THE EFFECT OF THE PHYSICAL PARAMETERIZATION SCHEMES IN WRF-ARW ON THE QUALITY OF THE PREDICTION OF HEAVY RAINS THAT CAUSE FLOODING APPLICATION ON EASTERN ALGERIA

K.A.A. GASSI, H. SAOUDI

Abstract


This study examines for the first time the impacts of the different physical parameterization schemes in the Weather Research and Forecasting (WRF-ARW) model on the quality of heavy rain prediction during the transitional season in eastern Algeria. Various physical model configurations are examined and verified by considering 144 numerical experiences using different combinations of cumulus and microphysical schemes compared to rain records of a network of thirty specialized meteorological stations for the period from August 1 until the last of October 2022. The most reliable forecasts have been obtained from the Kain-Fritsch cumulus scheme (KF). However, the impact of microphysical schemes was not truly identified in our study cases.


Keywords


WRF-ARW, Heavy rains, Transitional season, Eastern Algeria, Cumulus, Microphysics

Full Text:

PDF

References


ALAN A. (2007). An Introduction to Categorical Data Analysis, Second Edition, Department of Statistics, University of Florida, Gainesville, Florida, 394p.

CHERKI K. (2019). Daily and instantaneous flood forecasting using artificial neural networks in a north‒west Algerian watershed, Larhyss Journal, No 40, pp. 27-43.

CURTIS R. ALEXANDER, JORDAN G. POWERS, JOSEPH B, KLEMP, WILLIAM C, SKAMAROCK, CHRISTOPHER A, DAVIS, JIMY D, DAVID O, GILL, JANICE L. COEN, DAVID J, GOCHIS, RAVAN A, STEVEN E. PECKHAM, GEORG A. GRELL, JOHN M, SAMUEL T, STANLEY G. BENJAMIN, GEOFFREY J. DIMEGO, WEI W, CRAIG S. SCHWARTZ, GLEN S. ROMINE, ZHIQUAN L, CHRIS S, FEI C, MICHAEL J. BARLAGE, WEI Y, MICHAEL G. DUDA. (2017). The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bulletin of the American Meteorological Society, 22 p.

BETTS A.K., MILLER M.J., JANJIC Z.I. (1992). Betts-Miller-Janjic cumulus parameterization in the NCEP Eta Model, NCEP Office, Vol. 397, pp. 107-121.

BONG C.H.J., LIEW S.C., SIM J.E., TEO F.Y. (2023). Trend and statistical analysis of annual maximum daily rainfall (AMDR) for Sarawak river basin, Sarawak, Malaysia, Larhyss Journal, No 53, pp. 183-197.

FONSECA R.M., MORALES C.A., FISCH G., CHOU S.C. (2015). Sensitivity of WRF-ARW simulated mesoscale convective system rainfall to the choice of parameterization schemes. Atmospheric Research, Vol. 158, pp. 145-159.

GRELL G.A., FREITAS S.R. (2014). A Scale- and Aerosol-Aware Stochastic Convective Parameterization for Weather and Air Quality Models, Atmospheric Chemistry and Physics, Vol. 14, Issue 10, pp. 5233-5250.

HIREN S.L., RANJAN K.J. (2018). Analysis of Extreme Rainfall Event with Different Microphysics and Parameterization Schemes in WRF Model, Scientific Research, Vol. 9, Issue 1.

HAFNAOUI M.A., MADI M., BEN SAID M., BENMALEK A. (2022). Floods in El Bayadh city: causes and factors, Larhyss Journal, No 51, pp. 97-113.

HONG S.Y, LIM J.O.J. (2006). The WRF Single-Moment 6-Class Microphysics Scheme (WSM6), Journal of the Korean Meteorological Society, Vol. 42, Issue 2, pp. 129-151.

JORGE J.S.B., IGOR G. (2022). Impact of Cumulus Parameterizations on the Simulation of a Torrential Rainfall Event over the Southeast of the Iberian Peninsula, Social Science Research Network, pp.31.

JULIA J., GREGORY W., ROLAND S. (2019). Evaluation of Cumulus and Microphysics Parameterizations in WRF across the Convective Gray Zone, Weather and Forecasting, Vol. 34, Issue 4, pp. 1097-1115.

KAIN J.S., FRITSCH J.M.A. (1990). One-Dimensional Entraining Detraining Plume Model and Its Application in Convective Parameterization, Journal of the Atmospheric Sciences, Vol. 47, Issue 23, pp. 2784-2802.

KAIN J.S. (2004). The Kain–Fritsch convective parameterization: an update, Journal of Applied Meteorology, Vol. 43, pp. 170-181.

KNUPP K.R., (1987). Downdrafts within High Plains cumulonimbi. Part I: General kinematic structure, Vol. 44, Issue 6, pp. 987-1008.

LIN Y., FARLEY R.D., ORVILLE H.D. (1983). Bulk Parameterization of the Snow Field in a Cloud Model, Journal of Climate and Applied Meteorology, Vol. 22, Issue 6, pp. 1065-1092.

NASSA R.A.K., KOUASSI A M., BOSSA S.J. (2021). Analysis of climate change impact on the statistical adjustment models of extreme rainfall case of Ivory Coast, Larhyss Journal, No 46, pp. 21-48.

PANG J.M., TAN K.W. (2023). Development of regional climate model (rcm) for Cameron highlands based on representative concentration pathways (rcp) 4.5 and 8.5, Larhyss Journal, No 54, pp. 55-70.

SKAMAROCK W.C., KLEMP J.B., DUDHIA J., GILL D.O., BARKER D.M., WANG W., POWERS J.G. (2008). A description of the advanced research WRF version 3, NCAR Technical Note NCAR/TN-475+STR. National Center for Atmospheric Research, Boulder, Colorado, USA, 113 p.

THOMPSON G., FIELD P.R., RASMUSSEN R.M., HALL W.D. (2008). Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme, Part II: Implementation of a New Snow Parameterization, Monthly Weather Review, Vol. 136, Issue 12, pp. 5095-5115.

TIEN D.D., CUONG H.D., LARS R.H., LAM H., HUYEN L.T.T., HUNG M.K. (2019). Impacts of Different Physical Parameterization Configurations on Widespread Heavy Rain Forecast over the Northern Area of Vietnam in WRF-ARW Mode, Advances in Meteorology, Vol. 2019.

TRIPHONIA J.N., NYIMVUA S., JOACHIM R., MICHEL D.S., MESQUITA EDWIN R., ISAAC M., CHIKU S. (2018). Assessing Weather Research and Forecasting (WRF) Model Parameterization Schemes Skill to Simulate Extreme Rainfall Events over Dar es Salaam on 21 December 2011, Journal of Geoscience and Environment Protection, Vol. 6, Issue 1.

CHARLES A., DOSWELL I. (1993). Flash Flood-Producing Convective Storms: Current Understanding and Research. NOAA ERL National Severe Storms Laboratory Norman, Oklahoma USA, 10 p.

RODERICK L., ALAN L., SREEJA N., VINAY R. (2021). Prediction models for urban flood evolution for satellite remote sensing. Journal of Hydrology, Vol. 603, Part D, pp. 127-175.

TRIPHONIA A., MOHANTY U.C., PANIGRAHI A. (2018). Parameterization Schemes in Numerical Weather Prediction Models: A Review, Journal of Earth System Science, 68 p.

YANDY G.M., MICHEL D.S.M. (2015). Numerical Simulations of the 1 May 2012 Deep Convection Event over Cuba: Sensitivity to Cumulus and Microphysical Schemes in a High-Resolution Model, Hindawi: Advances in Meteorology, Vol. 2015.

YASMIN K. L. K., ERICK G.S.N., NOÈLE B.P.D.S., PEDRO Z.J., PRASHANT K., TACIANA T. D. A.A., MARCELO R.D.M., DAVIDSON M.M. (2022). Evaluation of the WRF-ARW model during an extreme rainfall event: Subtropical storm Guará, Atmósfera, Vol. 35, Issue 4.

ZEGGANE H., GHERNAOUT R., BOUTOUTAOU D., ABDULLAH S.S., REMINI B., KISI O. (2021). Multidimensional analyses of precipitation in Central-Northern region of Algeria, Larhyss Journal, Vol. 47, pp. 209-231.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.