NUMERICAL COMPUTATION OF HYDRAULIC JUMP BY FINITE ELEMENT MODEL

L. AMARA, H. LACHI, A. BERREKSI

Abstract


This work deals with the numerical modeling of the hydraulic jump problem in a rectangular channel by the finite element method. The determination and knowledge of the jump characteristics; position, length, height and energy dissipation, are of prime importance for the design and calculation of hydraulic structures and systems with free surface flows. Based on certain simplifying assumptions that are acceptable in practice, the Saint-Venant 1D mathematical model has been used for the dynamic computation of the shock wave. The numerical solution of the set of hyperbolic partial differential equations was obtained by the Finite Element Method and the Method of Characteristics at the boundaries. The results concerned the prediction of the dynamic water free surface profile following a downstream control of the flow rate and the stationary state of the hydraulic jump in the channel. The obtained results for this purpose show a very good agreement with experimental measurements available in literature.

Keywords


Hydraulic jump, Saint-Venant, Numerical simulation, Finite elements

Full Text:

PDF (Français)

References


ACHOUR B., BEDJAOUI A. (2006). Contribution au calcul de la profondeur normale dans un canal rectangulaire. Larhyss Journal, no 5, pp. 139-147.

ACHOUR B., DEBABECHE M., KHATTAOUI M., BEDJAOUI A. (2002). Ressaut hydraulique classique et contrôlé dans quelques profils de canaux. Larhyss Journal, no 1, pp. 37-72.

ACHOUR B., SEDIRA N., DEBABECHE M. (2002). Ressaut contrôlé par seuil dans un canal rectangulaire. Larhyss Journal, no 1, pp. 73-85.

CARVALHO R.F., LEMOS C.M., RAMOS C.M. (2008). Numerical computation of the flow in hydraulic jump stilling basins. Journal of Hydraulic Research, vol. 46, no 6, pp. 739-752.

CHAUDHRY M.H. (2008). Open-channel flow. Springer Science & Business Media, 523 p.

CHIPPADA S., RAMASWAMY B., WHEELER M.F. (1994). Numerical simulation of hydraulic jump. International Journal of Numerical Methods in Engineering, 37, pp. 1381–1397.

CHOW V. T. (1959). Open channel hydraulics. McGraw-Hill Book Company Inc, New York, 680 p.

DE PADOVA D., MOSSA M., SIBILLA S., TORTI E. (2013). 3D SPH modelling of hydraulic jump in a very large channel. Journal of Hydraulic Research, Vol. 51, no. 2, pp. 158–173.

GHARANGIK A.M. (1988). Numerical simulation of hydraulic jump. Thèse de Master of Science, Université de l’Etat de Washington, 66 p.

GHARANGIK A.M., CHAUDHRY M.H. (1991). Numerical simulation of hydraulic jump. Journal of Hydraulic Engineering, Vol. 117, no 9, pp 1195-1211.

GOTTLIEB, D., TURKEL, E. (1976). Dissipative Two-Four Methods for Time-Dependent Problems. Mathematics of Computation, Vol. 30, no. 136, pp. 703-723.

RAHMAN M., CHAUDHRY M.H. (1995). Simulation of hydraulic jump with grid adaptation. Journal of Hydraulic Research, Vol. 33, no 4, pp. 555-569.

SAKARYA A.B., TOKYAY N.D. (2000). Numerical simulation of A-type hydraulic jumps at positive steps. Canadian Journal of Civil Engineering, vol. 27, no 4, pp. 805-813.

STURM T.W. (2001). Open Channel Hydraulics. McGwaw-Hill, 493 p.

SZYMKIEWICZ R. (2010). Numerical Modeling in Open Channel Hydraulics. Springer, Dordrecht, 419 p.

TOKYAY N.D., SAKARYA A.B., ESKI E. (2007). Numerical simulation of minimum B-jumps at abrupt drops. International journal for numerical methods in fluids, vol. 56, no 9, pp. 1605-1623.

ZHOU J.G., STANSBY P.K. (1999). 2D Shallow water flow model for the hydraulic jump. International Journal of Numerical Methods in Fluids, 29, pp. 375–387.

ZIENKIEWICZ O.C., Taylor R.L. (2000). The Finite Element Method. Volume 1, Butterworth-Heinemann, 689 p.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.