Planning and Management, Vol. 140, Issue 5, pp. 607-619.
doi: 10.1061/(ASCE)WR.1943-5452.0000368
MOLINOS-SENANTE M., VILLEGAS A., MAZIOTIS A. (2021). Measuring the marginal costs of reducing water leakage: the case of water and sewerage utilities in Chile, Environmental Science and Pollution Research, Vol. 28, pp. 32733-32743. doi: 10.1007/S11356-021-13048-9/METRICS
MONSEF H., NAGHASHZADEGAN M., JAMALI A., FARMANI R. (2019). Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network, Ain Shams Engineering Journal, Vol. 10, Issue 1, pp. 103-111. doi: 10.1016/J.ASEJ.2018.04.003
MSIZA I.S., NELWAMONDO F.V., MARWALA T. (2007). Artificial neural networks and support vector machines for water demand time series forecasting, Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 638-643. doi: 10.1109/ICSMC.2007.4413591
MUBVARURI F., HOKO Z., MHIZHA A., GUMINDOGA W. (2022). Investigating trends and components of non-revenue water for Glendale, Zimbabwe, Physics and Chemistry of the Earth, Vol. 126. doi: 10.1016/j.pce.2022.103145
NEELAKANTAN T.R., RAMMURTHY D., SMITH S.T., SURIBABU C.R. (2014). Expansion and upgradation of intermittent water supply system, Asian Journal of Applied Sciences, Vol. 7, Issue 6, pp. 470-485. doi: 10.3923/AJAPS.2014.470.485
NIE X., FAN T., WANG B., LI Z., SHANKAR.-C., MANICKAM A. (2020). Big data analytics and IoT in operation safety management in under water management, Elsevier, Vol. 154, pp. 188-196. doi:10.1016/j.comcom.2020.02.052
NYAHORA P.P., BABEL M.S., FERRAS D., EMEN A. (2020). Multi-objective optimization for improving equity and reliability in intermittent water supply systems, Water Science and Technology: Water Supply, Vol. 20, Issue 5, pp. 1592-1603.
doi: 10.2166/WS.2020.066/677462/WS2020066.PDF
PASIKA S., GANDLA S.T. (2020). Smart water quality monitoring system with cost effective using IoT, Heliyon, Vol. 6, Issue 7, Paper e04096.
doi:10.1016/j.heliyon.2020.e04096
PRICE E., ABHIJITH G.R., OSTFELD A. (2022). Pressure management in water distribution systems through PRVs optimal placement and settings, Water Research, Vol. 226. doi: 10.1016/j.watres.2022.119236
RATHORE S.S., KALLESØE C.S., WISNIEWSKI R. (2022). Application of Leakage Localization Framework for Water Networks with Multiple Inlets in Smart Water Infrastructures Laboratory at AAU, IFAC-PapersOnLine, Vol. 55, Issue 6, pp. 451-457. doi: 10.1016/j.ifacol.2022.07.170
ROBLES T., ALCARRIA R., MORALES DOMINGUEZ A., NAVARRO M., TRAGSA G., LOPEZ M. (2014). An internet of things-based model for smart water management, pp. 821-826. ieeexplore.ieee.org. doi: 10.1109/WAINA.2014.129
ROGERS D. (2014). Leaking Water Networks: An Economic and Environmental Disaster, Procedia Engineering, Vol. 70, pp. 1421-1429.
doi: 10.1016/J.PROENG.2014.02.157
ROUISSAT B., SMAIL N. (2022). Contribution of water resource systems analysis for the dynamics of territorial rebalancing, case of Tafna system, Algeria, Larhyss Journal, No 50, pp. 69-94.
SAMIR N., KANSOH R., ELBARKI W., FLEIFLE A. (2017). Pressure control for minimizing leakage in water distribution systems, Alexandria Engineering Journal, Vol. 56, pp. 601-612. doi: 10.1016/j.aej.2017.07.008
SAMMANEH H., AL-JABI M. (2019). IoT-enabled adaptive smart water distribution management system, Proceedings - 2019 International Conference on Promising Electronic Technologies, ICPET 2019, pp. 40-44. doi: 10.1109/ICPET.2019.00015
SANCHEZ D.H., SANCHEZ-NAVARRO J.R., NAVARRO-GÓMEZ C.J., RENTERIA M. (2022). Practical pressure management for a gradual transition from intermittent to continuous water supply, Water Practice and Technology, Vol. 17, Issue 3, pp. 699-707. doi: 10.2166/WPT.2022.015
SARISEN D., KOUKORAVAS V., FARMANI R., KAPELAN Z., MEMON F.A. (2022). Review of hydraulic modelling approaches for intermittent water supply systems, Journal of Water Supply: Research and Technology-Aqua, Vol. 71, Issue 12, pp. 1291-1310. doi: 10.2166/AQUA.2022.028
SHUSHU U.P., KOMAKECH H.C., DODOO-ARHIN D., FERRAS D., KANSAL M. L. (2021). Managing non-revenue water in Mwanza, Tanzania: A fast-growing sub-Saharan African city, Scientific African, Vol. 12. doi: 10.1016/j.sciaf.2021.e00830
SINGH M., AHMED S. (2021). IoT based smart water management systems: A systematic review, Materials Today: Proceedings, Vol. 46, pp. 5211-5218.
doi: 10.1016/J.MATPR.2020.08.588
SLANÝ V., LUČANSKÝ A., KOUDELKA P., MAREČEK J., KRČÁLOVÁ E., MARTÍNEK R. (2020). An integrated iot architecture for smart metering using next generation sensor for water management based on lorawan technology: A pilot study, Sensors, Vol. 20, Issue. 17. https://doi.org/10.3390/s20174712.
TIWARI M.K., ADAMOWSKI J.F. (2015). Medium-Term Urban Water Demand Forecasting with Limited Data Using an Ensemble Wavelet–Bootstrap Machine-Learning Approach, Journal of Water Resources Planning and Management, Vol. 141, Issue 2. doi: 10.1061/(ASCE)WR.1943-5452.0000454
VANIJJIRATTIKHAN R., KHOMSAY S., KITBUTRAWAT N., KHOMSAY K., SUPAKCHUKUL U., UDOMSUK S., ANUSART K. (2022). AI-based acoustic leak detection in water distribution systems, Results in Engineering, Vol. 15.
doi: 10.1016/j.rineng.2022.100557
VASAN A., SIMONOVIC S.P. (2010). Optimization of Water Distribution Network Design Using Differential Evolution, Journal of Water Resources Planning and Management, Vol. 136, Issue 2, pp. 279-287.
doi: 10.1061/(ASCE)0733-9496(2010)136:2(279)
VERMA P., KUMAR A., RATHOD N., JAIN P., MALLIKARJUN S., SUBRAMANIAN R., SUNDARESAN R. (2015). Towards an IoT based water management system for a campus, 2015 IEEE 1st International Smart Cities Conference, pp. 1-6. ISC2 2015. doi: 10.1109/ISC2.2015.7366152
YAN J., TAO T. (2022). Unsupervised anomaly detection in hourly water demand data using an asymmetric encoder–decoder model, Journal of Hydrology, Vol. 613.
doi: 10.1016/j.jhydrol.2022.128389
YUN B., WANG P., LI C., XIE J., WANG Y. (2014). A multi-scale relevance vector regression approach for daily urban water demand forecasting, Journal of Hydrology, Vol. 517, pp. 236-245. doi: 10.1016/j.jhydrol.2014.05.033.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.