REGIONAL APPROACH FOR THE ESTIMATE OF MAXIMUM DAILY RAINFALL IN NORTHERN ALGERIA

M. MEDDI, S. TOUMI

Abstract


Maximum rain quantiles estimate has always been of great importance to hydrologists and water resource managers. This information is essential for planning emergency situations related to hazardous weather conditions and the design of water supply engineering structures. In many instances, it is vital to estimate the extreme values relevant to the few frequencies for sites where there are few measures or even almost non-existent. The regionalization approach is the most used in such cases.

The regionalization procedure, based on the L-moments coupled with the rain index method has been both applied to rainfall data of two hundred and thirty (230) stations spread at random across northern Algeria and is the goal of this work. L-moments method confirmed the homogeneity of the twelve (12) regions that make up the study area. Rain indexes, combined with the regional growth curves developed in this study may logically estimate maximum rains quantiles at the stations by using the mean maximum rain in the observations series. The study provides an estimate of the regional characteristics of daily maximum rainfall that may be useful in studies of floods in the engineering design of water supply engineering structures.


Keywords


maximum daily rainfall, regional approach, northern Algeria

Full Text:

PDF (Français)

References


BOUVIER C., WOTLING G., DANLOUX J. (2000). Regionalization of extreme precipitation distribution using the principal components of the topographical environnement. J. Hydrol. 233 (1/4), 86-101

CRISCI A., GOZZIANI B., MENEGUZZO F., PAGLIARA S., MARACCHI G. (2002). Extreme rainfall in changing climate: Regional analysis and hydrological implication in Tuscany, Hydrol. Process., 16, 1261-1274.

CUNNANE C. (1987). Review of statistical models for flood frequency estimation. Paper presented in Inst. Sym. On flood frequency and risk analysis. Baton Rouge. Publ. in Singh, V.P. (Ed;), Hydrologic Frequency Modeling, Reidel Publ. Co., Dordrecht, 49-95.

DALRYMPLE T. (1960). Flood frequency analysis: Manual of Hydrology: Part 3. Flood-Flow Techniques, U.S. Geological Survey, Water Supply Paper 1543-A. United States Government Printing Office, Washington. Tuscany, Hydrol. Process., 16, 1261-1274.

KIEFFER A., BOIS P. (1997). Variabilité des caractéristiques statistiques des pluies extrêmes dans les Alpes françaises. Rev. Sci. Eau, 2, 199-216

KOUTSOYIANNIS D., BALOUTOS G. (2000). Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall interference. Natural Hazards 22, 29-48

KOUTSOYIANNIS D. (2004). Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation. Hydrological Sciences, 49(4) August 2004, pp. 575–590

MALEKINEZHAD H., ZARE-GARIZI A. (2014). Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmosfera, Vol. 27. Núm. 4. October 2014. doi: 10.1016/S0187-6236(14)70039-6

MARTIN C.A. (2015). Regional frequency analysis of seasonal rainfall and snowfall for the Southern Interior of British Columbia. Phd Thesis, McGill University, 97p.

MEDDI M., TOUMI S. (2015). Spatial variability and cartography of maximum annual daily rainfall under different return periods in the North of Algeria. Journal of Mountain Science 11/2015; 12(6):1403-1421. DOI:10.1007/s11629-014-3084-3.

MULLER A. (2006). Comportement Asymptotique de la Distribution des Pluies Extrêmes en France, Phd Thesis University of Montpellier II, pp.20–42–74.. https://tel.archives-ouvertes.fr/tel-00122997/document

NADARAJAH S., COI D. (2003). Extremes of daily rainfall in South Korea. World Resource Review, 15, 483-497.

NAGHAVI B., YU F.X (1993). Extreme rainfall frequency analysis for Louisiana. Transportation Research Board TRB. Annual meeting 1993, no 1420 , pp. 78-83

NEPPEL L., Desbordes M., Montgaillard M. (2001). Fréquence de l'épisode pluvieux à l'origine des inondations des 12 et 13 novembre 1999 dans l'Aude. C.R. Sci. Terre Plan. 332, pp. 267-273

OYEBANDE L. (1982). Deriving rainfall intensity-duration-frequency relationships and estimates for regions with inadequate data. Hydrol. Sci. J. 27(3), 353-367

PUJOL N., NEPPEL L., SABATIER R. (2007). Regional tests for trend detection in maximum precipitation series in the French Mediterranean region. Journal des Sciences Hydrologiques 52(5): 956-973. DOI: 10.1623/hysj.52.5.956.

RAKHECHA P.R., SOMAN M.K. (1994). Trends in the annual extremes rainfall events of 1 to 3 days duration over India. Theor. Appl. Clim. 48, 227-237

SEGAL M., PAN Z.T., ARRITT R.W. (2002). On the effect of relative timing of diurnal and large scale forcing on summer extreme rainfall characteristics over the central United State. Mont. Weather Review, 130, 1442-1450

ST-HILAIRE A., OUARDA T.B.M.J., LACHANCE M., BOBÉE B., BARBET M., BRUNEAU P. (2003). La régionalisation des précipitations : une revue bibliographique des développements récents Revue des Sciences de l’Eau, Rev. Sci. Eau 16/(2003) 27-54

WATT W. E., CHOW K.C.A., LATHEM K.W.(1986). A 1-h urban design storm for Canada, Canadian Journal of Civil Engineering, 13, 293 -300

WITHERS C.S., NADARAJAH S. (2000). Evidence of trend in return levels for daily rainfall in New Zealand. J. Hydrol. (NZ) 39, 155-166.

YUREKLI K. (2005). Regional frequency analysis of maximum daily rainfalls based on L-Moment approach. GOU, Ziraat Fakultesi Dergisi, 2005, 22(1), 37-44

ZOLINA O., SIMMER C., KAPALA A., BACHNER S., GULEV S., MAECHEL H. (2008. : Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J. Geophys. Res., 113, D06110, doi:10.1029/2007JD008393.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.