THEORETICAL BACKGROUND AND APPLICATIONS OF THE HYDRUS COMPUTER SOFTWARE PACKAGES

H. GHAZOUANI, B. LATRECH, A. MGUIDICH BELHAJ, A. CHERNI, B. DOUH M’HAMDI, I. GHAZOUANI, B. ABDELHAMID

Abstract


Hydrus-2D/3D is a numerical software to simulate water and solute movement in porous media. Currently, three different versions of the Hydrus software packages are available: Hydrus-1D, Hydrus-2D, and Hydrus (2D/3D). Similar basic processes are involved on the three models and they only differ by the dimensionality of the problems they are treating. Linear finite elements are used on Hydrus 2D to numerically solve the Richard equationfor saturated-unsaturated water flow and Fickian-based advection-dispersion equationsfor both heat and solute transport. It is also included on the flow equation a sink term to account for root water uptake as a function of both water and salinity stress. The unsaturated soil hydraulic propertiescan be described using van Genuchten, Brooks and Corey, modified van Genuchten, Kosugi, and Durner analytical functions. The heat transport equation considers conduction as well as advection with flowing water. The solute transport equations assume advective-dispersive transport in the liquid phase and diffusion in the gaseous phase. The uniform variably saturated water flow in all of these models is described using the Richards. Objective of this paper is to present the theoretical background of hydrus 2D and to reviews the different application of the model on agricultural sciences, such as evaluating different irrigation schemes, plant water uptake and transport of particle-like substances in the subsurface.

Keywords


Hydrus, submodels, applications, Richard equation, water flow, solute dynamic

Full Text:

PDF

References


ABBASI F., ŠIMŮNEK J., FEYEN, J., VAN GENUCHTEN M.TH., SHOUSE P.J. (2003a). Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: Homogeneous soil, Transactions of American society of Association Executives, Vol. 46, Issue 4, pp.1085-1095.

ABBASI F., JACQUES D., ŠIMŮNEK J. FEYEN J., VAN GENUCHTEN M.TH. (2003b). Inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: Heterogeneous soil, Transactions of American society of Association Executives, Vol.46, Issue 4, pp. 1097-1111.

ABBASI F., FEYEN J., VAN GENUCHTEN M. TH. (2004). Two-dimensional simulation of water flow and solute transport 1216 below furrows: Model calibration and validation, Journal of Hydrology, Vol. 290, Issue 2, pp. 63-79.

AJDARY K., SINGH, D. K., SINGH A. K., KHANNA M. (2007). Modelling of nitrogen leaching from experimental onion field under drip fertigation, Agricultual Water Management, Vol. 89, Issue 2, pp. 15-28.

ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. (1998). Crop Evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome.

ASSOULINE S., MÖLLER M., COHEN S., BEN-HUR M., GRAVA A., NARKIS K., SILBER A. (2006). Soil-plant system response to pulsed drip irrigation and salinity: bell pepper case study, Soil Sciences Society American Journal, Vol. 70, Issue 2, pp. 1556–1568.

BENJAMIN J. G., HAVIS H. R., AHUJA L. R., ALONSO C. V. (1994). Leaching and water flow patterns in every-furrow and alternate-furrow irrigation, Soil Sciences Society American Journal, Vol. 58,Issue 2, pp.1511-1517.

BHOURI KHILA S., DOUH B., MGUIDICHE A., BOUJELBEN A. (2015). Effet de la contrainte hydrique sur la productivité du blé dur en conditions climatiques semi arides de Tunisie. Larhyss Journal, No. 23, pp. 69-85

BOOGAARD H., VAN DIEPEN C., ROTTER R., CABRERA J., VAN LAAR H. (1998). User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST control center 1.5. Technical Report DLO Winand Staring Ctr., Wageningen, the Netherlands.

BOUKSILA F. (2011). Sustainability of irrigated agriculture under salinity pressure - A study in semiarid Tunisia. Doctoral Thesis, Lund University, Sweden. ISBN: 978-91-7473-188-0.

COOK F. J., FITCH P., THORBURN P. J., CHARLESWORTH P.B., BRISTOW K. L. (2006). Modelling trickle irrigation: Comparison of analytical and numerical models for estimation of wetting front position with time, Environ. Modelling & Software, Vol. 21, Issue3, pp. 1353-1359.

CREVOISIER D., POPOVA Z., MAILHOL J. C., RUELLE P. (2008). Assessment and simulation of water and nitrogen transfer under furrow irrigation, Agricultural Water Management, Vol. 95, Issue 4, pp. 354-366.

DABACH S., LAZAROVITCH N., ŠIMŮNEK J., SHANI U. (2013). Numerical investigation of irrigation scheduling based on soil water status, Irrigation Science, Vol. 31, Issue 1, pp. 27-36.

DOUH B., CHEHAIBI S., ZOUAGHI M. (2012). Analyse diagnostique du maintien en état de fonctionnement des systèmes d’irrigation mécanisée par aspersion. Larhyss Journal, No. 11, pp. 47-61.

DUDLEY L. M., BEN-GAL A., LAZAROVITCH N. (2008). Drainage water reuse: Biological, physical and technological considerations for system management, Journal of Environmental Quality., Vol. 37, Issue 3, pp.25-35.

EBRAHIMIAN H., LIAGHAT A., PARSINEJAD M., ABBASI F., NAVABIAN M. (2012). Comparison of one- and two dimensional models to simulate alternate and conventional furrow fertigation, Journal of Irrigation and Drainage Engineering, Vol. 138, Issue 10, pp. 929-938.

GÄRDENÄS A., HOPMANS J. W., HANSON B. R., ŠIMŮNEK J. (2005). Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation, Agricultural Water Management, Vol.74, Issue 2, pp. 219-242.

HAN M., ZHAO C., ŠIMŮNEK J., FENG G. (2015). Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model, Agricultural Water Management, Vol. 160, Issue 1, pp. 64-75.

HANSON B.R., ŠIMŮNEK J., HOPMANS J.W. (2006). Numerical modeling of urea-ammonium-nitrate fertigation under 1387 micro-irrigation, Agricultural Water Management, Vol. 86, Issue 1, pp. 102-113.

HANSON B. R., ŠIMUNEK J., HOPMANS J. W. (2008). Leaching with subsurface drip irrigation under saline, shallow ground water conditions, Vadose Zone Journal, Vol. 7, Issue 2, pp. 810-818.

HANSON B. R., MAY D. E., ŠIMŮNEK J., HOPMANS J. W., HUTMACHER R. B. (2009). Drip irrigation provides the salinity control needed for profitable irrigation of tomatoes in the San Joaquin Valley, California Agriculture, Vol. 63, Issue 3, pp. 131-136.

KANDELOUS M.M., ŠIMŮNEK J. (2010). Comparison of numerical, analytical and empirical models to estimate wetting pattern for surface and subsurface drip irrigation, Irrigation Sciences, Vol. 28, Issue 5, pp. 435-444.

KANDELOUS M.M., ŠIMŮNEK J., VAN GENUCHTEN M.TH., MALEK K. (2007). Soil water content distributions between two emitters of a subsurface drip irrigation system, Soil Science Society of America Journal, Vol. 75, Issue 2, pp. 488-497.

LAZAROVITCH N., ŠIMŮNEK J., SHANI U. (2007). System dependent boundary condition for water flow from subsurface 1497 source, Soil Sciences Society American Journal, Vol. 69, Issue 1, pp. 46-50.

LAZAROVITCH, N., POULTON M., FURMAN A., WARRICK A. W. (2009). Water distribution under trickle irrigation predicted using artificial neural networks, Journal of Engineering Mathematics, Vol. 64, Issue 2, pp 207-218

LI J., ZHANG J., RAO M. (2004). Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source, Agricultural Water Management, Vol. 67, Issue 2, pp. 89-104.

LI J., ZHANG J., RAO M., (2005). Water flow and nitrate transport under surface drip fertigation, Transactions of the AMERICAN SOCIETY OF ASSOCIATION EXECUTIVES, Vol. 48, Issue 2, pp. 627-637.

MAILHOL J. C., CREVOISIER D., TRIKI K. (2007). Impact of water application conditions on nitrogen leaching under furrow irrigation: Experimental and modeling approaches, Agricultural Water Management, Vol. 87, Issue 3, pp. 275-284.

MUBARAK I., MAILHOL, J. C., ANGULO-JARAMILLO R., BOUARFA S., RUELLE P. (2009). Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation, Agricultural Water Management, Vol. 96, Issue 11, pp. 1547-1559.

PHOGAT V., SKEWES M. A., COX J. W., SANDERSON G., ALAM J., ŠIMŮNEK J. (2014). Seasonal simulation of water, salinity, and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching, Journal of Hydrology, Vol. 513, Issue 1, pp. 504-516.

RAMOS T. B., ŠIMŮNEK J., GONÇALVES M.C., MARTINS J.C., PRAZERES A., CASTANHEIRA N. L., PEREIRA L. S. (2011). Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters, Journal of Hydrology, Vol. 407, Issue 4, pp. 129-144.

SELIM T., BERNDTSSON R., PERSSON M., SOMAIDA M., EL-KIKI M., HAMED Y., MIRDAN A., ZHOU Q. (2012). Influence of geometric design of alternate partial root-zone subsurface drip irrigation (APRSDI) with brackish water on soil moisture and salinity distribution, Agricultural Water Management, Vol. 103, Issue 1, pp. 182-190.

SELIM, T., BOUKSILA F., BERNDTSSON R., PERSSON M. (2012). Soil water and salinity distribution under different treatments of drip irrigation, Soil Science Society of America Journal, Vol. 77, Issue 4, pp. 1144-1156.

SHAN Y. Y., WANG Q. J. (2012). Simulation of salinity distribution in the overlap zone with double-point-source drip irrigation using HYDRUS-3D, Australian Journal of Crop Science, Vol. 6, Issue 2, pp. 238-247.

ŠIMŮNEK J., VAN GENUCHTEN M. TH., ŠEJNA M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone Journal, Vol 7, Issue 2, pp. 587-600.

ŠIMŮNEK J., HOPMANS J.W. (2009). Modeling compensated root water and nutrient uptake, Ecological Modeling, Vol. 220, Issue 4, pp. 505-521.

ŠIMŮNEK J., BRISTOW K. L., HELALIA S. A., SIYAL A. A. (2016). The effect of different fertigation strategies and furrow surface treatments on plant water and nitrogen use, Irrigation Science, Vol. 34, Issue 1, pp. 53-69.

SKAGGS T. H., TROUT T. J., ŠIMŮNEK J., SHOUSE P. J. (2004). Comparison of HYDRUS-2D simulations of drip irrigation 1750 with experimental observations, Journal of Irrigation and Drainage Engineering, Vol 130, Issue 4, pp. 304-310.

VAN DAM J. C., GROENENDIJK P., HENDRIKS R. F. A., KROES J. G. (2008). Advances of modeling water flow in variably saturated soils with SWAP, Vadose Zone Journal, Vol. 7, Issue 1, pp. 640-653.

VAN GENUCHTEN M. TH. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sciences Society American Journal, Vol. 44, Issue 1 pp 892–898.

WARRICK A. W., LAZAROVITCH N. (2013). Infiltration from a strip source, Water Resources research, Vol. 43, Issue 3, pp. 1-5.

ZELLA L., SMADHI D. (2007). Evolution de l’irrigation. Larhyss Journal, No. 06, pp. 65-80.

ZHOU J., CHENG G., LI X., HU B. X., WANG G. (2012). Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models, Soil Sci. Soc. American Journal, Vol 76, Issue 2, pp. 648-662.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.