EXPLORATION OF MAXIMUM LIKELIHOOD METHOD IN EXTREME RAINFALL FORECASTING USING FOUR PROBABILITY DISTRIBUTIONS - THE CASE OF NORTHERN ALGERIA
Abstract
In this research, we have compared four probability distributions: lognormal, Gumbel, gamma and GEV using method of moments (MM) and maximum likelihood (MLE) parameters estimation that we have applied on extreme rainfall in North of Algeria. The main objective of this study is to explore the advantages of MLE method in extreme rainfall frequency analysis. The comparison between the two methods showed that method of moments gives generally better performances than maximum likelihood, especially for GEV distribution comparing to others distributions, this model (GEV) appears least efficient when skewness of data exceeds 1.2. We have concluded that lognormal distribution is the most efficient and stable and gives better simulation of annual maximum daily rainfall using the two methods for the North of Algeria.
Keywords
Full Text:
PDFReferences
ASHRAFUL A.M, EMURA K., FARNHAM C., YUAN J. (2018). Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh, Climate Journal, Vol.6, Issue 9, pp. 1-16.
ANRH : Agence Nationale des Ressources Hydrauliques (1993). Carte pluviométrique de l’Algérie du Nord. Une carte au 1/500000e et sa notice explicative. Ministère de l’Équipement, Alger, Algérie
BOBEE B., DES GROSEILLIERS L. (1985). Ajustement des distributions Pearson type 3, gamma, gamma généralisée, log-Pearson type 3 et log-gamma, Rapport scientifique no 105, INRS-Eau, Université du Québec, 154 p.
CHOW V.T., D. MAIDMENT, MAYS L.W (1988). Applied hydrology, McGraw-Hill Book Company, 572 p.
CUNNANE C. (1973). A particular comparison of annual maxima and partial duration series methods of flood frequency prediction, Journal of Hydrology, Vol. 18, pp. 257–271.
GUMBEL J. (1958). Statistics of Extremes, Columbia University Press, New York, 375p.
GREENWOOD A., LANDWEHR J., MATALAS N., WALLIS J. (1979). Probability weighted moments: Definition and relation to parameters of several distributions, Water Resources Research, Vol.15, pp. 1049–1054.
HOSKING J. (1985). Algorithm AS 215: Maximum-likelihood estimation of the parameter of the generalized extreme-value distribution, Applied Statistics, Vol.34, pp. 301–310.
HOSKING J., WALLIS J., WOOD E. (1985). Estimation of the generalized extreme-value distribution by the method of probability weighted moments, Technometrics, Vol. 27, Issue 3, pp. 251–261.
JENKINSON A.F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Quarterly Journal of the Royal Meteorological Society, Vol. 81, No. 348, pp. 158-171.
LABORDE J. (2009). Éléments d'hydrologie de surface. École polytechnique de l’université de Nice- Sophia Antipolis, France, 199 p.
LAGLAINE V., BEROD D., DEVRED D., MUSY A. (1994). Modélisation déterministe de la crue extrême d'un bassin versant de montagne avec application de la description géomorphologique du réseau hydrographique, Revue Sciences de l’eau, Vol. 7, pp. 285-308.
LANG M., OUARDA T., BOBÉE B. (1999). Towards operational guidelines for over-threshold modeling, Journal of hydrology, Vol. 3, pp. 103-196.
LANG M., ARNAUD P., CARREAU J. (2014). Résultats du projet ExtraFlo (ANR 2009-2013) sur l’estimation des pluies et crues extrêmes, La Houille Blanche, Vol. 2, pp. 5-13.
MADSEN H., RASMUSSEN P., ROSBJERG D. (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events, Water Resources Research, Vol.33, Issue 4, pp. 747-757.
MARTINS E., STEDINGER J. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, Vol.36, No 3, pp. 737-744.
MEYLAN P., FAVRE A., MUSY A. (2008). Hydrologie fréquentielle: une science prédictive, Presses polytechniques et universitaire romandes, EPFL, Lausanne, suisse, 173 p.
MIQUEL J. (1984). Guide pratique d’estimation des probabilités de crues, Eyrolles, France, 160 p.
PERREAULT L., BOBEE B., LEGENDRE P. (1994). Rapport général du logiciel ajuste-II: théorie et application, Institut National de la Recherche Scientifique, INRS-Eau, Québec, 102 p.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.