ASSESSMENT OF GROUNDWATER EFFECTIVE VULNERABILITY TO POLLUTION THE CASE OF THE LOBO WATERSHED BUYO, SOUTH WEST OF COTE D’IVOIRE

M.J.A. OHOU-YAO, B. DIBI, A. SEKA, O.B. YAPO, L. ZAHOURI, V. MAMBO, P.V. HOUENOU

Abstract


Rapid and uncontrolled urbanization as well as agricultural activities constitute real threats to groundwater which represents one of the most important natural resources for the supply of drinking water, especially in developing countries. The objective of this study is to assess the risk of pollution of these resources. The method consisted of integrating the intrinsic vulnerability map with that of the pollution indices produced from the pollutants. These pollutants considered as those which threaten the quality of groundwater in the area have been determined using the method of Principal Component Analysis (PCA). The results obtained present an intrinsic vulnerability map dominated by the medium intrinsic vulnerability class. The statistical tests made it possible to identify the land use pattern and the nitrates which were combined to produce the pollution index map. The result of the combination of these two maps shows that the study area remains dominated by the average effective vulnerability class. However, the effective high vulnerability class which shows the areas most threatened by pollution is more observed in the South with a few low occurrences in the North.


Keywords


Groundwater; anthropic activities; intrinsic vulnerability; effective vulnerability; pollution indices

Full Text:

PDF

References


AMADOU H., LAOUALI M.S., MANZOLA A. (2014). Physico-chemical and bacteriological analysis waters from three aquifers of the region de Tillabery: application of methods multi varied statistical analysis, Larhyss Journal, No. 20, pp. 25-41

ALLER L., LEHR J. H., PETTY R. AND BENNETT T. (1987). DRASTIC: A standardized system to evaluate Groundwater Pollution using Hydrogeologic setting. Jour. Geol. Soc. India, 29(1), pp. 23-37.

BAALOUSHA H. (2006). Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC. Enviromental Geology, Vol 50, pp. 405–414.

BRINK C.V.D., ZAADNOORDIJK W.J., GRIFT B.V.D., RUITER P.C., GRIFFIOEN J. (2008). Analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, Vol. 550, pp 82-91.

CHIPPAUX J.P., HOUSSIER S., GROSS P., BOUVIER C., BRISSAUD F. (2002). Using a groundwater quality negotiation support system to change land- use management near a drinking-water abstraction in the Netherlands. Journal of Hydrology, Vol. 350, pp 339– 356.

CIVITA M. (1994). Contamination vulnerability mapping of the aquifer: theory and practice. Quaderni di Tecniche di Protezione Ambientale, Pitagora, Italy.

DIBI B., PLAGNES V., KONAN-WAIDHET A.B. and SAVANÉ I. (2015) Définition d’une méthodologie de dimensionnement des zones de protection des ouvrages de captages d’eaux souterraines en zone de socle. Cas de la zone test du bassin versant d’Ehania (Sud-est de la Côte d’Ivoire). Vingtièmes journées techniques du Comité Français d’Hydrogéologie de l’Association Internationale des Hydrogéologues. Aquifères de socle: Le point sur les concepts et les applications opérationnelles, La Roche-sur-Yon, 8 p.

DOUMOUYA I., DIBI B., KOUAME K. I., SALEY B., JOURDA J. P., SAVANE I., BIEMI J. (2012). Modelling of favourable zones for the establishment of water points by geographical information system (GIS) and multicriteria analysis (MCA) in the Aboisso area (South-east of Côte d’Ivoire). Environmental Earth Science, Vol. 67, pp 1763–1780, DOI 10.1007/s12665-012-1622-2.

EBLIN S.G., SORO G.M., SOMBO A.P., AKA N., KAMBIRÉ O., SORO N. (2014). Hydrochemistry of groundwater in the Adiake region (Sud-Est cote d’Ivoire), Larhyss Journal, Vol.17, pp. 193-214.

FAYE M.D., BIAOU A.C., SORO D.D., LEYE B., KOITA M., YACOUBA H. (2020). Understanding groundwater pollution of Sissili catchment area in Burkina-Faso. Larhyss Journal, No. 42, pp. 121-144

FOSTER S. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden W, Van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants. Committee on Hydrological Research, The Hague, pp. 69–86.

GELINAS Y., RANDALL H., ROUBIDOUX L., SCHMIT J.P. (1996). Etude de la pollution de l’eau souterraine de la ville de Niamey, Niger. Bulletin de la Société de Pathologie Exotique, Vol. 94, Issue 2, pp 119-123.

GNAMBA F., BAKA B., SOMBO A., KPAN O., OGA Y. (2019). Quantitative and qualitative analysis of groundwater resources in the Katiola (Côte d’Ivoire), Larhyss Journal, No. 40, 117-134.

HAOUCHINE A., HAOUCHINE F.Z., LABADI A. (2015). Assessment of groundwater vulnerability using index based method. Case of sebaou river aquifer (NORTHERN ALGERIA), Larhyss Journal, No. 24, pp. 337-349

HEALY R.W., COOK P.G. (2002) Using groundwater levels to estimate recharge. Hydrogeology Journal, Vol. 10, pp. 91–109 (2002). https://doi.org/10.1007/s10040-001-0178-0

HUDAK P.F. (1999). Chloride and nitrate distributions in the hickory aquifer, central texas, USA. Environment International, Vol. 25, pp 393-401.

JAMRAH A., AL-FUTAISI A., NATARAJAN R., YAROUBI S. (2008). Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environmental Monitoring and Assessment, Vol. 147, pp. 125-38. DOI: 10.1007/s10661-007-0104-6

KAMENAN Y.M., MANGOUA O.M.J., DIBI B., GEORGES S.E., KOUASSI K.L., KOUASSI K.A. (2020). Assessment of Vulnerability to Groundwater Pollution in the Lobo Watershed at Nibéhibé, Central-West of Côte d’Ivoire, Journal of Water Resource and protection, Vol. 12, pp. 657-671. https://doi.org/10.4236/jwarp.2020.128040.

KOUADIO A.N.B. (2019). Évaluation du risque sanitaire lié à la consommation des eaux de puits traditionnels par les ménages à faibles revenus en milieu urbain: Cas de la ville d’Agboville (Côte d’Ivoire). Thèse Unique de Doctorat, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire, 188 p.

LACHASSAGNE P., DEWANDEL B., WYNS R. (2015). Le modèle conceptuel hydrogéologique des aquifères de socle altéré et ses applications pratiques. 20èmes Journées techniques du Comité Français d'Hydrogéologie. 11-13 Juin 2015, La Roche-sur-Yon, France, 8 p.

LIMA M.L., ZELAYA K., MASSONE H. (2011). Groundwater Vulnerability Assessment Combining the Drastic and Dyna-Clue Model in the Argentine Pampas, Environmental Management, Vol. 47, pp 828–839.

LIU A., MING J., ANKUMAH R.O. (2005). Nitrate contamination in private wells in rural Alabama, United States. Sciences Total Environment, Vol. 346, pp 112- 120.

MANGOUA M.J., KONAN K.S., KOUAME K.I., ZOUGROU N.N., KOUASSI, K.L., SAVANE I., BIEMI J. (2018). Assessment of Vulnerability to Groundwater Pollution in the Department of Tiassalé (South of Côte d’Ivoire). EWASH & TI Journal, Vol.2, pp 46-54.

MENDOZA J., BARMEN G. (2006). Assessment of groundwater vulnerability in the Río Artiguas basin, Nicaragua, Environmental Geology, Vol. 50, pp. 569-580.

SHIH-KAI C., CHENG-SHIN J., YI-HUEI P. (2013). Developing a probability-based model of aquifer vulnerability in an agricultural region. Journal of Hydrology, Vol. 486, pp. 494–504.

SINGH K.P., AMRITA M., SINGH V.K, MOHAN D., SINHA S. (2005). Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, Vol. 550, pp 82-91.

SRINIVASAMOORTHY K., NANTHAKUMAR C., VASANTHAVIGAR M., VIJAYARAGHAVAN K., RAJIVGANDHI R., CHIDAMBARAM S., ANANDHAN, P., MANIVANNAN, R., VASUDEVAN S. (2009). Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India, Arabian Journal of Geosciences, DOI 10.1007/s12517-009-0076-7

THIRUMALAIVASAN D., KARMEGAM M., VENUGOPAL K., (2003), AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS, Environmental Modelling & Software, Vol. 18, pp. 645- 656.

VAN STEMPVOORT D., EWERT L. AND WASSENAAR L. (1993). Aquifer vulnerability index (AVI): a GI compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal, Vol. 18, pp 25–37.

VIAS J.M., ANDREO B., PERLES M.J., CARRASCO F., VADILLO I. AND JIMENEZ P. (2006). Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in southern Spain. Hydrogeol Journal, Vol 14, pp 912–925.

WANG Y., MERKEL B., LI Y., YE H., FU S., IHM D. (2007). Vulnerability of groundwater in Quaternary aquifers to organic contaminants: a case study in Wuhan City, China, Environmental Geology, Vol. 53, pp. 479-484.

WORRALLA F., KOLPIN D.W. (2004). Aquifer vulnerability to pesticide pollution combining soil, land-use and aquifer properties with molecular descriptors. Journal of Hydrology, Vol. 293, pp 191–204

ZHANG H., HISCOCK K.M. (2011). Modelling the effect of forest cover in mitigating nitrate contamination of groundwater: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK. Journal of Hydrology, Vol. 399, pp 212–225.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.