MODERN WATER SUPPLY MANAGEMENT TECHNIQUES AND METHODS: A REVIEW

C.E. KOULOUGHLI, A. TELLI

Abstract


Water management has become one of the priorities for all countries due to water scarcity and population growth. However, the traditional methods used in this field need much time and high costs to be implemented. Therefore, recent research has focused on developing new alternatives for efficient water management. This review aims to survey the techniques and methods of water distribution management applied in different categories of applications. These are inequity in intermittent water supply (IWS), water demand forecasting (WDF), smart water management using the Internet of Things (IoT), and water leakage monitoring. This review mentions the proposed methods for improving equity in intermittent water supply systems. In addition, it discusses the application of machine learning algorithms to predict future water demand based on water consumption and climate variables. We also cite the application of IoT technology in water management through installing sensors along the network that allow real-time monitoring of WDSs. Finally, we discuss hardware and software methods used to monitor water leakage in WDNs.


Keywords


Water management, inequity, intermittent water supply, internet of things, water demand forecasting, water leakage monitoring

Full Text:

PDF

References


ABDUL AZIZ N.A.A., MUSA T.A., MUSLIMAN I.A., OMAR A.H., WAN ARIS W.A. (2022). Smart water network monitoring: A case study at universiti teknologi malaysia, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 46, Issue 4/W3, pp. 3-7.

doi: 10.5194/ISPRS-ARCHIVES-XLVI-4-W3-2021-3-2022

ADEDEJI K.B., HAMAM Y., ABE B.T., ABU-MAHFOUZ A.M. (2017). Towards Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water Piping Networks: An Overview, IEEE Access, Vol. 5, pp. 20272-20285. doi: 10.1109/ACCESS.2017.2752802

AL-ZAHRANI M.A., ABO-MONASAR A. (2015). Urban residential water demand prediction based on artificial neural networks and time series models, Water Resources Management, Vol. 29, pp. 3651-3662. doi: 10.1007/S11269-015-1021-Z

ALGHAMDI A.M., KHAIRULLAH E.F., AL MOJAMED M.M. (2022). LoRaWAN Performance Analysis for a Water Monitoring and Leakage Detection System in a Housing Complex, Sensors, Vol. 22, Issue 19. doi: 10.3390/S22197188

ALI A.S., ABDELMOEZ M.N., HESHMAT M., IBRAHIM K. (2022). A solution for water management and leakage detection problems using IoTs based approach, Internet of Things, Vol. 18, Paper 100504. doi: 10.1016/j.iot.2022.100504

ALVISI S., FRANCHINI M., MARINELLI A. (2007). A short-term, pattern-based model for water-demand forecasting, Journal of Hydroinformatics, Vol. 9, Issue 1, pp. 39-50. doi: 10.2166/HYDRO.2006.016

ARGAZ A. (2018). 1D model application for integrated water resources planning and evaluation: case study of Souss river basin, Morocco, Larhyss Journal, No 36, pp. 217-229.

ÁVILA C.A.M., SANCHEZ-ROMERO F.J., LOPEZ-JIMENEZ P.A., PÉREZ-SÁNCHEZ M. (2022). Improve leakage management to reach sustainable water supply networks through by green energy systems. Optimized case study, Sustainable Cities and Society, Vol. 83, Paper 103994. doi: 10.1016/J.SCS.2022.103994

BABEL M.S., SHRESTHA A., ANUSART K., Shinde V. (2021). Evaluating the potential for conserving water and energy in the water supply system of Bangkok, Sustainable Cities and Society, Vol. 69. doi: 10.1016/j.scs.2021.102857

BAKKER M., VAN DUIST H., VAN SCHAGEN K., VREEBURG J., RIETVELD L. (2014). Improving the performance of water demand forecasting models by using weather input, Procedia Engineering, Vol. 70, pp. 93-102.

doi: 10.1016/j.proeng.2014.02.012

BEHBOUDIAN S., TABESH M., FALAHNEZHAD M., GHAVANINI F.A. (2014). A long-term prediction of domestic water demand using preprocessing in artificial neural network, Journal of Water Supply: Research and Technology - AQUA, Vol. 63, Issue 1, pp. 31-42. doi: 10.2166/AQUA.2013.085

BELLO O., ABU-MAHFOUZ A.M., HAMAM Y., PAGE P.R., ADEDEJI K.B., PILLER O. (2019). Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models, Water, Vol. 11, Issue 3, pp. 562-591. doi: 10.3390/W11030562

BRAGALLI C., D'AMBROSIO C., LEE J., LODI A., TOTH P. (2012). On the optimal design of water distribution networks: A practical MINLP approach, Optimization and Engineering, Vol. 13, pp. 219-246. doi: 10.1007/S11081-011-9141-7

BRENTAN B.M., LUVIZOTTO E., HERRERA M., IZQUIERDO J., PÉREZ-GARCÍA R. (2017). Hybrid regression model for near real-time urban water demand forecasting, Journal of Computational and Applied Mathematics, Vol. 309, pp. 532-541. doi: 10.1016/J.CAM.2016.02.009

CAMBRAINHA G.M., FONTANA M.E. (2018). A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems, Production, Vol. 28. doi: 10.1590/0103-6513.20170062

CHANDAPILLAI J., SUDHEER K.P., SASEENDRAN S. (2012). Design of Water Distribution Network for Equitable Supply, Water Resources Management, Vol. 26, pp. 391-406. doi: 10.1007/S11269-011-9923-X/METRICS

DE SOUZA GROPPO G., COSTA M.A., LIBÂNIO M. (2019). Predicting water demand: A review of the methods employed and future possibilities, Water Science and Technology: Water Supply, Vol. 19, Issue 8, pp. 2179-2198.

doi: 10.2166/WS.2019.122

DONG X.L., LIU S.Q., TAO T., LI S.P., XIN K.L. (2012). A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems, Journal of Zhejiang University: Science A, Vol. 13, pp. 674-686.

doi: 10.1631/JZUS.A1200072

EL ACHI N., ROUSE M.J. (2020). A hybrid hydraulic model for gradual transition from intermittent to continuous water supply in Amman, Jordan: a theoretical study, Water Supply, Vol. 20, Issue 1, pp. 118-129. doi: 10.2166/WS.2019.142

FENG Y.X., ZHANG H., RAD S., YU X.Z. (2021). Visual analytic hierarchical process for in situ identification of leakage risk in urban water distribution network, Sustainable Cities and Society, Vol. 75. doi: 10.1016/j.scs.2021.103297

GAO J., QI S., WU W., HAN A., CHEN C., RUAN T. (2014). Leakage control of multi-source water distribution system by optimal pump schedule, Procedia Engineering, Vol. 70, pp. 698-706. doi: 10.1016/j.proeng.2014.02.076

GOTTIPATI P.V.K.S.V., NANDURI U.V. (2014). Equity in water supply in intermittent water distribution networks, Water and Environment Journal, Vol. 28, Issue 4, pp. 509-515. doi: 10.1111/WEJ.12065

GULLOTTA A., CAMPISANO A., CREACO E., MODICA C. (2021). A Simplified Methodology for Optimal Location and Setting of Valves to Improve Equity in Intermittent Water Distribution Systems, Water Resources Management, Vol. 35, pp. 4477-4494. doi: 10.1007/s11269-021-02962-9

HABI M., KLINGEL P., VOGEL M. (2016). Domestic water consumption in Algeria – case study Tlemcen, Larhyss Journal, No 27, pp. 125-136.

HANAEI S., LAKZIAN E. (2022). Numerical and experimental investigation of the effect of the optimal usage of pump as turbine instead of pressure-reducing valves on leakage reduction by genetic algorithm, Energy Conversion and Management, Vol. 270, Paper 116253. doi: 10.1016/j.enconman.2022.116253

HERRERA M., GARCÍA-DÍAZ J.C., IZQUIERDO J., PÉREZ-GARCÍA R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series, Stochastic Analysis and Applications, Vol. 29, Issue 6, pp. 998-1007.

doi: 10.1080/07362994.2011.610161

HERRERA M., TORGO L., IZQUIERDO J., PÉREZ-GARCÍA R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, Vol. 387, Issues 1-2 pp. 141-150. doi: 10.1016/j.jhydrol.2010.04.005

HU X., HAN Y., YU B., GENG Z., FAN J. (2021). Novel leakage detection and water loss management of urban water supply network using multiscale neural networks, Journal of Cleaner Production, Vol. 278. doi: 10.1016/j.jclepro.2020.123611

ILAYA-AYZA A.E., CAMPBELL E., PEREZ-GARCIA R., IZQUIERDO J. (2016). Network capacity assessment and increase in systems with intermittent water supply, Water (Switzerland), Vol. 8, Issue 4. doi: 10.3390/w8040126

ILAYA-AYZA A.E., MARTINS C., CAMPBELL E., IZQUIERDO J. (2018). Gradual transition from intermittent to continuous water supply based on multi-criteria optimization for network sector selection, Journal of Computational and Applied Mathematics, Vol. 330, pp. 1016-1029. doi: 10.1016/j.cam.2017.04.025

JENSEN T.N., KALLESØE C.S., WISNIEWSKI R., BENDTSEN J.D. (2018). Residual generation for leakage signatures in water supply networks with multiple inlets, Vol. 51, Issue 24, pp. 717-722. doi: 10.1016/j.ifacol.2018.09.654

KIZILÖZ B., ŞIŞMAN E., ORUÇ H.N. (2022). Predicting a water infrastructure leakage index via machine learning, Utilities Policy, Vol. 75. doi: 10.1016/j.jup.2022.101357

LANDICHO J., ESICHAIKUL V., LANDICHO J.A., SAENGARUNWONG A. (2019). Modelling Domestic Water Demand and Management Using Multi-Criteria Decision Making Technique, Mindanao Journal of Science and Technology, Vol. 17.

LATCHOOMUN L., AH KING R.T.F., BUSAWON K.K., GINOUX J.M. (2020). Harmonic oscillator tank: A new method for leakage and energy reduction in a water distribution network with pressure driven demand, Energy, Vol. 201.

doi: 10.1016/j.energy.2020.117657

LI R., HUANG H., XIN K., TAO T. (2015). A review of methods for burst/leakage detection and location in water distribution systems, Water Science and Technology: Water Supply, Vol. 15, Issue 3, pp. 429-441. doi: 10.2166/ws.2014.131.

LI W., LING W., LIU S., ZHAO J., LIU R., CHEN Q., QU J. (2011). Development of systems for detection, early warning, and control of pipeline leakage in drinking water distribution: A case study, Journal of Environmental Sciences, Vol. 23, Issue 11, pp. 1816-1822. doi: 10.1016/S1001-0742(10)60577-3

MANOHAR U., KUMAR M.S.M. (2013). Modeling Equitable Distribution of Water: Dynamic Inversion-Based Controller Approach, Journal of Water Resources Planning and Management, Vol. 140, Issue 5, pp. 607-619.

doi: 10.1061/(ASCE)WR.1943-5452.0000368

MOLINOS-SENANTE M., VILLEGAS A., MAZIOTIS A. (2021). Measuring the marginal costs of reducing water leakage: the case of water and sewerage utilities in Chile, Environmental Science and Pollution Research, Vol. 28, pp. 32733-32743. doi: 10.1007/S11356-021-13048-9/METRICS

MONSEF H., NAGHASHZADEGAN M., JAMALI A., FARMANI R. (2019). Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network, Ain Shams Engineering Journal, Vol. 10, Issue 1, pp. 103-111. doi: 10.1016/J.ASEJ.2018.04.003

MSIZA I.S., NELWAMONDO F.V., MARWALA T. (2007). Artificial neural networks and support vector machines for water demand time series forecasting, Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 638-643. doi: 10.1109/ICSMC.2007.4413591

MUBVARURI F., HOKO Z., MHIZHA A., GUMINDOGA W. (2022). Investigating trends and components of non-revenue water for Glendale, Zimbabwe, Physics and Chemistry of the Earth, Vol. 126. doi: 10.1016/j.pce.2022.103145

NEELAKANTAN T.R., RAMMURTHY D., SMITH S.T., SURIBABU C.R. (2014). Expansion and upgradation of intermittent water supply system, Asian Journal of Applied Sciences, Vol. 7, Issue 6, pp. 470-485. doi: 10.3923/AJAPS.2014.470.485

NIE X., FAN T., WANG B., LI Z., SHANKAR.-C., MANICKAM A. (2020). Big data analytics and IoT in operation safety management in under water management, Elsevier, Vol. 154, pp. 188-196. doi:10.1016/j.comcom.2020.02.052

NYAHORA P.P., BABEL M.S., FERRAS D., EMEN A. (2020). Multi-objective optimization for improving equity and reliability in intermittent water supply systems, Water Science and Technology: Water Supply, Vol. 20, Issue 5, pp. 1592-1603.

doi: 10.2166/WS.2020.066/677462/WS2020066.PDF

PASIKA S., GANDLA S.T. (2020). Smart water quality monitoring system with cost effective using IoT, Heliyon, Vol. 6, Issue 7, Paper e04096.

doi:10.1016/j.heliyon.2020.e04096

PRICE E., ABHIJITH G.R., OSTFELD A. (2022). Pressure management in water distribution systems through PRVs optimal placement and settings, Water Research, Vol. 226. doi: 10.1016/j.watres.2022.119236

RATHORE S.S., KALLESØE C.S., WISNIEWSKI R. (2022). Application of Leakage Localization Framework for Water Networks with Multiple Inlets in Smart Water Infrastructures Laboratory at AAU, IFAC-PapersOnLine, Vol. 55, Issue 6, pp. 451-457. doi: 10.1016/j.ifacol.2022.07.170

ROBLES T., ALCARRIA R., MORALES DOMINGUEZ A., NAVARRO M., TRAGSA G., LOPEZ M. (2014). An internet of things-based model for smart water management, pp. 821-826. ieeexplore.ieee.org. doi: 10.1109/WAINA.2014.129

ROGERS D. (2014). Leaking Water Networks: An Economic and Environmental Disaster, Procedia Engineering, Vol. 70, pp. 1421-1429.

doi: 10.1016/J.PROENG.2014.02.157

ROUISSAT B., SMAIL N. (2022). Contribution of water resource systems analysis for the dynamics of territorial rebalancing, case of Tafna system, Algeria, Larhyss Journal, No 50, pp. 69-94.

SAMIR N., KANSOH R., ELBARKI W., FLEIFLE A. (2017). Pressure control for minimizing leakage in water distribution systems, Alexandria Engineering Journal, Vol. 56, pp. 601-612. doi: 10.1016/j.aej.2017.07.008

SAMMANEH H., AL-JABI M. (2019). IoT-enabled adaptive smart water distribution management system, Proceedings - 2019 International Conference on Promising Electronic Technologies, ICPET 2019, pp. 40-44. doi: 10.1109/ICPET.2019.00015

SANCHEZ D.H., SANCHEZ-NAVARRO J.R., NAVARRO-GÓMEZ C.J., RENTERIA M. (2022). Practical pressure management for a gradual transition from intermittent to continuous water supply, Water Practice and Technology, Vol. 17, Issue 3, pp. 699-707. doi: 10.2166/WPT.2022.015

SARISEN D., KOUKORAVAS V., FARMANI R., KAPELAN Z., MEMON F.A. (2022). Review of hydraulic modelling approaches for intermittent water supply systems, Journal of Water Supply: Research and Technology-Aqua, Vol. 71, Issue 12, pp. 1291-1310. doi: 10.2166/AQUA.2022.028

SHUSHU U.P., KOMAKECH H.C., DODOO-ARHIN D., FERRAS D., KANSAL M. L. (2021). Managing non-revenue water in Mwanza, Tanzania: A fast-growing sub-Saharan African city, Scientific African, Vol. 12. doi: 10.1016/j.sciaf.2021.e00830

SINGH M., AHMED S. (2021). IoT based smart water management systems: A systematic review, Materials Today: Proceedings, Vol. 46, pp. 5211-5218.

doi: 10.1016/J.MATPR.2020.08.588

SLANÝ V., LUČANSKÝ A., KOUDELKA P., MAREČEK J., KRČÁLOVÁ E., MARTÍNEK R. (2020). An integrated iot architecture for smart metering using next generation sensor for water management based on lorawan technology: A pilot study, Sensors, Vol. 20, Issue. 17. https://doi.org/10.3390/s20174712.

TIWARI M.K., ADAMOWSKI J.F. (2015). Medium-Term Urban Water Demand Forecasting with Limited Data Using an Ensemble Wavelet–Bootstrap Machine-Learning Approach, Journal of Water Resources Planning and Management, Vol. 141, Issue 2. doi: 10.1061/(ASCE)WR.1943-5452.0000454

VANIJJIRATTIKHAN R., KHOMSAY S., KITBUTRAWAT N., KHOMSAY K., SUPAKCHUKUL U., UDOMSUK S., ANUSART K. (2022). AI-based acoustic leak detection in water distribution systems, Results in Engineering, Vol. 15.

doi: 10.1016/j.rineng.2022.100557

VASAN A., SIMONOVIC S.P. (2010). Optimization of Water Distribution Network Design Using Differential Evolution, Journal of Water Resources Planning and Management, Vol. 136, Issue 2, pp. 279-287.

doi: 10.1061/(ASCE)0733-9496(2010)136:2(279)

VERMA P., KUMAR A., RATHOD N., JAIN P., MALLIKARJUN S., SUBRAMANIAN R., SUNDARESAN R. (2015). Towards an IoT based water management system for a campus, 2015 IEEE 1st International Smart Cities Conference, pp. 1-6. ISC2 2015. doi: 10.1109/ISC2.2015.7366152

YAN J., TAO T. (2022). Unsupervised anomaly detection in hourly water demand data using an asymmetric encoder–decoder model, Journal of Hydrology, Vol. 613.

doi: 10.1016/j.jhydrol.2022.128389

YUN B., WANG P., LI C., XIE J., WANG Y. (2014). A multi-scale relevance vector regression approach for daily urban water demand forecasting, Journal of Hydrology, Vol. 517, pp. 236-245. doi: 10.1016/j.jhydrol.2014.05.033.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.